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Results and Discussion 
We report the first charge reversal experiments performed by tandem-in-time rather than tandem-in-space MS/MS.  
Precursor odd-electron anions from fullerene C60, and even-electron ions from 2,7-di-tert-butylfluorene-9-
carboxylic acid and 3,3’-bicarbazole  were converted into positive product ions (–CR+) inside the magnet of a 
Fourier transform ion cyclotron resonance mass spectrometer.  Charge reversal was activated by irradiating 
precursor ions with high energy electrons or UV photons: the first reported use of those activation methods for 
charge reversal.  We suggest that high energy electrons achieve charge reversal in one step as double electron 
transfer, whereas UV-activated –CR+ takes place stepwise through two single electron transfers and formally 
corresponds to a neutralization-reionization (–NR+) experiment. 
 

Compounds ionized by "soft" non-destructive ionization techniques (e.g., electrospray ionization, matrix-assisted 
laser desorption ionization, etc.) typically require additional activation to produce structurally informative fragment 
ions.  Negative ions from many compounds do not give informative CID mass spectra.  –CR+ can potentially 
produce structurally informative fragment ions not readily generated by other dissociation techniques (see Figure 
1).  In addition,  –CR+ can also generate unusual positive ions not accessible by conventional ionization methods. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1..  –CR+ FT-ICR mass spectrum produced by irradiation of C60

–•
 with 180 eV electrons.  The –CR+ process 

yields C60
+•, C60

2+, and C60
3+, as well as a wealth of fragment ions not produced by positive electrospray ionization. 
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