

NATIONAL HIGH MAGNETIC FIELD LABORATORY 2017 ANNUAL RESEARCH REPORT

Effects of PDE5A inhibition on skeletal muscle T₂ after low intensity treadmill training in dystrophic mice

<u>Forbes, S.C.</u>, Batra, A. (UF, Physical Therapy); Vohra, R., Chrzanowski, S. (UF, Physiology and Functional Genomics); Lott, D. (UF, Physical Therapy); Walter, G.A (UF, Physiology and Functional Genomics); Vandenborne, K. (UF, Physical Therapy)

Introduction

Dystrophic muscle is characterized by increased susceptibility to muscle damage, inflammation, reduced blood flow, and fatigue. These impairments may be enhanced by lack of sarcolemma-localized neuronal nitric oxide synthase (nNOS) (1, 2). In this study, we examined whether a phosophodiesterase 5 inhibitor (sildenafil citrate) would reduce muscle damage and improve exercise performance in *mdx* mice after downhill running and during a low-intensity treadmill training program. MRI T₂ was utilized as an indicator of muscle damage(3).

Experimental

Dystrophic (mdx) and wild-type mice performed a low-intensity progressive treadmill training five days a week over a four-week period (8-12m/min; 25-60min;0° incline). Mice treated with sildenafil citrate (mdxsil: n=5) were compared to untreated mice (mdx: n=5; wild-type: n=5). To evaluate muscle damage, magnetic resonance imaging (MRI) transverse relaxation time constant (T₂) of muscles in the lower hind limbs was calculated. A custom built 200 MHz 1H solenoid coil with 2 cm internal diameter was used to image hindlimbs. Proton T₂ weighted multi slice spin echo images were acquired (TR: 2000 ms, TE:14 and 40 ms, FOV: 15X15mm, slice thickness:0.5mm acquisition matrix: 128 x 256) using a 4.7T Agilent/Varian MR system.

Results and Discussion

Muscle T_2 values were maintained in controls and *mdx* mice throughout training and were not elevated after four weeks of running compared to baseline (Table 1). During training, the prescribed distance completed was greater in treated *mdx* mice (98%) and controls (100%) than untreated *mdx* mice (60%) (Fig 1).

Conclusions

Our findings indicate that the progressive lowintensity treadmill training program did not lead to additional muscle damage/inflammation in *mdx* mice. In addition, the effects of training were enhanced by sildenafil, as evident by improved performance during training of the treated mice.

Table 1: MRI T_2 of hindlimb compartments following downhill running. B. Hindlimb T_2 during 4 weeks of low intensity training.

Thindrino 12 during 4 weeks of low mensity training.					
		Week 1	Week 2	Week 3	Week 4
Tibialis	Wild ctrl	24.5±2.1	22.8±2.5	23.3±2.2	23.1±1.6
Anterior (TA)					
	mdx^{train}	26.3±4.1	25.5±2.7	24.7±2.2	25.1±1.7
	<i>mdx</i> ^{sil&train}	26.1±2.3	25.6±1.8	25.6±2.6	25.8±3.3
Medial Compartment (MC)	Wild ctrl	24.3±2.1	24.1±3.5	23.7±2.0	24.2±2.6
	mdx^{train}	26.1±1.8	25.2±1.9	25.3±1.6	26.3±2.0
	<i>mdx</i> ^{sil&train}	27.6±2.2	25.3±1.5	25.7±1.6	26.1±2.1
Gastrocnemius (GAS)	Wild ctrl	24.3±1.2	23.8±1.5	23.5±1.3	24.3±1.0
	mdx^{train}	26.4±1.7	24.9±1.2	25.5±1.3	26.0±1.5
	<i>mdx</i> ^{sil&train}	26.9±1.8	25.6±1.0	25.1±1.0	25.1±1.3

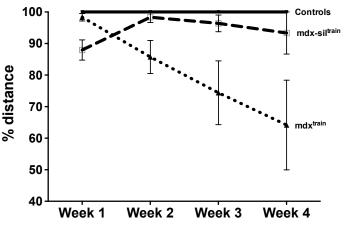


Fig 1: Percentage of total distance covered by different groups during training

Acknowledgements

This research was supported by the Muscular Dystrophy Association (175552). A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490, the State of Florida, and the U.S. Department of Energy.

References

- 1. Tidball & Wehling-Henricks. J Physiol. 592(Pt 21):4627-38, 2014.
- 2. Kobayashi et al. Nature. 27(456(7221)):511-5, 2008.
- 3. Mathur et al. Muscle Nerve. 43(6):878-86, 2011.