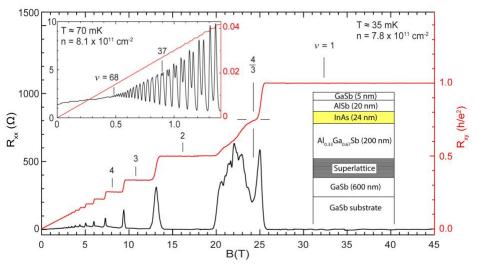


NATIONAL HIGH MAGNETIC FIELD LABORATORY 2017 ANNUAL RESEARCH REPORT

Observation of Fractional Quantum Hall Effect in an InAs Quantum Well

Ma, M.K., Hossain, M. S., Villegas Rosales, K.A., Deng, H. (Princeton U., Electrical Engineering); Tschirky, T., Wegscheider, W. (ETH Zürich); and <u>Shayegan, M.</u> (Princeton U., Electrical Engineering)

Introduction


The InAs two-dimensional electron system (2DES) is currently a prime candidate for hosting exotic quasiparticles such as Majorana fermions and Parafermions that exhibit non-Abelian statistics and can therefore support topological quantum computation. To achieve its full promise, however, the InAs 2DES must have good enough quality to show evidence of electron-electron interaction such as fractional quantum Hall effect (FQHE). In our experiments we study a very high quality, 24-nm-wide InAs quantum well with density 7.8×10¹¹ cm⁻² and mobility 1.8×10^6 cm²/Vs. At T ≈ 35 mK and magnetic field $B \approx 24$ T, we observe a deep longitudinal resistance minimum accompanied by a nearly quantized Hall plateau at filling factor 4/3, signaling the presence of FQHE.

Experimental

Our sample consists of a 24-nm-wide InAs quantum well grown on top of a GaSb substrate. The quantum well is flanked by a 200-nm-thick $AI_{0.33}Ga_{0.67}Sb$ lower barrier and a 20-nm-thick AlSb upper barrier, following by a 5-nm-thick GaSb cap layer. The details of the sample structure are shown in Fig. 1 lower right inset. The measurements were done on a sample with 4 mm × 4 mm van der Pauw geometry. Indium contacts were alloyed into the 2DES by annealing the sample at 200 °C for 5 min. We performed transport measurement using low-frequency lock-in technique with an excitation current of ~ 100 nA. The measurements were carried out mainly using the 45 T hybrid magnet at the MagLab in the portable dilution refrigerator with base temperature of \approx 35 mK.

Results and Discussion

Figure 1 shows the main result of this experiment: The observation of FQHE in an InAs quantum well. It shows the longitudinal resistance R_{xx} and R_{xy} Hall resistance VS. perpendicular magnetic field B from 0 to 45 T at base temperature of ≈ 35 mK. The vertical lines mark the magnetic field positions of several filling factors. The horizontal lines mark the expected quantized value of the Hall resistance at filling factor v = 4/3. At magnetic field $B \approx 24$ T there is a deep R_{xx} minimum accompanied by a Hall resistance Rxy to within 1% expected value of the of quantization. We observe the FQHE at v = 4/3 thanks to the

Fig.1 The longitudinal resistance R_{xx} and Hall resistance R_{xy} vs. perpendicular magnetic field *B* from 0 to 45 T for a 24-nm-wide InAs/Al_{0.33}Ga_{0.67}Sb quantum well at \approx 35 mK. The upper left inset shows the low field R_{xx} and R_{xy} traces taken at \approx 70 mK. The quantum well structure is shown in the lower right inset.

recent improvements in sample quality. As seen in the upper left inset of Fig. 1, the Shubnikov-de Haas oscillations start at B < 0.5 T (v = 68) and become spin-resolved for B > 0.9 T (v ≤ 37). The details of our work were published in Ref. [1].

Acknowledgements

A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490 and the State of Florida. We also acknowledge support from the NSF Grants No. ECCS-1508925, No. DMR-1305691, No. DMR-1709076, and the QuantEmX grants from ICAM and the Gordon and Betty Moore Foundation through Grant No. GBMF5305 to M. K. M., Md. S. H., and M. S.

References

NATIONAL HIGH MAGNETIC FIELD LABORATORY 2017 ANNUAL RESEARCH REPORT

[1] Ma, Meng K., et al., Phys. Rev. B 96, 241301(R) (2017).