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ABSTRACT: A “volcano” plot provides a visual means for identifying statistically significant differences between two
populations. Here, we introduce the volcano plot as a means for simple, visual identification and statistical ranking of
compositional differences between petroleum crude oils. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass
spectrometry yields the relative abundances of ions in each spectrum that contains up to tens of thousands of elemental
compositions (CcHhNnOoSs). From that data, a volcano plot may be generated by plotting statistical significance (p-value,
obtained from t test) versus log2(relative abundance ratio). The volcano plot data may be color-coded to highlight differences in
heteroatom class (NnOoSs), double bond equivalents (DBE = number of rings plus double bonds to carbon), and/or carbon
number. The volcano plot may be used either directly or as a “filter” for including only the most statistically significant differences
for data entered into more conventional analyses based on DBE vs carbon number, van Krevelen diagram, and Kendrick mass
defect plots. In each case, the volcano plot provides statistically significant criteria, rather than visual grouping.

■ INTRODUCTION

The need for energy is rapidly growing, as every nation in the
world seeks to modernize and industrialize, and most energy
sources still derive from fossil fuels. However, the global supply
of high-quality and low-sulfur crude oils is decreasing, whereas
the proportion of heavy crude oils is increasing. To utilize the
heavy crude oil more effectively, technological advances in
production and refining are needed, along with improved
understanding of the detailed chemical composition of heavy
crude oil. Crude oil analysis is rendered difficult by its
enormous compositional complexity (e.g., tens of thousands of
elemental compositions), requiring ultrahigh mass resolution
and mass measurement accuracy to separate the chemical
components. Fourier transform ion cyclotron resonance mass
spectrometry (FT-ICR MS)1 offers mass-resolving power
higher than 1 400 000 at 500 Da2 and has been successfully
applied to reveal detailed chemical characteristics of heavy and
unconventional crude oils.3−5

Each high-resolution mass spectrum of crude oil routinely
yields tens of thousands of elemental compositions, which in
turn yield a distribution of heteroatom class species (i.e.,
molecular formulas with a common NnOoSs composition),
Kendrick mass series,6 double bond equivalents (DBE =
number of rings plus double bonds to carbon) vs carbon

number, and H:C vs O:C ratio (van Krevelen plot7,8). The
plots provide means for identifying compositional patterns for
many species (e.g., all members of a given heteroatom class)
from a single graphical display. Statistical analysis methods such
as principal component analysis (PCA)9 and correlation
analysis10 can be particularly helpful in highlighting differences
and relations between different samples (e.g., oil spills from
different sources).11 These graphical and statistical tools are
essential to interpret high-resolution mass spectra of oils.
Development of additional interpretation methods is very
important for further development of oil research.5 For an
example, tools for statistical and quantitative evaluation of data
are needed.12,13

The “volcano plot”, a kind of scatter plot of univariate
analysis, has recently been successfully applied to interpret
multidimensional metabolomics14 as well as microarrays and
RNA-sequence data.15,16 A volcano plot is generated by
plotting a measure of statistical significance (e.g., p-value
representing the repeatability in the abundance in experimental
replicates) determined from statistical tests such as t test or
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ANOVA versus fold-change between samples. Thus, differences
in chemical composition between two petroleum samples, even
for large FT-ICR MS data sets, may be clearly visualized in a
statistically significant way. Here, we demonstrate the
applicability of volcano plot for analysis of ultrahigh-resolution
FT-ICR mass spectra from petroleum crude oils. As described
in detail below, we compare Arab Heavy and National Institute
of Standards and Technology (NIST) samples as an example of
a common regional difference. In addition, we compare Arab
Heavy and Arab Heavy 593 °C as an example of compositional
differences between the oil and its distillate residue.

■ EXPERIMENTAL SECTION
Mass Spectrometry. Three oil samples, Arab Heavy, Arab Heavy

