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Introduction

Layered semiconducting transition metal dichalcogenides such as MoS2 and WSe: represent an interesting
platform for studying phenomena associated with electron-electron interactions thanks to their large effective
mass carriers and strong spin-orbit coupling. We have previously demonstrated the quantum Hall effect in hole-
doped mono- and bilayer WSez, thanks to the ease of injecting holes using Pt contacts [1].

Experimental

In the past year, we further explored magnetotransport in dual-gated h-BN encapsulated mono-, bi-, and
trilayer WSez samples [Fig. 1(a)]. Magnetotransport measurements in magnetic fields up to B = 35 T and
temperatures down to T = 0.3 K were conducted using the Cell 12 resistive magnet at NHMFL in Tallahassee, FL.

Results and Discussion

We uncovered an interesting density-dependent quantum Hall states (QHS) sequence in mono- and bilayer
WSez, which transitions between predominantly even and odd filling factors as the hole-density (p) is varied [2].
The QHS transitions are due to a density-dependent g-factor which is enhanced over the band g-factor (g») as p is
reduced. Figure 1(b) shows the monolayer WSe: effective g-factor (g") as a function of the inter-particle distance
measured in effective Bohr radius (rs). Furthermore, we also probed the valley populations of holes in trilayer
WSe:2. Figure 1(c) shows the longitudinal (Rxx), and Hall (Rxy) resistance vs B and the Rxx Fourier transform (FT)
in trilayer WSe2, which show a beating pattern in the Shubnikov-de Haas (SdH) oscillations and two
corresponding FT peaks, indicative of holes populating two subbands, associated with the K and I' valleys [3].

Conclusions
We studied magnetotransport in mono- and bilayer WSe2 where we observed electron-electron interaction
enhanced Zeeman splitting, and in trilayer WSe2 where we observed tunable I'-K valley hole populations.
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Fig.1 (a) Schematic cross section (top) and optical micrograph (bottom) of an h-BN encapsulated WSe2 Hall bar sample.
(b) Monolayer WSe: |g'| vs rs (bottom axis) or p (top axis) extracted from four samples (symbols), along with quantum
Monte Carlo (QMC) calculation (solid line) using go = 8.5. The shaded regions represent the error bars. The symbols within
a group are vertically offset for clarity. (c) Trilayer WSe2 Rxx and Rxy vs B (top) at p = 8.0x10'2 cm? and T = 0.3 K show a
beating pattern of the SdH oscillations, indicative of hole population in multiple subbands. The FT spectrum (bottom)
shows two principal peaks which originate from holes populating the K and I valleys of the valence band.



