

⁷⁹Br Wideline NMR Study of CsPbBr₃ and Cs₄PbBr₆ Perovskite Crystals

Han, O.H. (Korea Basic Science Institute, Western Seoul Center); Hung, I., Gan, Z. (NHMFL); Cha, J.-H. and <u>Jung, D.-Y.</u> (Sungkyunkwan U., Chemistry)

Introduction

Perovskite quantum dots show potential for next generation displays, which are brighter and clearer than naked eye vision.[1] Cesium lead bromide (CsPbBr₃ and Cs₄PbBr₆) perovskite compounds promise outstanding optoelectrical properties and are significantly more stable than organic-inorganic hybrid perovskite, such as methylammonium lead halide (MAPbX₃). Recently, there are increasing numbers of reports concerning the synthesis and applications of CsPbBr₃ and Cs₄PbBr₆. However, there is a lacking in fundamental research about the intrinsic optical and electrical properties of these all-inorganic perovskite. To understand the intrinsic optoelectrical properties of these compounds, the investigation with high-quality perovskite samples in a single phase and macroscopic sizes is desired. We report here the investigation of Br sites by ⁷⁹Br wideline NMR at high magnetic fields.

Experimental

Static ⁷⁹Br wideline WURST/QCPMG [2] NMR spectra were acquired at a fixed carrier frequency of 375.84 MHz in a field stepping manner using the series-connected-hybrid (SCH) magnet at the NHMFL equipped with a Bruker NEO console and a 3.2 mm magic-angle spinning probe operated in static mode. Each spectral segment was acquired with 2 MHz WURST sweeps, a recycle delay of 0.1 s, and 4096 scans. The ⁷⁹Br wideline spectra were generated by skyline projection of the multiple spectral segments (4 for Cs₄PbBr₆ and 7 for CsPbBr₃) acquired at different magnetic field values (0.047 T intervals for Cs₄PbBr₆ and 0.093 T intervals for CsPbBr₃).

Results and Discussion

The ⁷⁹Br static NMR spectra of CsPbBr₃ and Cs₄PbBr₆ obtained at a center field of 35.1 T are shown in Figure 1. Even at this high field, the central transition spans over 5 MHz wide due to the large quadrupolar coupling. Spectral analyses show two distinguished bromine sites for CsPbBr₃ and a single site for Cs₄PbBr₆. The spectral lineshape allows for the extraction of ⁷⁹Br quadrupolar coupling parameters of these sites. Comparison of the electric-field-gradient (EFG) with DFT calculation would allow for structural refinement based on the quadrupolar coupling parameters measured on these bromine sites. Work along this direction is under way.

Conclusions

The high magnetic field of the NHMFL SCH magnet allows for the acquisition of ultra wideline ⁷⁹Br NMR spectra of CsPbBr₃ and Cs₄PbBr₆. The measured ⁷⁹Br quadrupolar coupling parameters provide pieces of puzzles in our effort for the fundamental understanding of CsPbBr₃ and Cs₄PbBr₆ perovskite quantum dots which have outstanding electric and optical properties.

Acknowledgements

The National High Magnetic Field Laboratory is supported by the National Science Foundation through NSF/DMR-1157490/1644779 and the State of Florida. This work is supported by the Individual Basic Science & Engineering Research Program (NRF- 2017R1D1A1B03032462) from National Research Foundation of Korea (NRF).

References

- [1] Pan, A., et al., ACS Nano, 10(8), 7943-7954 (2016).
- [2] O'Dell, L.A., et al., Chem. Phys. Lett., 464, 97-102 (2008).

Fig.1 The ⁷⁹Br static NMR spectra of CsPbBr₃ (#113) and Cs₄PbBr₆ (#416) obtained at 35.2 T