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Abstract Chronic musculoskeletal pain condition often
shows poor correlations between tissue abnormalities and
clinical pain. Therefore, classification of pain conditions like
chronic low back pain, osteoarthritis, and fibromyalgia de-
pends mostly on self report and less on objective findings like
X-ray or magnetic resonance imaging (MRI) changes.
However, recent advances in structural and functional brain
imaging have identified brain abnormalities in chronic pain
conditions that can be used for illness classification. Because
the analysis of complex and multivariate brain imaging data is
challenging, machine learning techniques have been increas-
ingly utilized for this purpose. The goal of machine learning is
to train specific classifiers to best identify variables of interest
on brain MRIs (i.e., biomarkers). This report describes classi-
fication techniques capable of separating MRI-based brain
biomarkers of chronic pain patients from healthy controls with
high accuracy (70-92%) using machine learning, as well as
critical scientific, practical, and ethical considerations related
to their potential clinical application. Although self-report re-
mains the gold standard for pain assessment, machine learning
may aid in the classification of chronic pain disorders like
chronic back pain and fibromyalgia as well as provide mech-
anistic information regarding their neural correlates.
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Introduction

Chronic pain is a highly prevalent condition associated with
significant disability and societal cost [1]. The etiology of
chronic pain can vary substantially across patients and often
appears to be secondary to biological factors, such as muscu-
loskeletal injury (e.g., osteoarthritis [OA]), nerve injury (neu-
ropathic pain), autoimmunity (rtheumatoid arthritis [RA], sys-
temic lupus erythematosus), or substance abuse (alcoholic
neuropathy and chronic pancreatitis). In many cases, however,
chronic pain seems to be the primary illness associated with a
given condition (e.g., fibromyalgia syndrome [FM; 2]). Over
the past several decades, substantial effort has been dedicated
to the development of methodologies for the reliable discrim-
ination or classification of patients with a given chronic pain
condition from people without the condition (i.e., “healthy
controls”), patients with similar but distinct illnesses, or both.

The goal of many studies is to accurately identify individ-
uals with a clinical chronic pain condition in question based
on potential mechanistic underpinnings. Given that some
chronic pain conditions are associated with peripheral tissue
pathophysiology, numerous studies have been aimed at reli-
able discrimination of individuals with clinical pain using pe-
ripheral measures including structural (e.g., knee degenera-
tion, lumbar disc pathology; [3]), functional (e.g., gait abnor-
mality, inflammatory processes in rheumatoid arthritis; [4, 5]),
and genetic data [6]. Because chronic pain often exists as a
primary symptom without remarkable tissue abnormalities,
there is an increasing interest in their neural correlates, i.e.,
mechanistic or structural abnormalities derived from structural
or functional magnetic resonance (MRI) brain imaging studies
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of chronic pain (e.g., grey matter density/volume, white matter
integrity, or functional connectivity between pain-related
brain regions). In addition, such information can be used to
determine whether central nervous system (CNS) abnormali-
ties are suitable to appropriately classify individuals with
chronic pain.

In this regard, a major goal of many MRI-based chronic
pain classification studies is the development of objective bio-
markers for each condition that do not rely on self-report [7,
8¢, 9]. Brain-based biomarker studies of chronic pain leverage
the extensive neuroimaging literature describing the critical
role of certain brain regions in the sensory (e.g., thalamus,
primary and secondary somatosensory cortex, posterior
insula, basal ganglia), affective (e.g., anterior insula, hypothal-
amus, anterior cingulate cortex, amygdala, hippocampus), and
cognitive-evaluative (e.g., dorsolateral prefrontal cortex, ante-
rior cingulate cortex, thalamus) aspects of the pain experience
(for review, see [10]). Although our review focuses exclusive-
ly on brain imaging biomarkers, it is worth noting that a sub-
stantial literature has also applied this approach to peripheral
mechanisms. For instance, measurement of exhaled organic
volatiles [11] and joint ultrasound [12] have been suggested as
useful approaches for the automated classification and/or dif-
ferential diagnosis of rheumatoid arthritis.

