List Of 2015 Reports

ID#	Title, First Author, and Category	Status
107	Title: Normal Properties and Superconductivity of Strontium Titanate (Bulk and Surface) First Author: Gor'kov, L.P., FSU, NHMFL, gorkov@magnet.fsu.edu PI: Gor'kov, L.P., FSU, NHMFL, gorkov@magnet.fsu.edu Category: Superconductivity - Basic Facility: CMT/E UCGP: No VSP: No Published in J. PhysCondens. Mat. 27 252001 Sign. Achievement: No Director's Recommendation: Yes, definitely Director's Comments: Significant advance in understanding long-time puzzling superconducting behavior. Quality work with significant potential for far-reaching impact. Title: Theoretical Visualization of STM Images in Inhomogeneous Superconductors	Approved
<u>95</u>	First Author: Hirschfeld, P.J., U. Florida, Physics, pjh@phys.ufl.edu PI: Hirschfeld, P.J., U. Florida, Physics, pjh@phys.ufl.edu Category: Superconductivity - Basic Facility: UF Physics UCGP: No VSP: No Published in Phys. Rev. Lett. 114, 217002 (2015) Sign. Achievement: Yes Director's Recommendation: Yes, definitely Director's Comments: None	Approved
<u>163</u>	Title: Seebeck Coefficient of Underdoped La2-xSrxCuO4 in High Magnetic Fields: Fermi-Surface Reconstruction by Charge-Density-Wave Order First Author: Badoux, S. PI: Taillefer, L., Université de Sherbrooke, Physics, Louis.Taillefer@USherbrooke.ca Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 45 T UCGP: No VSP: No Submitted to Physical Review X Sign. Achievement: Yes Director's Recommendation: Yes, definitely Director's Comments: None	Approved
	Title: Quantum Oscillations in the Cuprate Superconductor Pr2CuO4+- First Author: Breznay, N.P., UC Berkeley, Physics, nbreznay@berkeley.edu PI: Analytis, J.G., UC Berkeley, Physics, analytis@berkeley.edu Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 92 T UCGP: No VSP: No Submitted to Nature Comm. Sign. Achievement: No Director's Recommendation: Yes, definitely Director's Comments: Studying quantum criticality in MBE films of cuprates is an important new step. Precise chemical control of doping and oxygen stoichiometry can be achieved, along with future strain and interface studies.	Approved
	Title: Contactless Measurements of Quantum Oscillations in the Cuprate Superconductor HgBa2CuO4+δ First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com PI: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Submitted to Nature Comm. Sign. Achievement: No Director's Recommendation: Yes, definitely Director's Comments: Most quantum oscillation work to date in the cuprates has been on YBCO. YBCO presents many complications due to the double-layer structure and competing orders. The outstanding challenge is to unravel which are the most important features of the Fermi surface for creating high-Tc superconductivity. This Hg-based superconductor overcomes many of the above problems - it has only a single layer and presents a simple reconstructed Fermi surface, that could be considered an archetypical feature of cuprate superconductors. The PI is characteristically self-effacing and lets others put his results forward.	Approved
466	Title: Reversal of the Upper Critical Field Anisotropy and Spin-Locked Superconductivity in K2Cr3As3 First Author: Balakirev, F.F., NHMFL, LANL, fedor@lanl.gov PI: Bud'ko, S., Ames Laboratory, budko@ameslab.gov Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Published in Phys. Rev. B Rapid Commun. 91, 220505(R) (2015) Sign. Achievement: Yes	Approved

	Director's Recommendation: Yes, definitely Director's Comments: None	
<u> 273</u>	Title: The Effect of Chemical Pressure on the Electronic Nematic Structure of FeSe First Author: Coldea, A., Oxford University, Physics, amalia.coldea@physics.ox.ac.uk PI: Coldea, A., Oxford University, Physics, amalia.coldea@physics.ox.ac.uk Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 45 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: Yes Director's Recommendation: Yes Director's Comments: None	Approved
<u>318</u>	Title: High-Entropy, Paramagnetic FFLO Superconducting State in K-(BEDT-TTF)2Cu(NCS)2 First Author: Fortune, N.A.F., Smith College, Physics, nfortune@smith.edu PI: Fortune, N.A.F., Smith College, Physics, nfortune@smith.edu Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: Yes Publication Status: Manuscript in preparation Sign. Achievement: Yes Director's Recommendation: Yes Director's Comments: None	Approved
<u>103</u>	Title: Spin Fluctuation Pairing, Nematicity, and Orbital Order in FeSe First Author: Hirschfeld, P.J., U. Florida, Physics, pjh@phys.ufl.edu PI: Hirschfeld, P.J., U. Florida, Physics, pjh@phys.ufl.edu Category: Superconductivity - Basic Facility: UF Physics UCGP: No VSP: No Published in Phys. Rev. Lett. 115,026402 Sign. Achievement: No Director's Recommendation: Yes Director's Comments: None	Approved
<u>171</u>	Title: Magnetic Field Induced Vortex Lattice Reconstruction from17O NMR of an Under-doped Single Crystal of the High Temperature Superconducting Compound Hg1201 First Author: Halperin, W.P., Northwestern University, Physics, w-halperin@northwestern.edu PI: Halperin, W.P., Northwestern University, Physics, w-halperin@northwestern.edu Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 30 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: Yes Director's Recommendation: Yes	Approved
<u>35</u>	Director's Comments: None Title: Shubnikov-De Haas Oscillation Measurements on FeSe under High Pressure First Author: Terashima, T., National Institute for Materials Science, TERASHIMA.Taichi@nims.go.jp PI: Terashima, T., National Institute for Materials Science, TERASHIMA.Taichi@nims.go.jp Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 45 T UCGP: No VSP: No Submitted to Phys. Rev. Lett. Sign. Achievement: Yes Director's Recommendation: Yes Director's Comments: None	Approved
<u>36</u>	Title: Strong Correlations Elucidate the Electronic Structure and the Phase Diagram of the LaAlO3/SrTiO3 Interface First Author: Dagan, Y., Tel Aviv University, School of Physics and Astronomy, yoram.dagan@gmail.com PI: Dagan, Y., Tel Aviv University, School of Physics and Astronomy, yoram.dagan@gmail.com Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 34.5 T UCGP: No VSP: No Published in Nature Comm. DOI: 10.1038/ncomms9239 Sign. Achievement: Yes Director's Recommendation: Yes Director's Comments: None	Approved
