

Redox Control of the SIM Behavior in Cobalt(II) Compounds

Viciano-Chumillas, M., Vallejo, J. and Cano, J. (Valencia U., Spain, ICMol) and Krzystek, J. (NHMFL)

Introduction

Single-ion magnets (SIMs) have attracted much attention in the last decades because of their relevance to molecular electronics as qubits, the smallest unit of information [1]. The particular behavior of a single-molecule magnet arises as a sum of the control of the ground state or the magnetic couplings and the local zfs tensors and their relative orientations. The unique requisite in SIMs of a local zfs that guarantee a ground Kramers doublet makes them much more electable materials. The design of switchable SIMs in which a controlled external stimulus can set off/defuse the magnetization blocking should be the subsequent step to adapt them to technological applications. One strategy for that purpose consists of the coordination of redox-active ligands to the $[Co(Mephen)_2]^{2+}$ building block, which is a known precursor of octahedral SIMs [2]. The use of ferrocene mono- and di-carboxylic acids as redox-active groups to obtain discrete magnetic switchable cobalt(II) SIMs is the base of this project, namely Fc-CO₂H and Fc-(CO₂H)₂, to form more sophisticated structures.

Experimental

The EMR Facility of the NHMFL Tallahassee was used including its 15/17 T superconducting magnet.

Results and Discussion

The reactions of an acetonitrile solution of $Co(ClO_4)_2 \cdot 6H_2O$ and dmphen with Fc-CO₂H and Fc-(CO₂H)₂ in acetonitrile and methanol afford $[Co(dmphen)_2Fc-CO_2](ClO_4) \cdot Et_2O$ (1) and $\{[Co(dmphen)(H_2O)_2]_2Fc-(CO_2)_2\}(ClO_4)_2 \cdot MeCN$ (2). Dcmagnetic studies suggest a large axial zero-field splitting. The HFEPR studies confirm the large and positive *D* value for both compounds $[g_{\perp} = 2.63, g_{\parallel} = 2.27, E/D = 0.15$ (1) and $g_{\perp} = 2.53, g_{\parallel} = 2.26, E/D = 0.16$ (2)]. Whereas ac-magnetic measurements under a dc-magnetic field reveal frequency-dependence of χ_M " below 8 (1) and 6 K (2), a fast relaxation of the magnetization occurs for their oxidized forms, which support the switchable nature of these systems.

Fig.1 Views of the molecular geometries of the two cobalt/iron complexes under study.

Conclusions

Octahedral cobalt(II) complexes **1** and **2** display large and positive zfs and, as expected, behave as SIMs. The oxidation of the ferrocene redox-active group quenches this peculiar magnetic behavior probably as a result of a magnetic coupling between the cobalt(II) ions and the paramagnetic ferricinium species.

Acknowledgements

The work performed at the National High Magnetic Field Laboratory is supported by the National Science Foundation through NSF/DMR-1157490/1644779 and the State of Florida. This work was supported by the MICINN (Spain) (Projects CTQ2016-75671-P, CTQ2016-75068-P and MDM-2015-0538), and the Generalitat Valenciana (Spain) (Project PROMETEOII/2014/070).

References

- [1] Feng, M., et al., Chem. Eur. J., 24, 7574-7594 (2018).
- [2] Vallejo, J., et al., J. Am. Chem. Soc., 134, 15704-15707 (2012).