Some proponents of brain imaging-based approaches to
illness classification claim that brain biomarkers could act as
a “surrogate” for pain self-report [13]. This could result in
greater sensitivity to measure efficacy of analgesic treatments
[9] by avoiding potential pitfalls associated with the use of
subjective patient and provider reports. Furthermore, such
brain biomarkers could serve as targets for novel treatments
[14, 15]. In particular, objective markers of chronic pain may
play an important role in pain classification of patients with
cognitive/psychological dysfunction and in individuals who
are unable to communicate, or in cases of deception [16e,
17], as well as aid in the adjudication of legal claims of
injury-related pain disorders [18]. These purported advantages
have spurred interest in the development of biomarkers, al-
though it is important to note that self-report remains the gold
standard for pain measurement. Numerous studies have indi-
cated that self-report measures of pain and psychosocial fac-
tors have excellent classification accuracy and reliability [8e,
19e, 20]. Indeed, evidence suggests that chronic pain patients
can be distinguished from healthy controls with greater than
90% accuracy based on personality factors [21], perceived
pain and functional disability [22], and simple visual analog
scale (VAS) measures of affect [23¢¢]. Questionnaire-based
approaches have shown similar accuracy for the separation
of FM and RA [24] and FM, RA, and OA [25].

The purpose of this critical review is to examine the devel-
opment of brain biomarkers for chronic musculoskeletal pain
disorders using machine learning (ML) in a manner which
should be useful to physicians and other health care providers.
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Therefore, we will restrict our review to musculoskeletal con-
ditions for which chronic pain is a primary complaint. The
conceptual, scientific, and ethical issues related to this ap-
proach, however, will also apply to biomarker studies for other
chronic conditions (e.g., depression).

Machine Learning Algorithms

Existing methods regarding the use of structural and function-
al brain imaging to discriminate patient groups from healthy
controls have largely relied on ML algorithms, which provide
an automated approach to making predictions about previous-
ly unknown data. ML algorithms can be broadly classified as
supervised or unsupervised. Supervised methods develop
models for classifying observations according to a known out-
come (e.g., a clinical diagnosis). In contrast, unsupervised
methods attempt to discern patterns or structure in data with-
out guidance or pre-existing labels. Although unsupervised
ML methods may be of interest for the development of sub-
groups within existing conditions or new diagnostic classifi-
cation criteria based on brain abnormalities, ML studies in
chronic pain to date have mostly relied on supervised
methods. Support vector machines (SVM; [26, 27]), a type
of ML algorithm that uses a training data set composed of
one or more features to determine an optimal boundary sepa-
rating a set of cases, have been most often used [23ee, 28, 29].
However, many other ML techniques have been developed
and applied to the automated classification of chronic pain
patients [23ee, 30]. Detailed discussions of the strengths and
limitations of these methods are beyond the scope of this re-
view, but basic descriptions of the most common ML algo-
rithms applied in the study of chronic pain, as well as detailed
references, are provided in Table 1.

Scientific and Clinical Utility of Chronic Pain
Biomarkers

In this section, we will discuss theoretical, practical, and eth-
ical issues surrounding pain biomarker development and use,
with a particular emphasis on clinical utility.

Choice of Classification Algorithm

In an ideal scenario, the best algorithm for detecting a chronic
pain condition would be one that matches the underlying mod-
el or structure that distinguishes that condition from healthy
individuals or other conditions (e.g., if a linear decrease of
prefrontal cortical thickness is the underlying mechanism of
a condition, then a linear model would be sufficient).
However, given the complex and often heterogeneous nature
of chronic pain conditions, this information is frequently not



Curr Rheumatol Rep (2017) 19: 5

Page3 of9 5§

Table 1

Basic descriptions of common supervised machine learning algorithms

Algorithm Basic approach

Reference(s)

Logistic regression (LR)
Naive Bayes (NB)

Uses linear combination of predictors and regression coefficients to make categorical prediction [31]

Individuals categorized according to probability that they have a certain value for each feature ~ [32]

independently included in prediction model

k-Nearest Neighbors (kNN)
model feature
Multilayer perceptron (MLP)

