

Far-Infrared Magnetic Spectroscopy of a Novel Ni(II) Pincer Complex

Lee, W.-T. (Loyola U. Chicago, Chemistry and Biochemistry); Ozerov, M., Krzystek, J. (NHMFL) and Telser, J. (Roosevelt U., Biological, Physical and Health Sciences)

Introduction

The "pincer" ligand type is a key platform in inorganic chemistry, in which three chelating donor atoms enforce approximate planar geometry, [(EE'E'')ML], where E, E', E'' = C, N, O, P, S (in various combinations) and L = ancillary ligand, so the complex has approximate C_{2v} symmetry. The Lee group is currently developing novel pincer ligands, such as one with E, E', E'' = N, as shown in **Fig.1**. A Ni(II) ($3d^8$) complex of this ligand has been very recently reported, in which the Ni(II) ion is paramagnetic (S = 1 ground state, solely by Evans NMR method at room temperature) [1]. The variation in halido ligand (X) will allow the electronic structure to be probed systematically, as was done in TpNiX (Tp = the tripodal hydridotrispyrazolylborate ligand) [2,3].

Experimental

Fig.1 Structure of Ni(II) complex of NNN pincer ligand, X = CI, Br, I.

The three halido complexes, Ni(NNN)X, X = CI, Br, I, were synthesized as previously described [1]. These are all air stable complexes and were studied as microcrystalline powders. Each was investigated by HFEPR at the EMR Facility using the 15/17 T SC magnet, and by FIRMS at the DC Field Facility using the SCM3 magnet.

Results and Discussion

HFEPR of each of the complexes was unsuccessful due to the large magnitude zero-field splitting (zfs). However, the chlorido and bromido complexes both gave informative FIRMS spectra. A representative field-frequency map for Ni(NNN)Br is shown in **Fig.2**. A single zf transition is observed at ca. 35.2 cm⁻¹, which suggests the zfs tensor is axial,

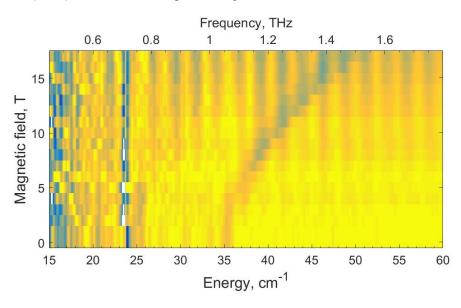


Fig.2 FIRMS field vs. frequency false-color map of Ni(NNN)Br at 5 K.

References

- [1] Ghannam, J. et al., Inorg. Chem., 57, 8307-8316 (2018).
- [2] Desrochers, P.J., et al., Inorg. Chem., 45, 8930-8941 (2006).
- [3] Ye, S., et al., J. Chem. Theory Comput., 8, 2344-2351 (2012).

with the transition energy equal to zfs parameter |D|. The chlorido complex showed a similar single transition at ca. 33.3 cm⁻¹ (not shown). A FIRMS experiment on Ni(NNN)I under the same experimental conditions was unsuccessful.

Conclusions

A well-defined series of novel Ni(II) pincer complexes has been studied by field- and frequency-domain methods (HFEPR and FIRMS) and shown to have large magnitude zfs. This observation will lead to undertaking a more detailed study of the electronic structure of these compounds.

Acknowledgements

The National High Magnetic Field Laboratory is supported by the National Science Foundation through NSF DMR 1644779 and the State of Florida. W.-T.L. is supported by the Loyola U. startup fund.