

Fermi Surface of Nd-LSCO via Angle-Dependent Magnetoresistance

Legros, A., Grissonanche, G., Laliberté, F., Doiron-Leyraud, N. and Taillefer, L. (Université de Sherbrooke); Fang, Y. and Ramshaw, B.J. (Cornell University)

Introduction

Identifying the origin and nature of the pseudogap state in hole-doped cuprates is a key issue of high-Tc superconductivity. As the doping increases across the pseudogap critical point p*, the Fermi surface of cuprates goes from a small hole-like Fermi surface in the pseudogap state ($p < p^*$), containing a carrier density n = p, to a large hole-like Fermi surface containing a carrier density n = 1+p for $p > p^*$ [1]. Understanding the mechanism of this Fermi surface transformation across p* could lead to the identification of the pseudogap state. Previous angle-dependent magnetoresistance (ADMR) measurements on two hole-doped cuprates enabled the mapping of the 3D Fermi surface in two specific regions of the phase diagram: well above p*, in TI2201 [2], and in the region of charge order well below p*, in YBCO [3]. What we are seeking in this project is to carry out the same kind of study in one material (Nd-LSCO) as we go across p* ($p^* = 0.23$ [4]). The measurements we took this year continued the previous experiments in 2017.

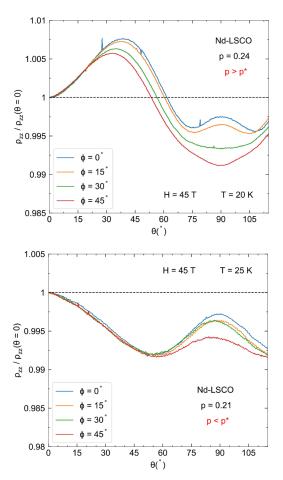
Experimental

We performed ADMR measurements on five Nd-LSCO samples (with dopings p = 0.20, 0.21, 0.22 and 0.23, two samples were at doping p = 0.22), at low temperature (between 16 K and 30 K) and in magnetic fields up to 45 T (we were in cell 15 at NHMFL-Tallahassee). We measured the c-axis resistivity, sitting at a fixed field and rotating the angle θ between the c axis and the magnetic field. We repeated this for different azimuthal angles Φ .

Results and Discussion

The results on samples p = 0.23 and p = 0.24 obtained in 2017 were of good quality. This year, we pursued the measurements on the p = 0.23 sample and we improved the temperature stability of the set-up, allowing us to get very good data on samples p = 0.20, 0.21 and 0.22. These new data enable us to distinguish the ADMR curves between $p > p^*$ and $p < p^*$ (see **Fig.1**): the θ and Φ dependence of the magnetoresistance is clearly different between p = 0.24 and p = 0.21, highlighting a transformation of the Fermi surface between the two dopings.

Conclusions


We obtained clean ADMR data for Nd-LSCO single crystals with several dopings below p*, at various azimuthal angles. The 45T field enabled us to suppress the superconductivity down to low T at almost every θ . The ongoing simulations of this magnetoresistance data above and below p* will bring valuable information about the change in geometry of the Fermi surface while crossing the pseudogap critical point.

Acknowledgements

The National High Magnetic Field Laboratory is supported by the National Science Foundation through NSF/DMR-1157490/1644779 and the State of Florida.

References

- [1] Badoux, S., et al., Nature, 531, 210-214 (2016).
- [2] Hussey, N. E., et al., Nature, 425, 814-817 (2003).
- [3] Ramshaw, B. J., et al., npj Quantum Materials, 2, 8 (2017).
- [4] Collignon, C., et al., Physical Review B, 95, 224517 (2017).
- [5] Matt, C. E., et al., Physical Review B, 92, 134524 (2015).

Fig.1 ADMR curves for Nd-LSCO at p = 0.24 (top) and p = 0.21 (bottom), at H = 45 T, for various values of the azimuthal angle Φ .