Categorizes individuals based on the most common class of the & closest observations for each ~ [33]

Determines appropriate weighting for features for multiple layers of decision units (perceptrons) [34]

needed to perfectly classify training data, then applies learned rule to new cases

Support vector machine (SVM) Determines a linear or non-linear maximum-margin hyperplane (i.e., feature-based cutoff) that ~ [26, 27]
maximizes separation between groups
Decision tree (e.g., J48/C4.5) Categorizes individuals in a series of decisions based upon optimal feature cutoff values [35]

Least absolute shrinkage and
selection operator (LASSO)
points for classification

A variant of ordinary least squares regression that constrains the summary of absolute regression [36]
coefficients across features in order to identify the most informative features and optimal cut

available. It is often difficult, if not impossible, to determine a
priori which algorithm might perform best in a certain data set
[37]. This problem frequently necessitates the comparison of
multiple different algorithms for any single classification task
(for examples, see [23¢°, 38]). As a general rule, simple
models may not perform as well on training data but will
likely generalize better when assessed on testing data, whereas
more complex models will tend to perform well on training
data but will not perform as well on testing data. More com-
plex models or those that blend inputs for many different
algorithms (e.g., ensemble methods) may also lead to chal-
lenges in interpretability, requiring additional pipelines to dis-
till results in ways that are meaningful and useful for clini-
cians. In general, large sample sizes are often needed to in-
crease generalizability and prevent overfitting [39]. A recent
study suggests that accuracy values obtained from smaller
samples are opportunistically biased [40]. Therefore, pro-
posed biomarkers must demonstrate strong performance in
generalizable samples.

Biomarker Reliability and Feasibility of Implementation

A neuroimaging-derived biomarker cannot be reliably used
for scientific or clinical purposes if the measures composing
it do not demonstrate high test-retest reliability (i.e., the repro-
ducibility of results over time). This concern is especially
relevant given recent evidence that the test-retest reliability
of functional connectivity metrics may vary widely depending
on the brain regions examined [19¢]. For this reason, the reli-
ability of neuroimaging-based measures should not be taken
for granted. This concern also applies to populations where
typical brain function may be perturbed due to injury or illness
(e.g., post-stroke [41]).

Even a biomarker that is meeting or exceeding criteria for
appropriate use as a diagnostic tool will not be clinically

useful if it cannot be readily assessed in clinic settings. As
noted by Woo and Wager [42], all parameters of the biomarker
and its associated testing procedure should be rigorously stan-
dardized so that all users collect data comparable to the stan-
dard used to derive the measure. Depending on the demands
associated with collecting certain biomarkers (especially those
derived from BOLD activity during task-based fMRI), such
rigor may be difficult to achieve in clinical settings. Often the
additional time, nuanced design, and/or special expertise re-
quired in the acquisition of reliable data will limit some bio-
markers’ applicability and usefulness.

What Constitutes Adequate Biomarker Performance?

A major issue in the application (and reporting) of ML-based
brain biomarkers for chronic pain is determining whether a
given marker’s accuracy is adequate. Developing criteria for
optimal biomarker performance depends on the setting in
which it will be used, as well as the cost of misclassification.
Pure research-oriented use cases (e.g., identifying potential
markers, phenotypic subgroups, or treatment targets; discern-
ing disease mechanisms) may allow for less stringent perfor-
mance criteria. In contrast, clinical tasks (diagnosis, prognosis,
treatment planning) carry risk of harm (misdiagnosis, delaying
treatment, providing inaccurate or unnecessary treatment) and
will therefore require considerably more stringent perfor-
mance criteria for use in patient care. Although the risk of
medical error from decisions based upon ML-derived bio-
markers may be no greater than those commonly accepted in
current practice, the “black-box” nature of these markers
raises liability concerns in the face of medical errors promul-
gated by ML-derived biomarkers [43] and may increase phy-
sicians’ reluctance to use even those that are well validated.
Ultimately, any given biomarker’s practical applicability
will depend on a case-by-case assessment of its cost,
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deployability, and accuracy in the context of its intended use.
For instance, in clinical settings, biomarker performance
should be judged by taking into consideration whether it is
intended to replace physicians in a role they can already per-
form well (e.g., differentially diagnose mechanistically and/or
symptomatically distinct conditions) or, alternatively, provide
novel information that clinicians would not otherwise have.
This approach may help identify mechanistically distinct clin-
ical subgroups, guide treatment decisions, indicate prognosis,
or separate conditions with significant mechanistic or symp-
tomatic overlap. In cases where biomarker application pro-
vides useful clinical information where it would not otherwise
be available, higher cost, more difficult deployability, and/or
relatively poorer performance may be quite tolerable [43].