593 °C,17 and NIST 2717a (residual fuel oil), were analyzed to
highlight compositional differences in a single crude oil due to
distillation (Arab Heavy) as well as a whole crude (Arab Heavy) and a
commercial fuel oil from a different source (NIST 2717a). Each
sample was dissolved in HPLC-grade toluene (Sigma-Aldrich
Chemical Co., St. Louis, MO) to yield a final concentration of 100−
250 μg/mL prior to atmospheric pressure photoionization (APPI)
mass spectral analysis. Samples were delivered to the ionization source
via a syringe pump at a rate of 50 μL/min into the mass spectrometer
under typical APPI conditions. An APPI source (Thermo-Fisher
Scientific, San Jose, CA) was coupled to the first pumping stage of a
custom-built FT-ICR mass spectrometer (see below) through a
custom-built interface.18 The tube lens was set to 50 V (to minimize
ion fragmentation), and the heated metal capillary current was 4.5 A. A
Hamilton gas-tight syringe (2.5 mL) and syringe pump were used to
deliver the sample (50 μL/min) to the heated vaporizer region (300
°C) of the APPI source, where N2 sheath gas (50 psi) facilitates
nebulization, while the auxiliary port remains plugged. Gas-phase
molecules flow out of the heated vaporizer in a confined jet, and
photoionization is initiated by a krypton vacuum ultraviolet gas
discharge lamp (10 eV photons, 120 nm), where photoionization
occurs. Toluene increases the ionization efficiency for nonpolar
aromatic compounds through dopant-assisted APPI19 via charge
exchange20 and proton transfer reactions21 that occur between ionized
toluene molecules and neutral analyte molecules at atmospheric
pressure. Protonated ions exhibit half-integer DBE values (DBE = c −
h/2 + n/2 + 1, calculated from the ion elemental composition,
CcHhNnOoSs),

22 and may thus be distinguished from radical cations
with integer DBE values.
Samples were analyzed with a custom-built FT-ICR mass

spectrometer23 equipped with a 9.4 T horizontal 225 mm bore
diameter superconducting solenoid magnet operated at room
temperature, and a modular ICR data acquisition system (PREDA-
TOR) facilitated instrument control, data acquisition, and data
analysis.24 Ions generated at atmospheric pressure were accumulated
in an external linear octopole ion trap for 50−1000 ms and transferred
by rf-only octopoles (2.0 MHz and 240 Vp−p amplitude) to the ICR
cell. ICR time-domain transients were collected from a 7 segment
open cylindrical cell with capacitively coupled excitation electrodes
based on the Tolmachev configuration.25,26 Multiple (200) individual
time-domain ∼6 s transients were coadded, half-Hanning-apodized,
zero-filled, and fast Fourier-transformed prior to frequency conversion
to mass-to-charge ratio and phase-corrected to yield absorption-mode
spectra.27 ICR frequencies were converted to ion masses based on the
quadrupolar trapping potential approximation.28,29

Mass Spectral Calibration. Internal calibration of each mass
spectrum was achieved by use of a highly abundant homologous
CcHhS1

+ ion series (i.e., S1 heteroatom class), based on a “walking
calibration”.25 IUPAC mass was converted to Kendrick mass

= ×Kendrick mass IUPAC mass (14/14.01565) (1)

to sort compounds that differ in IUPAC mass by 14.015 65 Da (mass
of CH2), corresponding to 14.0000 Kendrick mass difference.6

Elemental compositions (CcHhNnOoSs, with c unlimited, h unlimited,

0 ≤ n ≤ 5, 0 ≤ o ≤ 5, 0 ≤ s ≤ 4) were assigned for mass spectral peaks
with signal magnitude greater than six times the baseline root-mean-
square (rms) noise level by use of PetroOrg© software.30 For each
elemental composition, the number of rings plus double bonds to
carbon, DBE, was calculated from eq 2.22

= − + +c h nDBE /2 /2 1 (2)

Statistical Analysis and Its Visualization from Volcano Plots.
Statistical t test and p-values for volcano plots were generated from the
ALGLIB C# library (ALGLIB project, http://www.alglib.net/).
Volcano plots were generated by use of custom software, implemented
by C/C++ and C# programming language (Microsoft, Cambridge,
MA). Isoabundance-contoured DBE vs carbon number5 and Kendrick
mass defect6 quantitative comparison (QC) plots12,13 and van
Krevelen8 QC diagrams were produced by use of custom software.

