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Carrier Compensation, Impurity Dependent Superconductivity, Anomalous Berry Phase and Bulk Fermi Surface of the Weyl Type-II Semi-Metal Candidate MoTe2
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Introduction  
Orthorhombic MoTe2 and its isostructural compound WTe2 were recently claimed to belong to a new class (type II) of Weyl semi-metals [1-3] characterized by a linear touching between hole and electron Fermi surfaces in addition to nodal lines [3]. ARPES claims to confirm these predictions. To explore its electronic structure at the Fermi level, we synthesized high-quality MoTe2 single-crystals through a Te flux method.
Experimental  

We performed detailed Hall-effect measurements as a function of temperature using a physical properties measurement system. We also performed magnetoresistance measurements in SCM1, at the pulsed field facility in Dresden, in addition to measurements in cell 12. 
Results and Discussion
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Conclusions

Two band analysis of the Hall-effect indicates that MoTe2 is a compensated semi-metal at low temperatures displaying high carrier mobilities which is consistent with its large and non-saturating magnetoresistance. De Haas van Alphen measurements reveal a Fermi surface geometry which is inconsistent with the band structure calculations and with ARPES, although it does indicate a non-trivial Berry phase close to , as predicted for Weyl semi-metallic systems. The origin of this discrepancy remains unclear.
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Fig.1 Left panel: (a) Density of electrons and holes as a function of the temperature as extracted from a two-band model fitting of the raw Hall data. (b) Electron and hole Hall-mobilities as extracted from the two band model. Right panel: (a) Resistivity as a function of the temperature for several -MoTe2 single crystals. Notice that these crystals display resistivity ratios ranging from hundreds to more than one thousand. (b) Low temperature cool-down curves, displaying superconducting transitions which are sample quality dependent. (c) Non-saturating magnetoresistivity of -MoTe2 for fields along the c-axis. (d) Same as in c but for fields along the b-axis. (e) Oscillatory component superimposed onto the magnetoresistivity for several temperature. (f) Oscillatory signal superimposed onto the torque data of b-MoTe2. Red line is a fit to two Lifshitz-Kosevich oscillatory components which yield non-trivial Berry phases approaching .   