Impact of Chronic Pain Prevalence on Biomarker
Performance

Ethical and practical issues surrounding potential under- or
overtreatment of pain remain even in cases where biomark-
er sensitivity (i.e., probability of a positive biomarker giv-
en an individual has the condition) and specificity (i.e.,
probability of a negative biomarker given an individual
does not have the condition) reach very high levels, de-
pending on the given use case. This is because biomarker
positive predictive value (PPV) and negative predictive
value (NPV), as previously noted [44¢], depend on the
prevalence (i.c., base rate) of the condition of interest in a
particular setting (i.e., Bayes’ theorem). Specifically, bio-
marker PPV increases with prevalence, while NPV in-
creases as prevalence decreases. This relationship is illus-
trated graphically in Fig. 1 using the sensitivity (81%) and
specificity (75%) of a structural brain biomarker for pain
we have previously reported [23¢¢]. As a result, even the
highest performing chronic pain biomarkers previously re-
ported (e.g., 92% sensitivity, 92% specificity [16°]) will
have high rates of false positives in application settings
with low prevalence and high rates of false negatives in
settings with high prevalence. Investigators need to take
use case into account when reporting biomarker perfor-
mance and judging its adequacy.

Finally, self-report of pain symptomatology is ultimately
the basis for diagnosing and assessing the severity of chronic
pain conditions (so-called “Gold Standard”). Therefore, the
predictive utility of biomarkers is necessarily limited by the
accuracy of the existing diagnostic gold standard [8e, 45]. It is
conceivable that subgroups within a diagnostic category could
be identified solely based upon physiological measurements
using unsupervised ML methods and later validated upon self-
report, thereby circumventing this issue. However, to our
knowledge, no previous neuroimaging-based biomarker stud-
ies for chronic pain have used this approach.
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Fig. 1 Tllustration of the relationship between chronic pain prevalence
and the positive/negative predictive value of biomarkers using sensitivity
(81%) and specificity (75%) values derived from Robinson et al. [23¢].
Positive predictive value (PPV) increases with prevalence, while negative
predictive value (NPV) decreases as prevalence increases. Thus, during
real-world application of brain biomarkers for chronic pain, performance
will depend largely on the expected proportion of individuals with the
condition in question

Pain Biomarkers Based on Brain Imaging
Structural Biomarkers

Chronic pain brain biomarkers derived from structural MRI
are dependent on the assumption that chronic pain conditions
are associated with abnormalities in brain structure that either
pre-date or are the result of pain chronification. Brain structure
can be characterized in terms of grey matter features, which
reflects integrity of neuronal cell bodies, or white matter fea-
tures that reflect axonal integrity. Note that although white
matter perturbations have been demonstrated in a variety of
chronic pain conditions [46—48], to our knowledge, ML algo-
rithms have yet to be applied to these data in order to generate
chronic pain classifiers. Thus, we will focus on studies utiliz-
ing grey matter features.

Grey matter structure can be assessed in several ways. One
common approach is the use of voxel-based morphometry
(VBM) on high-resolution T1-weighted images. VBM pro-
duces estimates of grey matter density for each voxel and
subject after warping to fit a standardized template brain [49,
50]. Another typical technique is to assess grey matter char-
acteristics in cortical (thickness, volume, surface area, or mean
curvature) or subcortical (volume) structures by assigning a
neuroanatomical label to each brain voxel using a probabilistic
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atlas [51, 52]. Though other techniques and measures are
available for assessing grey matter structure, efforts to con-
struct biomarkers for chronic pain conditions based on grey
matter structure have largely relied on grey matter density [29,
53] or thickness/volume/surface area/curvature [23e, 30].