<u>56</u>	Title: NMR Search for Hidden Order in the Paseudogap Phase of the Cuprate High-Tc Superconductors First Author: Kawasaki, K., Okayama University, Physics, kawasaki@psun.phys.okayama-u.ac.jp PI: Zheng, G.Q., Okayama University, Physics, zheng@psun.phys.okayama-u.ac.jp Category: Superconductivity - Basic Facility: DC Field Facility	Approved

l i	Highest Measured Field, 45 T	Ī
	Highest Measured Field: 45 T UCGP: No VSP: No Publication Status: Manuscript in preparation	
	Sign. Achievement: No	
	Director's Recommendation: No Director's Comments: None	
	Title: High Field Transport Properties of Ni-doped BaFe2As2 Thin Film	
	First Author: lida, K., Nagoya University, Crystalline Materials Science, Graduate School of Science,	
	iida@nuap.nagoya-u.ac.jp PI: lida, K., Nagoya University, Crystalline Materials Science , Graduate School of Science, iida@nuap.nagoya-	
	u.ac.jp	
<u>58</u>	Category: Superconductivity - Basic	Approved
	Facility: DC Field Facility Highest Measured Field: 35 T	
	UCGP: No VSP: No Publication Status: Manuscript in preparation	
	Sign. Achievement: No Director's Recommendation: No	
	Director's Comments: None	
	Title: Upper critical fields in iron-based pnictide superconductors	
	First Author: Nikolo, M, Saint Louis University, Physics, nikolom@slu.edu PI: Nikolo, M, Saint Louis University, Physics, nikolom@slu.edu	
	Category: Superconductivity - Basic	
<u>126</u>	Facility: Pulsed Field Facility at LANL	Approved
	Highest Measured Field: 60 T UCGP: No VSP: No Publication Status: Manuscript in preparation	
	Sign. Achievement: No	
	Director's Recommendation: No Director's Comments: None	
	Title: Determination of the Upper Critical Field of Cuprates by Electrical Transport under High Magnetic Field	
<u>132</u>	First Author: Wu, J., Brookhaven National Laboratory, jwu@bnl.gov	
	PI: Bozovic, I., Brookhaven National Laboratory, bozovic@bnl.gov Category: Superconductivity - Basic	
	Facility: DC Field Facility	Approved
	Highest Measured Field: 61 T	Approved
	UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No	
	Director's Recommendation: No	
	Director's Comments: None Title: Anomalous High-Field-Induced Phase in Underdoped La1.7Eu0.2Sr0.1CuO4	
	First Author: Shi, Z., NHMFL, zshi@magnet.fsu.edu	
	PI: Popovic, D., NHMFL, dragana@magnet.fsu.edu	
4.40	Category: Superconductivity - Basic Facility: DC Field Facility	
142	Highest Measured Field: 18 T	Approved
	UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No	
	Director's Recommendation: No	
	Director's Comments: None	
	Title: Normal-State Specific Heat Measurements in BaFe2(As1-xPx)2 First Author: Moir, C.M.M., Magnet Lab / FSU, Physics, moir@magnet.fsu.edu	
	PI: Riggs, S.C.R., Magnet Lab / FSU, scr@magnet.fsu.edu	
	Category: Superconductivity - Basic Facility: DC Field Facility	
<u>158</u>	Highest Measured Field: 35 T	Approved
	UCGP: No VSP: No Publication Status: Manuscript in preparation	
	Sign. Achievement: No Director's Recommendation: No	
	Director's Comments: None	
	Title: Kohler's Rule in Nearly Optimal-Doped Cuprate Superconductor HgBa2Cu4+δ First Author: Tang, Y., University of Minnesota, Physics and Astronomy, tangx345@umn.edu	
	PI: Greven, M., University of Minnesota, Physics and Astronomy, tangx345@umn.edu	
	Category: Superconductivity - Basic	
<u>172</u>	Facility: DC Field Facility Highest Measured Field: 31.4 T	Approved
	UCGP: No VSP: No Publication Status: Manuscript in preparation	
	Sign. Achievement: No Director's Recommendation: No	
	Director's Comments: None	
	Title: Search for the Rapid Oscillations and Field-Induced Spin-Density-Waves in (TMTTF)2Br	

183	First Author: Kang, W., Ewha Womans University, Physics, wkang@ewha.ac.kr PI: Kang, W., Ewha Womans University, Physics, wkang@ewha.ac.kr Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 34 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Torque Magnetometry of High Temperature Superconductors in Pulsed Magnetic Fields	Approved
230	First Author: Yu, F, University of Michigan, fanyuchn@umich.edu PI: Li, L,. University of Michigan, Iuli@umich.edu Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Submitted to Nature Physics Sign. Achievement: No Director's Recommendation: No Director's Comments: None	Approved
<u>167</u>	Title: Magnetoresistivity of the Cuprate Superconductor Nd2-xCexCuO4-δ First Author: Li, Y., University of Minnesota, Physics, yl@physics.umn.edu Pl: Greven, M., University of Minnesota, Physics, greven@physics.umn.edu Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None	Approved
327	Title: 17O NMR Investigation of Charge Order in Underdoped YBa2Cu3Oy First Author: Julien, M.H., LNCMI, marc-henri.julien@Incmi.cnrs.fr PI: Julien, M.H., LNCMI, marc-henri.julien@Incmi.cnrs.fr Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 45 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None	Approved
<u>345</u>	Title: Majorana Bands, Berry Curvature, and Thermal Hall Conductivity in a Chiral P-Wave Superconductor First Author: Murray, J.M., NHMFL, james.murray1@gmail.com PI: Vafek, O., FSU/NHMFL, vafek@magnet.fsu.edu Category: Superconductivity - Basic Facility: CMT/E UCGP: No VSP: No Published in Phys. Rev. B vol 92 page 134520 Sign. Achievement: No Director's Recommendation: No Director's Comments: None	Approved
<u>357</u>	Title: High Field Studies of Electron-Doped Cuprate Thin Films First Author: Higgins, J.S., University of Maryland, College Park, Physics, joshua.s.higgins@gmail.com PI: Butch, N.P., NIST/University of Maryland, nicholas.butch@nist.gov Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Comments: None	Approved
360	Title: Quantum Critical Points and Non-Fermi Liquid Behavior in CaRuO3 and Sr2RuO4 First Author: Wartenbe, M.W., FSU, maglab, mrw03h@fsu.edu Pl: Wartenbe, M.W., FSU, maglab, mrw03h@fsu.edu Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Comments: None	Approved

