

Assessing the Potential of Natural Abundance ⁶⁷Zn solid-state NMR at 35.1 T, for the Characterization of Zn- Complexes with Organic Ligands

Zumbulyadis, N. (Consultant); Wang, X., Hung, I., Gan, Z. (NHMFL); Yao, Y., Wagner, M. (U. of Delaware, Chemistry); Catalano, J. (Montclair State U., Chemistry & Biochemistry); Centeno, S.A. (Metropolitan Museum of Art, Scientific Research); Bai, S. and <u>Dybowski, C.</u> (U. of Delaware, Chemistry)

Introduction

⁶⁷Zn SSNMR spectroscopy was previously used to characterize Zn-amino acid complexes [1] and MOFs [2]. Our research is motivated by the need to characterize zinc-based pigments in paints. ⁶⁷Zn is a low gamma, low natural abundance quadrupolar nucleus, which requires the use of ultra-high magnetic fields.

Experimental

The ⁶⁷Zn SSNMR spectra of three zinc carboxylates (Table I, Fig. 1) were recorded at 35.1T and 19.5T using the QCPMG pulse sequence.

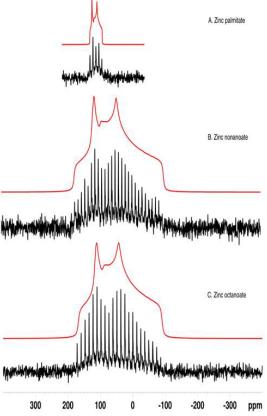
Sample	C _q / MHz	η	δ / ppm
Zn palmitate	2.74	0.48±0.05	113±1 ppm
Zn nonanoate	6.98	0.66±0.05	83±1 ppm
Zn octanoate	6.80	0.64±0.05	81±1 ppm

Table I NMR parameters obtained from simulations of the 35.1 T 67ZnNMR spectra of the zinc carboxylates studied in the present work.

Results and Discussion

Higher polarization and a reduced second order quadrupole effect at 35.1T enable the detection of natural-abundance ⁶⁷Zn SSNMR in higher molecular weight compounds, despite lower Zn molarity. The ⁶⁷Zn NMR parameters are sensitive to hydrocarbon chain length and packing effects.

Conclusions


Our results lay the groundwork for further experiments that will provide detailed answers to questions about the geometry, morphology, and miscibility of Zn carboxylates using naturalabundance ⁶⁷Zn NMR spectroscopy.

Acknowledgements

The National High Magnetic Field Laboratory is supported by the National Science Foundation through NSF/DMR-1157490/1644779 and the State of Florida. The present work is also supported through NSF/DMR-1608594/1608366.

References

Mroué, K.H., *et al.*, J. Phys. Chem., A, **114**, 324–335 (2010).
Sutrisno, A., *et al.*, Chem. Eur. J., **18**, 12251–12259 (2012).

Fig.1 35.1 T 67Zn NMR spectra and simulated powder patterns for (A) Zn palmitate, (B) Zn nonanoate, and (C) Zn octanoate. The NMR parameters are given in Table 1.