Structural brain biomarkers for chronic pain build on a
significant literature demonstrating both atrophy and hy-
pertrophy in chronic pain patients in numerous pain-
related brain regions. For example, chronic low back pain
(cLBP) has been associated with lower grey matter densi-
ty compared to controls in the dorsolateral prefrontal cor-
tex (DLPFC), a region associated with cognitive/
evaluative function and pain modulation [54]. At the same
time, FM has been associated with both increased grey
matter volume in striatum, orbitofrontal cortex, and cere-
bellum [55], and lower volume in anterior cingulate cor-
tex, amygdala, thalamus, superior temporal gyrus, supple-
mentary motor cortex, and insula [55-58]. Although not
directly contradicting one another, these studies differed
somewhat with regard to regions showing significant dif-
ferences between FM patients and controls, with differ-
ences in anterior cingulate cortex being the most consis-
tently observed [56, 58]. The potential utility of these
measures as features for classification algorithms to dis-
tinguish chronic pain patient groups depends on the as-
sumption that reliable commonalities and differences in
grey matter morphometrics can be detected between
chronic pain conditions. It is also worth noting that the
goal of chronic pain biomarker studies is distinct from
between-group analyses of structural differences because
they are focused specifically on identifying optimal com-
binations of features that best separate patient groups and/
or healthy controls.

Classifier Studies Based on Structural Brain
Abnormalities

ML classifier studies based on structural brain features
have been conducted in several chronic pain conditions,
including CPP, IBS, FM, and cLBP, using samples from
26 to 160 participants. In each case, samples were com-
posed of ~50% splits of patients to controls. Performance
of these potential biomarkers has differed substantially be-
tween studies, with sensitivity and specificity ranging from
65 to 81%. Although brain regions discriminating patient
groups from normal controls varied, certain areas were
more frequently reported. These included precentral gyrus
(primary motor cortex), postcentral gyrus (primary so-
matosensory cortex), amygdala, and cuneus. In addition,
many discriminating regions were convergent with those
identified in previous studies focused on identifying struc-
tural differences between chronic pain patients and con-
trols (e.g., DLPFC, amygdala, cingulate cortex, insula,

etc.,). For further detail regarding sample size, algorithm(s)
used, classifier performance, and brain structures with the
greatest contribution to performance for studies using
structural brain biomarkers, see Table 2.

Functional Brain Biomarkers

Whereas, high-resolution neuroanatomical data is the basis
for studies proposing structural neuroimaging biomarkers
of chronic pain, brain activity measures are used to derive
functional neuroimaging biomarkers. Functional MRI
(fMRI), which refers to noninvasive methods for measur-
ing brain function, has two common variants. The first
detects changes in cerebral blood oxygenation (BOLD),
and the second, arterial spin labeling (ASL), measures
changes in regional cerebral blood flow (rCBF).
Although neither of these methods directly measure neuro-
nal activity, they are both considered surrogate markers of
such activity (for review of these technologies, see [61]).
These methods excel in their ability to provide spatial in-
formation about where changes in BOLD response or
rCBF occur over the course of time; however, they are
intrinsically limited in temporal resolution, or accuracy in
determining exactly when the neuronal activation oc-
curred, due to the physiological characteristics of blood
oxygenation (BOLD) and/or extended repetition times
(ASL; [62]). Although ASL has several theoretical advan-
tages over BOLD regarding the measurement of brain
function [63], most brain classification studies for chronic
pain to date have relied on BOLD fMRI.

