

HFEPR Studies on Synthetic Gillespite Analogues

Salguero, T.; Johnson-McDaniel, D. (U. of Georgia, Chemistry); Ozarowski, A. (NHMFL)

Introduction

Gillespite is a rare mineral with the composition $BaFeSi_4O_{10}$ [1]. An interesting feature of gillespite is the presence of high-spin Fe^{2^+} ions in a square-planar coordination environment. In this work, gillespite analogues with Fe^{2^+} substituted by Cr^{2^+} completely (BaCrSi_4O_{10}, CaCrSi_4O_{10}, SrCrSi_4O_{10}), or partially (BaFe_{0.5}Cr_{0.5}Si_4O_{10}), were prepared and investigated by HFEPR.

Fig.1 EPR spectra of BaFeSi₄O₁₀ (blue), BaFe_{0.5}Cr_{0.5}Si₄O₁₀ (red) and BaCrSi₄O₁₀ (green).

Experimental

The HFEPR spectra of powder samples (**Fig.1**) were recorded on the 15/17 T SC magnet and transmission instrument of the EMR facility at temperatures 3 K - RT and frequencies 24 to 640 GHz. The maximum magnetic field reached was 14.9 T.

Results and Discussion

The quintet (S = 2) spectra of the $d^4 Cr^{2+}$ and $d^6 Fe^{2+}$ ions were interpreted in terms of the spin Hamiltonian

$$\widehat{H} = \mu_B B\{g\} \widehat{S} + D\left\{\widehat{S}_z^2 - \frac{1}{3}S(S+1)\right\} + E\left(\widehat{S}_x^2 - \widehat{S}_y^2\right) + B_4^0 O_4^0 + B_4^4 O_4^4$$
^[1]

for BaCrSi₄O₁₀ $g_x = g_y = 2.00$, $g_z = 1.96$, D = -1.98 cm⁻¹, E = 0, $B_4^0 = 0.001$ cm⁻¹ were found. The Cr²⁺ parameters are almost unchanged in the mixed compound BaFe_{0.5}Cr_{0.5}Si₄O₁₀. In natural gillespite, BaFeSi₄O₁₀, and its synthetic, Fe²⁺ only containing analogues, the *D* parameter of ca. +12 cm⁻¹ is well defined, while several iron(II) sites differing in the *E* parameter are observed. Also, in the case of Cr²⁺ - containing gillespite, the HFEPR spectra revealed presence of a limited number of similar metal sites. Interestingly, the iron(II)-related resonances observed in BaFe_{0.5}Cr_{0.5}Si₄O₁₀ seem to indicate less dispersion of the spin Hamiltonian parameters than in the pure Fe-containing species.

Conclusions

The spectroscopic investigation of iron and chromium–containing gillespite allowed us to determine the spin Hamiltonian parameters and electronic structure of the incorporated 3d-metal sites.

Acknowledgements

The National High Magnetic Field Laboratory is supported by the National Science Foundation through NSF/DMR-1157490/1644779 and the State of Florida.

TS thanks the Office of Science of the US Department of Energy for funding this research (grant DE-SC0008065).

References

[1] Schaller, W.T., J. Wash. Acad. Sci., 123, 7-8 (1922).