Treatment of Missing Values by Use of Minimum Limit of
Detection (minLoD). When spectra obtained from different samples
are compared, some peaks are found only in one sample but not in
others because those species are not present or their magnitudes fall
below the detection threshold. In either case, statistical analysis cannot
be performed on the peaks with missing values. If the missing data are
simply omitted, then subsequent statistical analysis may fail to fully
reflect the difference between the samples. To solve the problem, each
missing peak is assigned a magnitude less than or equal to the
detection threshold (minimum limit of detection (minLoD)).31,32

However, since use of minLoD can skew the results, the value should
be chosen carefully. The same approach has been used in a previous
study.14

Construction and Data Interpretation of Volcano Plots. As
noted above, a volcano plot can be generated by plotting statistical
significance vs degree of change, fold-change (FC).33,34 The degree of
change may be the ratio of mass spectral peak magnitudes for two
different samples. For the pooled t test analysis,35,36 the degree of
change is generally reported on a log2 scale to minimize skewness37

from abundant compounds. If xi is the magnitude of the ith spectral
peak for n0 repeated measurements of one sample and yi is the
magnitude of the ith spectral peak for n1 repeated measurements of
another sample, then the sample mean values, x¯i and y¯i, may be
expressed as follows:

∑ ∑̅ = ̅ =
= =

x
n

x y
n

y
1

and
1

i
j

n

ij i
k

n

ik
0 1 1 1

0 1

(3)

Thus, the degree of change of the ith compound, log2FCi, on a log2
scale

= ̅ − ̅ = ̅
̅

⎜ ⎟⎛
⎝

⎞
⎠y x

y i
xi

log FC log ( ) log ( ) or log FC logi i i2 2 2 i 2 2 (4)

and FCi takes the form

=FC 2i
log FCi2 (5)

For hypothesis testing, null and alternative hypotheses, H0 and Ha,
may be stated in the following form

μ μ μ μ= ≠H H: , :xi yi xi yi0 a (6)

in which μxi and μyi are the population mean of the magnitude of the
spectral peak xi and yi for repeated measurements of the given sample.
In the hypothesis testing, it is always assumed that μxi = μyi, and the
sampling distribution is examined on the basis of this assumption. In
other words, a hypothesis test is begun by assuming that the equality
condition in the null hypothesis is true. Within this sampling
distribution, one will determine whether or not a sample exhibits
unusual statistics. Here, it is assumed that population standard
deviations, σxi and σyi, of the magnitude of the spectral peaks, xi and yi,
have the same value; therefore, the sample variances, sxi

2 and syi
2, of the

magnitude of the spectral peak xi and yi for repeated measurements of
the given sample can be pooled to obtain an estimate of the common
population variance σi

2 of the magnitude of the ith spectral peak. The
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pooled estimate of σi
2 is denoted by sp,i

2 and is a weighted average of
sx
2 and sy

2. The standardized test criterion can be then calculated from
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in which sp,i
2 is the pooled sample variance for the spectral peaks, xi

and yi in eq3 , and n0 and n1 are the number of xi and yi replicate
spectra obtained from each sample for the ith spectral peak. Then, the
p-value plotted as the ordinate (typically the −log10 of the p-value) is
calculated from

‐ = > | |p P T tvalue 2 ( )i i (8)

in which Ti is a random variable, ti is the standardized test statistic
obtained from eq 7, and P is the probability that ti will fall in the given
interval under t distribution. One can find the probability by
calculating the area under the t distribution for the given interval.
The hypothesis test in eq 6 is a two-tailed test, and each tail has the
same area. Therefore, the p-value in eq 8 is twice the area under the t
distribution to the right of the positive standardized test statistic. In the
volcano plot shown in Figure 1, a smaller p-value indicates greater
statistical significance. In other words, the smaller the p-value of the
test, the more evidence there is to reject the null hypothesis. In eq 7,
the larger the difference between x¯i and y¯i, the larger will be the
absolute value of the test statistic ti. As a result, the p-value will be
smaller, and there is a higher probability to reject the null hypothesis.
Also, the larger the pooled variance, sp,i

2, the smaller the test statistic ti,
resulting in a larger p-value and a higher probability to fail to reject the
null hypothesis. As a consequence, a smaller p-value (p < 0.05)
represents small variation in the abundance of the chemical
compounds identified with similar values in experimental replicates,
and chemical compounds with the most statistically significant
differences are located in the upper part of the volcano plot. The
abscissa, (±)log2 FC (eq 4) represents the degree of change.

