

Exploration of Heisenberg Antiferromagnet on a Triangular Lattice

Siddiquee, K.A.M.H.; Xinzhe, H.; Yadav, S.; Takano, Y. (UF, Physics); Choi, E.S. (NHMFL, FSU); <u>Nakajima, Y.</u> (UCF, Physics)

Introduction

The triangular lattice is one of the prototypical geometries for frustration in antiferromagnets. But spin- 1/2 antiferromagnets on isotropic triangular lattices, where the interplay between geometric frustration and quantum fluctuations is most pronounced, are rare. YbMgGaO₄, one of the rare cases, has recently attracted much attention as a candidate for a spin liquid [1–4]. Sr₂₁Bi₈Cu₂(CO₃)₂O₄₁ is a new member of this small club [5]. However, very little is known about the magnetic property of this material other than the Curie-Weiss temperature, $\Theta = -28$ K [2]. If interlayer exchange is ignored, this Θ implies an intralayer exchange of 19 K, with a corresponding saturation field as high as 63 T.

Experimental

With the vibrating sample magnetometer at the NHMFL DC-Field Facility, we have measured the magnetization of a $Sr_{21}Bi_8Cu_2(CO_3)_2O_{41}$ sample, in magnetic fields up to 35 T. The experiment was cooled with a ³He Inserts, but the minimum stable temperature was 1.8 K.

Results and Discussion

As shown in Fig. 1, the magnetization rises quickly to roughly 2/3 of the expected saturation magnetization and stays constant at that value from about 13 T all the way up to 35 T, the maximum field of the experiment.

Conclusions

There is no evidence in the data for a magnetization plateau, the hallmark of the Heisenberg antiferromagnet on the triangular lattice. This surprising result begs for further studies of this new material.

Acknowledgements

The National High Magnetic Field Laboratory is supported by the National Science Foundation through NSF/DMR-1157490/1644779 and the State of Florida.

References

- [1] Y. Li *et al*., Sci. Rep. **5**, 16419 (2015).
- [2] Y. Li et al., Phys. Rev. Lett. 115, 167203 (2015).
- [3] Y. Li et al., Phys. Rev. Lett. 117, 097201 (2016).
- [4] Y. Xu et al., Phys. Rev. Lett. 117, 267202 (2016).
- [5] S. Malo et al., Inorg. Chem. 54, 10266 (2014).

Fig.1 Magnetization of $Sr_{21}Bi_8Cu_2(CO_3)_2O_{41}$ measured with a vibrating sample magnetometer at the Mag Lab DC Field Facility (labeled NHMFL) and with a commercial SQUID magnetometer (labeled MPMS).