Highest Measured Field: 65 1 UCGP: No VSP: No Accepted by Scientific Reports Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field Measurements of High Temperature Superconductors First Author: Hsu, YT., University of Cambridge, Physics, yth21@cam.ac.uk PI: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic	Approved Approved Approved	First Author: Salamon, M.B., Univ. Texas at Dallas, salamon@utdallas.edu PI: Salamon, M.B., Univ. Texas at Dallas, salamon@utdallas.edu Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Accepted by Scientific Reports Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field Measurements of High Temperature Superconductors First Author: Hsu, YT., University of Cambridge, Physics, yth21@cam.ac.uk PI: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility
First Author: Salamon, M.B., Univ. Texas at Dallas, salamon@utdallas.edu Pl: Salamon, M.B., Univ. Texas at Dallas, salamon@utdallas.edu Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Accepted by Scientific Reports Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field Measurements of High Temperature Superconductors First Author: Hsu, YT., University of Cambridge, Physics, yth21@cam.ac.uk Pl: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Pl: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None	Approved	First Author: Salamon, M.B., Univ. Texas at Dallas, salamon@utdallas.edu PI: Salamon, M.B., Univ. Texas at Dallas, salamon@utdallas.edu Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Accepted by Scientific Reports Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field Measurements of High Temperature Superconductors First Author: Hsu, YT., University of Cambridge, Physics, yth21@cam.ac.uk PI: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility
PI: Salamon, M.B., Univ. Texas at Dallas, salamon@utdallas.edu Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Accepted by Scientific Reports Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field Measurements of High Temperature Superconductors First Author: Hsu, YT., University of Cambridge, Physics, yth21@cam.ac.uk PI: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Recommendation: No Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+ö First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov	Approved	PI: Salamon, M.B., Univ. Texas at Dallas, salamon@utdallas.edu Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Accepted by Scientific Reports Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field Measurements of High Temperature Superconductors First Author: Hsu, YT., University of Cambridge, Physics, yth21@cam.ac.uk PI: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility
Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Accepted by Scientific Reports Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field Measurements of High Temperature Superconductors First Author: Hsu, YT., University of Cambridge, Physics, yth21@cam.ac.uk PI: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Recommentation: No Director's Comments: None	Approved	Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Accepted by Scientific Reports Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field Measurements of High Temperature Superconductors First Author: Hsu, YT., University of Cambridge, Physics, yth21@cam.ac.uk Pl: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Pl: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility
Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Accepted by Scientific Reports Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field Measurements of High Temperature Superconductors First Author: Hsu, YT., University of Cambridge, Physics, yth21@cam.ac.uk Pl: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Pl: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Recommentation: No Director's Recomments: None Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+ö First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov	Approved	Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Accepted by Scientific Reports Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field Measurements of High Temperature Superconductors First Author: Hsu, YT., University of Cambridge, Physics, yth21@cam.ac.uk PI: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility
Highest Measured Field: 65 T UCGP: No VSP: No Accepted by Scientific Reports Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Title: High Magnetic Field Measurements of High Temperature Superconductors First Author: Hsu, YT., University of Cambridge, Physics, yth21@cam.ac.uk PI: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+ŏ First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov	Approved	Highest Measured Field: 65 T UCGP: No VSP: No Accepted by Scientific Reports Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field Measurements of High Temperature Superconductors First Author: Hsu, YT., University of Cambridge, Physics, yth21@cam.ac.uk PI: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility
UČGP: No VSP: No Accepted by Scientific Reports Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field Measurements of High Temperature Superconductors First Author: Hsu, YT., University of Cambridge, Physics, yth21@cam.ac.uk Pl: Sebastian, S. E., University of Cambridge, Physics, yth21@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Pl: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+ŏ First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov	е	UČGP: No VSP: No Accepted by Scientific Reports Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field Measurements of High Temperature Superconductors First Author: Hsu, YT., University of Cambridge, Physics, yth21@cam.ac.uk PI: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility
Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field Measurements of High Temperature Superconductors First Author: Hsu, YT., University of Cambridge, Physics, yth21@cam.ac.uk Pl: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Pl: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+ö First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov	е	Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field Measurements of High Temperature Superconductors First Author: Hsu, YT., University of Cambridge, Physics, yth21@cam.ac.uk PI: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility
