

¹⁹F and ¹¹B MAS NMR of Fluorinated Boron Nitride

<u>Ajayan, P.M.</u> (Rice U., Materials Science & Nanoengineering); Alemany, L.B. (Rice U., Shared Equipment Authority); Radhakrishnan, S. and Kumar, A. (Rice U., Materials Science & Nanoengineering)

Introduction

Very fast MAS ¹⁹F and ¹¹B NMR studies of fluorinated boron nitride and related materials were undertaken on a 600 MHz spectrometer in order to probe the fluorine environments. Hexagonal boron nitride (*h*-BN, "white graphite") is an example of a two-dimensional, insulating material of great interest because of its properties and potential uses. Fluorination will change the properties and is expected to result in a semiconductor, as has been demonstrated with fluorinated BN nanotubes.¹ Theoretical studies have addressed the possibility of fluorinating BN and the significance of the resulting material.^{2,3} In general, the functionalization of two-dimensional materials is an area of intense research because of their unique properties and potential applications.

Experimental

Very fast MAS ¹⁹F and ¹¹B NMR studies were performed on the wide bore 600 MHz ¹H frequency spectrometer (magnet #2) at NHMFL (Tallahassee).

Results and Discussion

Preliminary ¹⁹F MAS studies at a lower field and with much slower spinning (4mm OD rotor) were of limited utility.⁴ Spinning at 50 kHz (1.3mm OD rotor) at 564.6 MHz ¹⁹F attenuates and displaces the spinning sidebands beyond the various centerbands, thereby greatly facilitating spectral interpretation. The ¹⁹F studies on various materials at NHMFL demonstrated that the ¹⁹F signals observed when *h*-BN was fluorinated with Nafion in DMF result only from Nafion degradation products, apparently just straight chain perfluoroalkanes. In contrast, different ¹⁹F signals were observed with *h*-BN and cubic BN (*c*-BN) subjected to fluorination with fluorine gas. The absence of any suitable model systems with ¹⁹F chemical shift data severely limits our ability to interpret the dominant centerband signal at -149 ppm in fluorinated *h*-BN and fluorinated *c*-BN, but the chemical shift does appear to be reasonable for a B-F bond. The dominant and minor centerband signals cannot be from trapped fluorine gas.

centerband signals cannot be from trapped fluorine gas. Very fast spinning (40 kHz MAS) at 192.5 MHz ¹¹B renders ¹¹B MAS NMR studies feasible, as the second-order quadrupole-induced upfield shift is attenuated, signals from boron in asymmetric environments are significantly narrowed, and spinning sidebands are attenuated. Of particular interest is the unexpected appearance of a sharp ($v_{1/2}$ = 324 Hz), essentially symmetric, ¹¹B centerband at -3.5 ppm (with weak spinning sidebands) in the sample of *h*-BN treated with fluorine gas. The signal suggests the presence of a symmetric tetrahedral environment (such as *c*-BN), but the transformation of any *h*-BN to *c*-BN would be totally unexpected. The half-height linewidth is barely greater than that of *c*-BN before (312 Hz) or after (309 Hz) treatment with fluorine gas, both of which give signals at -0.1 ppm. The origin of this signal in the sample of *h*-BN treated with fluorine gas is being actively investigated.

Conclusions

Additional methodologies (UV, IR, Raman, XPS, XRD, STM, TGA) are being used to characterize fluorinated *h*-BN and *c*-BN. Preparation of a manuscript is in progress. ¹⁹F and ¹¹B MAS NMR studies on additional related materials are anticipated in light of the very useful spectra obtained thus far.

Acknowledgements

The National High Magnetic Field Laboratory is supported by the National Science Foundation through NSF/DMR-1157490/1644779 and the State of Florida. Additional support is provided by the US Air Force Office of Scientific Research (AFOSR), award number BAA-AFOSR-2013-0001.

References

- [1] Tang, C., et al., J. Am. Chem. Soc., 127, 6552-6553 (2005).
- [2] Bhattacharya, A., et al., Phys. Rev. B, 85, 035415-1 035415-9 (2012).
- [3] Zhou, Z., et al., J. Phys. Chem. B, 110, 25678-25685 (2006).
- [4] Radhakrishnan, S., et al., Sci. Adv., 3, e1700842 (2017).