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Introduction

Neuroinflammation can be monitored with °F MRI using *°F-nanoparticles (NPs) that label immune cells in
vivo. The migration of these cells into the brain can then be studied in animal models of multiple sclerosis'2. The
low abundance of *°F nuclei in vivo poses a major challenge for MR detection in neuroinflammation. The
theoretical SNR gain including increases in noise from sample and coil losses is about SNRoc Bo'7® for solenoidal
coils®. Recognizing these opportunities and challenges, we investigated the influence of 21.1 T on °F relaxation
times and SNR gain, compared to 9.4 T.

Experimental
Experiments were carried out on the 21.1 T at the NHMFL and a 9.4 T scanner at the Berlin Ultrahigh Field
Facility (B.U.F.F.) using similar birdcage coils (o9 at 21.1 T=900/845 MHz and at 9.4 T=400/376 MHz) and
parameters. For relaxation and SNR measurements, tubes of **F-NPs (perfluoro-15-crown-5-ether)* dilutions
were submerged in saline. T1 and T2 mapping was performed on spin echo sequences using one 10-mm axial
slices (FOV=30x30mm) with varying repetition times (TR) or echo times (TE). SNR was calculated on an axial 2D-
RARE images (TR/TE=4000/9.1ms, slices=1-10mm). Animal experiments were carried out in accordance with
local animal welfare protocols. EAE was induced in SJL/J mice and '°F NPs were administered daily for five days
after which mouse tissue was prepared for ex vivo MRI. 3D °F RARE sequence was acquired at low
(matrix=90x60x60), medium (matrix=135x90x90) and high (matrix=135x90x90) resolution. A FLASH 'H image
was acquired as an anatomical reference to the *°F image.
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1A). T:1 of the °F NPs decreased by nearly 50% at 21.1 T
(Fig 1B), contrary to *H T1 relaxation. For SNR
measurements, slice thickness was varied and SNR was
obtained as a function of the number of °F atoms per voxel
(Fig 1C). An SNR gain of 2.1 was achieved at 21.1 T versus o
9.4 T using parameters optimized for 9.4 T. High resolved 4 o’
MRI of EAE mice at 21.1 T revealed a greater level of detail R0 g
of the immune cell migration in the inflamed brain and
draining lymph nodes (Fig 1D).
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Our data demonstrate the feasibility of °F MRl at 21.1 T o atoms per vorel (<10%)
for detect!ng |nflammat|on in the brain anq adjacent_lymphatlc Fig.1A: Signal decay vs. TE yielding T2. Fig 2B: Signal
SVSFe.”_‘ with higher SNR and_ as a result higher spatl_al ) increase vs. TR yielding T1. Fig 2B: Plots of SNR vs.
definition. The shortened T is unexpected but consistent with  1s¢ a1oms per voxel at the two field strengths. Fig 2C:

previous studies®®. The difference in the experimental SNR 19F MRI of an ex vivo EAE mouse brain acquired at
gain (2.1) and the maximum expected SNR gain (2.8) can be 21.1 T and at different spatial resolutions with FLASH
explained by coil and receive chain losses as well as images as anatomical reference.

preamplifier noise variations between both setups.
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