

# Non-linear current measurements in the high field phase of TaAs

Ramshaw, B.J.; Fang, Y.; Zhang Y.; Kim, E.-A. (Cornell University); Modic, K.A.; Moll, P.J.W.; Bachmann, M.D. (MPI-CPFS, Germany); Shekhter, A. (NHMFL); Chan, M.K.; Betts, J.B.; Balakirev, F.; Migliori, A.; Ghimire, N.J.; Bauer, E.D.; Ronning, F. and McDonald, R.D. (LANL)

## Introduction

Recently it was shown [1] that the Weyl semi-metal TaAs undergoes a drastic electronic structure transformation as a function of magnetic field B||c. Beyond the quantum limit ( $\approx$ 10T), where only the 0<sup>th</sup> Landau level of the Weyl fermions are occupied, the resistivity is highly anisotropic and approximately constant up to  $\approx$ 75T, where a breakdown of the original band structure is observed. The resulting two order-of-magnitude increase of the resistivity along J||c is suggestive of a gap opening in the chiral Landau levels. The essentially one-dimensional electronic structure favours the formation of a density-wave state and could be the origin of the Fermi surface reconstruction.

Nonlinear I-V curves can reveal the presence of a density wave: above a threshold electric field the density wave is de-pinned and acts as a secondary transport channel. Even if the high field state is not a density wave phase, nonlinear transport could shed light on whether the state is gapped or still contains gapless charged quasiparticles.

### Experimental

In this experiment focused ion beam (FIB) microstructured devices were prepared for transport measurements. The

fabrication of a long 'wires' with a small cross section (< $10\mu m^2$ ) is key to achieving a homogenous current flow and a large enough current density. This enables the investigation of non-linear I-V curves in an otherwise good metal [2]. Large gold contacts sputtered on the sample surface ensure a low contact resistance (< $1\Omega$ ) and can easily withstand the applied current of up to 1mA.

### **Results and Discussion**

The magnetic field was applied along B||c and the voltage signals along the crystallographic a and c axes were measured. The 1<sup>st</sup> and 3<sup>rd</sup> harmonic signals are presented in figure 2. As the magnet field increases beyond the quantum limit (at  $\approx$ 10T), the magnetoresistance stays constant up to  $\approx$ 75T. There, the resistivity along J||c increases drastically and simultaneously drops in J||a yielding a nearly isotropic conductor in the ultra-high field state. The 3<sup>rd</sup> harmonic shows pronounced quantum oscillations along the a-axis at low fields and signals a strong 3<sup>rd</sup> harmonic generation in all channels at the high-field transition. Performing the same measurement at 43µA does not generate a 3<sup>rd</sup> harmonic signal at high fields indicating that the threshold has not been exceeded.

# I+ I-Vc<sub>1</sub> Va 50µm

Fig.1 The TaAs sample was microstructured with a focused ion beam (FIB) and is designed to investigate the resistivity along the crystallographic a (Va) and c-axis (Vc<sub>1</sub> & Vc<sub>2</sub>).

## Conclusions

This experiment has revealed a so far unobserved high-field transition in the a-axis resistivity and clearly demonstrates the existence of current dependent higher harmonic generation. These are compatible with a scenario of density wave formation, however other explanations, for example local current path inhomogeneities can currently not be excluded and require further investigation.

## Acknowledgements

A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490 and the State of Florida.

## References

- [1] Ramshaw, B.J., et al., Nat. Comm. 9, 2217 (2018)
- [2] Moll, P. J. W., et al., Nat. Comml 6, 6663 (2015)
- [3] Bachmann, M. D., et al., Sci. Adv. 3 (2017)



**Fig.2**  $1^{st}$  and  $3^{rd}$  harmonic signal of the TaAs sample shown in Fig 1. The magnetic field was applied parallel to the c-axis and a current of 310µA was sourced.