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Introduction 
 Recent developments in the theory of quantum computation have shown that the error threshold–a measure 
of the required qubit coherence and quantum gate accuracy needed to carry out arbitrary quantum computations– 
may be on the order of ~1%, a significantly less demanding requirement than earlier estimates of 1 part in 105, 
and close to the accuracy obtained experimentally for a number of physical qubit realizations [1]. This improved 
threshold is obtained using so-called "surface codes” [2], quantum error-correcting codes which can be viewed as 
the topologically-ordered ground states of a class of 2D lattice models first introduced by Kitaev [3]. Recently 
Koenig, Kuperberg, and Reichardt [4] have outlined a scheme for performing quantum computation using "non-
Abelian" surface codes. These codes are ground states of Levin-Wen models [5], generalizations of the Kitaev 
model for which the excitations are anyons obeying so-called non-Abelian statistics which can be used to carry 
out arbitrary quantum computation purely by braiding, (something which is not possible using the "Abelian" Kitaev 
surface code). 
 
Results and Discussion 
 Motivated by these developments,  we have constructed explicit quantum circuits using standard elements 
(single qubit rotations, CNOT gates and Toffoli gates) for measuring the commuting set of vertex and plaquette 
operators that appear in the Levin-Wen model for the case of Fibonacci anyons–the simplest non-Abelian anyons 
for which universal quantum computation can be carried out by braiding [6].  Such measurements will be required 
in order to detect errors in the quantum error-correcting code defined by the ground states of this model.  We 
quantify the complexity of these circuits with gate counts using different universal gate sets and find these 
measurements become significantly easier to perform if n-qubit Toffoli gates with n = 3,4 and 5 can be carried out 
directly. In addition to measurement circuits, we construct related quantum circuits requiring only a few qubits 
which can feasibly be carried out experimentally using existing qubits. 
 

 
 
Acknowledgements  
 Work supported by US DOE Grant # DE-FG02-97ER45639.  
 
References 
[1] See, for example, M. Steffen, Physics 4, 103 (2011) , and references therein. 
[2] R. Rausendorff and J. Harrington, Phys. Rev. Lett. 98, 190504 (2007). 
[3] A. Kitaev, Ann. Phys. 303, 2 (2003). 
[4] R. Koenig, G. Kuperberg,  and B. Reichardt, Ann. Phys. 325, 2707 (2010). 
[5] M.A Levin and X.-G. Wen, Phys. Rev. B 71, 045110 (2005).  
[6] N.E. Bonesteel and D.P. DiVincenzo, Phys. Rev. B 86, 165113 (2012).  

Figure 1. Quantum circuit for measuring the 
plaquette operator, Bp, for a hexagonal 
plaquette in the “Fibonacci” Levin-Wen model.  
The boxes represent quantum circuits which 
carry out so-called F- and S-moves (for 
precise descriptions of the quantum circuits 
inside each box, see [6]).  The total gate count 
for this twelve-qubit quantum circuit is 8 five-
qubit Toffoli gates, 2 four-qubit Tofolli gates, 
10 three-qubit Toffoli gates, 43 CNOT gates 
and 24 single qubit gates. 