Because functional neuroimaging provides a global mea-
sure of brain activity, participants’ mental state during data
collection is always important to note. For example, brain
activity can be captured during a goal-directed task (e.g.,
participants are asked to continuously rate their levels of
clinical pain or undergo acute painful stimulation), or dur-
ing wakeful rest (i.e., resting state) in which participants are
not instructed to engage in a particular task. Raw data col-
lected during these scans typically undergoes preprocess-
ing, or various image and signal correction techniques, to
improve the ratio of desired signal to undesired noise [64].
Subsequently, preprocessed data are statistically analyzed at
the individual-participant level to determine either 1)
whether a significant change in signal occurred for a given
region or across the whole brain (i.e., activation), or 2) the
coherence in activation among spatially distinct brain re-
gions over time (i.e., functional connectivity, FC).
Statistically analyzed activation or FC values can be select-
ed across the whole brain, or limited to hypothesis-driven
regions of interest (i.e., a priori ROIs). In classification stud-
ies proposing functional neuroimaging biomarkers,
individual-level activation or FC information is then
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entered into computational models, which classify individ-
uals into distinct groups based on these values.

Classifier Studies Based on Functional Brain
Abnormalities

Compared to structural brain abnormalities, fewer studies
have used fMRI activation or functional connectivity metrics
as features in classification models for chronic pain patients.
Using measures of functional brain activation in pain-related
brain regions during repeated 14-s blocks of experimental
electrical pain induction, Callan et al. [16] achieved 92%
accuracy, sensitivity, and specificity classifying cLBP and
healthy controls. The two most informative regions reported
by Callan et al. [16°] have been strongly implicated in pain
discrimination: (primary somatosensory cortex) and attention
(inferior parietal cortex) [65]. In a separate study using resting
state fMRI [59], RA and FM patients could be discriminated
from HC with 79 and 62% accuracy, respectively, using mea-
sures of functional connectivity between structures associated
with stimulus evaluation (i.e., the “salience network™ [SN])
and internal focus/mind wandering (i.e., “default mode net-
work” [DMN]). These networks have been implicated in pain
processing (SN) or reported as perturbed in chronic pain states
(DMN). Interestingly, RA and FM patients could also be dis-
criminated from each other with 79% accuracy, suggesting
that, despite potential commonalities in neuronal plasticity,
the functional neural correlates of certain chronic pain disor-
ders may be sufficiently distinct to enable their separation
[59]. Finally, in a recent fMRI study using ML [60¢¢], the
investigators could discriminate FM patients from HC with
93% accuracy based on their brain activation associated with
painful pressure stimuli [66] and non-painful multisensory
stimulation (e.g., simultaneous auditory, tactile, and visual
stimuli). Overall, the rapid improvement of fMRI-based “pain
signatures” has not only helped our mechanistic understand-
ing of chronic pain but will also benefit the diagnosis of FM
and other chronic pain conditions.

Summary

Taken together, a limited number of studies (see Table 1) have
tested the ability of ML algorithms to discern chronic pain
patients from healthy controls using structural or functional
brain abnormalities. However, interest in ML approaches for
chronic pain diagnosis and classification is growing due to
their purported potential to help elucidate chronic pain mech-
anisms, identify resilient or vulnerable subgroups, improve
clinical decision making, predict treatment outcome, or aug-
ment [29] or even replace self-report (for critical discussion,
see [8+]). However, as previously discussed, certain caveats
apply to the practical application of biomarkers even where
performance metrics may be very high.

Conclusions

Interest in the development of clinical and ML-based bio-
markers for chronic musculoskeletal pain conditions derived
from structural and functional neuroimages has increased sub-
stantially in recent years. Current reports describe novel bio-
markers capable of separating patient groups and healthy con-
trols with accuracies ranging from 70 to 93%. Such studies
provide valuable mechanistic information regarding both the
unique and common neural correlates of these conditions,
with the potential to highlight differences between both mus-
culoskeletal pain patient groups and controls to which tradi-
tional statistical approaches may not be sensitive, or identify
mechanistic subgroups within certain pain conditions.
However, at this time, critical theoretical, practical, and ethical
concerns preclude the replacement of patient self-report for
the diagnosis of chronic musculoskeletal pain with brain
imaging-derived biomarkers, as self-report remains the gold
standard for pain assessment [8e].
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