Director's Recommendation: No Director's Comments: None Title: High Magnetic Field Measurements of High Temperature Superconductors First Author: Hsu, YT., University of Cambridge, Physics, yth21@cam.ac.uk PI: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov	е	Director's Recommendation: No Director's Comments: None Title: High Magnetic Field Measurements of High Temperature Superconductors First Author: Hsu, YT., University of Cambridge, Physics, yth21@cam.ac.uk Pl: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Pl: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility
Director's Comments: None Title: High Magnetic Field Measurements of High Temperature Superconductors	е	Director's Comments: None Title: High Magnetic Field Measurements of High Temperature Superconductors First Author: Hsu, YT., University of Cambridge, Physics, yth21@cam.ac.uk PI: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility
Title: High Magnetic Field Measurements of High Temperature Superconductors First Author: Hsu, YT., University of Cambridge, Physics, yth21@cam.ac.uk Pl: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Pl: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+δ First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov	е	Title: High Magnetic Field Measurements of High Temperature Superconductors First Author: Hsu, YT., University of Cambridge, Physics, yth21@cam.ac.uk Pl: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Pl: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility
First Author: Hsu, YT., University of Cambridge, Physics, yth21@cam.ac.uk PI: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+δ First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov	е	First Author: Hsu, YT., University of Cambridge, Physics, yth21@cam.ac.uk PI: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility
PI: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+ö First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov	е	PI: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility
PI: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+ö First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov	е	PI: Sebastian, S. E., University of Cambridge, Physics, ses59@cam.ac.uk Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility
Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+ŏ First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov	е	Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility
Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+o First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov	е	Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility
Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+δ First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov	е	Highest Measured Field: 65 T UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility
UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov		UCGP: Yes VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility
Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov		Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility
Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+ŏ First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov		Director's Recommendation: No Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility
Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+δ First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov		Director's Comments: None Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility
Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov		Title: High Magnetic Field and High-Frequency Cyclotron Resonance Studies of the Underdoped Cuprate YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility
YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov		YBa2Cu3O6+y (YBCO) and Related Materials First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility
First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov	Approved	First Author: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility
PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov	Approved	PI: Beedle, C.C., NHMFL Los Alamos National Laboratory, beedle@lanl.gov Category: Superconductivity - Basic Facility: DC Field Facility
Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov	Approved	Category: Superconductivity - Basic Facility: DC Field Facility
### Facility: DC Field Facility Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov	Approved	26 Facility: DC Field Facility
Highest Measured Field: 35 T UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov	Approved	
UCGP: No VSP: No Publication Status: Not at this time Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov		
Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov		
Director's Recommendation: No Director's Comments: None Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+δ First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov		UCGP: No VSP: No Publication Status: Not at this time
Director's Comments: None Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+δ First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov		Sign. Achievement: No
Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc Superconductor HgBa2CuO4+δ First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov		Director's Recommendation: No
Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov		Director's Comments: None
Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov	ıh-Tc	Title: Low-Temperature High-Magnetic Field Hall Effect near a Putative Quantum Critical Point in the High-Tc
First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mkchan@lanl.gov	,	
Fi. Chan, W.N., Waylab, Los Alamos Mational Laboratory, mixchantegram, gov		
Category: Superconductivity - Basic		
	Approved	
	Approved	
Highest Measured Field: 65 T		
UCGP: No VSP: No Publication Status: Manuscript in preparation		OCGP: No VSP: No Publication Status: Manuscript in preparation
		Sign. Achievement: No
		Sign. Achievement: No Director's Recommendation: No
		Sign. Achievement: No Director's Recommendation: No Director's Comments: None
		Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures
		Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu
SIMES, hyhwang@stanford.edu	hysics &	Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu PI: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics &
Category: Superconductivity - Basic	hysics &	Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu PI: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics & SIMES, hyhwang@stanford.edu
	hysics &	Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu PI: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics & SIMES, hyhwang@stanford.edu
Highest Measured Field: 18 T	hysics & Approved	Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu PI: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics & SIMES, hyhwang@stanford.edu Category: Superconductivity - Basic Facility: DC Field Facility
		Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu PI: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics & SIMES, hyhwang@stanford.edu Category: Superconductivity - Basic Facility: DC Field Facility
		Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu PI: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics & SIMES, hyhwang@stanford.edu Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 18 T
		Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu PI: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics & SIMES, hyhwang@stanford.edu Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 18 T UCGP: No VSP: No Publication Status: Manuscript in preparation
Sign. Achievement: No Director's Recommendation: No		Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu PI: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics & SIMES, hyhwang@stanford.edu Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 18 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No
Sign. Achievement: No Director's Recommendation: No		Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu PI: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics & SIMES, hyhwang@stanford.edu Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 18 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No
Sign. Achievement: No Director's Recommendation: No Director's Comments: None	Approved	Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu PI: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics & SIMES, hyhwang@stanford.edu Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 18 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None
Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor	Approved	Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu PI: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics & SIMES, hyhwang@stanford.edu Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 18 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor
Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+δ	Approved	Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu PI: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics & SIMES, hyhwang@stanford.edu Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 18 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+ō
Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+δ First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com	Approved	Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu PI: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics & SIMES, hyhwang@stanford.edu Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 18 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com
Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+δ First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com PI: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com	Approved	Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu PI: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics & SIMES, hyhwang@stanford.edu Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 18 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com PI: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com
Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+δ First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com PI: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Category: Superconductivity - Basic	Approved	Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu PI: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics & SIMES, hyhwang@stanford.edu Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 18 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com PI: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Category: Superconductivity - Basic
Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+δ First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com PI: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL	Approved	Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu PI: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics & SIMES, hyhwang@stanford.edu Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 18 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com PI: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL
Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+δ First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Pl: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T	Approved	Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu PI: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics & SIMES, hyhwang@stanford.edu Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 18 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+ö First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com PI: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T
Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com PI: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Publication Status: Manuscript in preparation	Approved	Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu PI: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics & SIMES, hyhwang@stanford.edu Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 18 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com PI: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Publication Status: Manuscript in preparation
Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+δ First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Pl: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No	Approved	Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu Pl: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics & SIMES, hyhwang@stanford.edu Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 18 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Pl: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Pl: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No
Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+δ First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Pl: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No	Approved	Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu PI: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics & SIMES, hyhwang@stanford.edu Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 18 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+ö First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com PI: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No
Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+δ First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Pl: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No	Approved	Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu PI: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics & SIMES, hyhwang@stanford.edu Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 18 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+ö First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com PI: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No
Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+ First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Pl: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None	Approved	Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu PI: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics & SIMES, hyhwang@stanford.edu Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 18 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com PI: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No
Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+\delta First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Pl: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Upper Critical Field for the High-Tc Cuprate HgBa2CuO4+\delta	Approved	Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu PI: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics & SIMES, hyhwang@stanford.edu Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 18 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+δ First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com PI: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: Upper Critical Field for the High-Tc Cuprate HgBa2CuO4+δ
Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Pl: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Upper Critical Field for the High-Tc Cuprate HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com	Approved	Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu PI: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics & SIMES, hyhwang@stanford.edu Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 18 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+ö First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com PI: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: Upper Critical Field for the High-Tc Cuprate HgBa2CuO4+ö First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com
Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com PI: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Comments: None Title: Upper Critical Field for the High-Tc Cuprate HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com PI: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com	Approved	Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu PI: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics & SIMES, hyhwang@stanford.edu Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 18 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com PI: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Upper Critical Field for the High-Tc Cuprate HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com PI: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com PI: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com
Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Pl: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Upper Critical Field for the High-Tc Cuprate HgBa2CuO4+ō First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com	Approved	Sign. Achievement: No Director's Recommendation: No Director's Comments: None Title: Superconductivity and Quantum Transport in Asymmetric and Symmetric SrTiO3 Structures First Author: Merz, T., Stanford University, Department of Applied Physics, tmerz@stanford.edu PI: Hwang, H. Y., Stanford University & SLAC National Accelerator Laboratory, Department of Applied Physics & SIMES, hyhwang@stanford.edu Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 18 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Recommendation: None Title: Low Temperature Normal State Magnetoresistance and Hall Effect in the High-Tc Superconductor HgBa2CuO4+δ First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Category: Superconductivity - Basic Facility: Pulsed Field Facility at LANL Highest Measured Field: 65 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Recommendation: No Director's Recomments: None Title: Upper Critical Field for the High-Tc Cuprate HgBa2CuO4+δ First Author: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com PI: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com PI: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com PI: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com PI: Chan, M.K., Maglab, Los Alamos National Laboratory, mchan053@gmail.com Sign.

443	Highest Measured Field: 65 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None	Approved
	Title: High Magnetic Field Phase in Two Dimensional Organic Superconductor "-(BEDT-TTF)4[(H3O)Ga(C2O4) 3]C6H5NO2 First Author: UJI, S.U., National Institute for Materials Science, Superconducting Properties Unit, uji.shinya@nims.go.jp PI: UJI, S.U., National Institute for Materials Science, Superconducting Properties Unit, uji.shinya@nims.go.jp Category: Superconductivity - Basic Facility: DC Field Facility Highest Measured Field: 30 T UCGP: No VSP: No Publication Status: Manuscript in preparation Sign. Achievement: No Director's Recommendation: No Director's Comments: None	Approved
I	Total Reports: 34	