

NATIONAL HIGH MAGNETIC FIELD LABORATORY 2017 ANNUAL RESEARCH REPORT

High Resolution Chemical Exchange Saturation-Transfer MRI at 21.1 T

Roussel, T. (Commissariat à l'énergie atomique, NeuroSpin); Rosenberg, J.T. and Helsper, S. (NHMFL); Grant, S.C (FSU, Chemical & Biomedical Engineering, NHMFL) and <u>Frydman, L.</u> (NHMFL and Weizmann Institute of Science, Physics)

Introduction

Chemical Exchange Saturation Transfer (CEST) contrast originates from a loss in the bulk water signal caused by the transfer via chemical exchange of saturated exchangeable protons from other molecules. At high field, CEST contrast is stronger due to longer T_1 (favorable for water exchange) and increased spectral dispersion. CEST-weighted imaging allows for quantitative mapping of the parenchyma, both in healthy and with the devastating intrusion of a glioblastoma¹. This work explores for the first time the use of endogenous CEST-weighted imaging in healthy control and in a rat glioblastoma animal model at 21.1 T.

Experimental

Experiments were performed at the NHMFL using the 21.1-T magnet. CEST-weighted ¹H spin-echo (SE) images (TE/TR=11.5/5000 ms) were acquired with a 200-µm in-plane resolution and 1-mm slice thickness. The CEST preparation consisted of a 400, 10-ms Gaussian-shaped pulse train, with a frequency offset varying between –6 and +6 ppm with 0.2 ppm increments and a B₁ of 1.5 µT. WASSR correction was implemented for center frequency shift². For the glioblastoma model, 100,000 9L glioma rat cells were injected in five animals at 2 mm anterior, 2.5 mm lateral and 3.5 mm deep with respect to Bregma. The animals were scanned at 11 days post transplantation. CEST-weighted images were processed and quantified with a customized MATLAB code to create and display WASSR correction maps, Z-spectra, magnetization transfer ratios (MTR_{asym}) and Lorentzian deconvolved spectra.

Results and Discussion

This work displays the increased biochemical information that can be acquired with CEST acquisitions at 21.1 T. **Fig. 1** shows highly resolved Z-spectra of healthy tissue, revealing strong signals that have not been identified before *in vivo* and likely arising from a Nuclear Overhauser Effect (NOE, black circle). In **Fig. 2**, new unidentified signals can also be identified in tumor tissue (red ROI in inset), with CEST contrast strongest at ~3.5 and ~2.75 ppm (blue and purple circles) arising from amines and amides, respectively. Many other highly resolved and reproducible exchange sites also are visible, which together with significant changes in amide-CEST and NOE-CEST can now identify the tumor and its progression with higher accuracy and sensitivity.

References

[1] Zhou, J., *et al.*, Nat Med, **17**, 130-134 (2011).
[2] Kim, M., *et al.*, Magn Reson Med, **61**, 1441-1450 (2009).

Fig. 1: Highly resolved Z-spectra (top) and deconvolved Z-spectra (bottom) from three different regions as seen in insert. Red and black circles indicate new unidentified exchange sites

Conclusions

Glioblastomas have a very frequency-specific and strong CEST response around ~3.5 ppm, which together with NOE-CEST and amide-CEST contrast reveals the tumor and its progression over time. CEST-weighted imaging at 21.1 T shows impressive contrast enhancement suggesting a strong dependence with T_1 . Ultimately, better interpretation of MRI CEST data should aid in brain tumor diagnosis and monitoring.

Acknowledgements

The authors wish to thank Dr. Cathy Levenson for providing 9L glioma cells. Work was performed at the NHMFL (NSF DMR-1157490) and the State of Florida. Funding was also provided by the NHMFL UCGP and VSP, Israel Science Foundation (795/13), the Helen and Martin Kimmel Institute of Magnetic Resonance and the Perlman Family Foundation.