■ RESULTS AND DISCUSSION
Volcano Plot for Various Heteroatom Class Species

Abundances. Figure 1 is a volcano plot generated for

comparison of members of seven major 7 heteroatom classes
(S1, O2S1, O1S1, hydrocarbons (HC), O2, S2, and N1) from
Arab Heavy and NIST 2717a crude oils. Each dot represents an
elemental composition and is color-coded according to its
chemical class. The central blue vertical line distinguishes the

two samples from each other. The compounds more abundant
in Arab Heavy are located to the left of the vertical line, and
those more abundant in NIST 2717a are located to the right of
the line. The orange horizontal line on the plot shows the
significant level (p-value of 0.05).38 Compounds with statisti-

Figure 1. Volcano plot of p-value (log2 scale) vs fold-change (positive
if peak magnitude is higher for NIST 2717a than for Arab Heavy)
generated for members of seven major heteroatom classes in ultrahigh-
resolution positive APPI 9.4 T FT-ICR mass spectra of Arab Heavy
and NIST 2717a crude oils. Each dot represents an elemental
composition, and each heteroatom class is color-coded (see top of
Figure).

Figure 2. Volcano plots based on carbon number (a) and double bond
equivalents (c) for members of the O1S1 heteroatom class from Arab
Heavy and NIST 2717a crude oils. DBE vs carbon number plots for
the same data, showing ranges of overlap for carbon number (b) and
DBE value (d). Plots (a) and (c) were color-coded by carbon number
and double bond equivalents; (b) and (d) are color-coded by
isoabundance (see text).
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Figure 3. Volcano plot (a) and carbon number vs DBE distribution plots (b) for HC class compounds from positive APPI 9.4 T FT-ICR mass
spectra of Arab Heavy and its high-boiling distillate cut. Plots (a) and (b) are color-coded by carbon number and isoabundance (see text).

Figure 4. Volcano plot (d) for S1 class compounds from positive APPI 9.4 T FT-ICR mass spectra of Arab Heavy and NIST 2717a crude oils. DBE
vs C# QC plot (a), van Krevelen QC plot (b), and Kendrick mass defect QC plot (c) were generated for the statistically most different data (i.e., p <
0.05) in the volcano plot. Plots (a), (b), and (c) are color-coded by log2 FC value; (d) was color-coded by carbon number (see text).
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cally significant difference in abundance between samples are
located above the orange horizontal line. The two vertical
dashed lines enclose points with a fold change of less than 2
between Arab Heavy (left line) and NIST 2717a (right line):
the horizontal line separates statistically significant points (p-
value <0.05, above) from nonsignificant points (p-value >0.05,
below).
Volcano Plots Based on Carbon Number and Double

Bond Equivalents. The volcano plots can be constructed for
other important parameters such as carbon number (C#) and
double bond equivalents (DBE = number of rings plus double

bonds to carbon), as shown in Figures 2a and 2c for members
of the O1S1 class species. Figure 2 shows the relationship
between volcano plots (2a and 2c) and DBE vs carbon number
plots (2b and 2d). The circled region (1) with the smaller
carbon number in plot 2a corresponds to carbon numbers (C#
< 30) located to the left of the light green dashed line (1) in
DBE vs carbon number plot 2b. The circled region (2) with
larger carbon numbers in the volcano plot 2a corresponds to
carbon numbers (C# >50) located to the right of the red
dashed line (2) in DBE vs carbon number plot 2b. Therefore,
the circled regions in each volcano plot highlight compounds

Figure 5. Left: Isoabundance-contoured plots of double bond equivalents vs. carbon number for two similar North Sea crude oils (samples A and B
from ref. 39) mixed in ratios ranging from 0% to 100% of A (or B) in 20% increments. The plots are virtually indistinguishable. Right: Volcano plots
for the same samples The five volcano plots are clearly distinguishable, based on fold-change and p-value, even for these mixtures of two highly
similar crude oils.
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whose carbon number or DBE value are significantly larger or
smaller for NIST 2717a than for Arab Heavy crude oil. Note
that compounds with DBE values larger than 10 are
significantly more abundant in NIST 2717a than in Arab
Heavy (2d). It is clear that the same conclusions could be
drawn from either the volcano plot or the DBE vs carbon
number plot. However, the advantage of the volcano plot over
DBE vs carbon number plot is that the chemical compounds
responsible for the significant differences can be statistically
evaluated and ranked. The compounds exhibiting statistically
significant differences are listed in the Supporting Information
(Table S1).
Volcano Plot To Characterize Distillate Fractions.

Volcano plots can be used for more quantitative comparison
of processed oil samples, as shown in Figure 3a for Arabian
Heavy oil and its 593+ °C distillate cut, generated from their
positive APPI FT-ICR mass spectra. Color-coding is as for
Figure 2a. Most of the peaks with large log2 FC values (log2 FC
> 4) correspond to larger carbon numbers (carbon number
>65). Therefore, high carbon number compounds are more
abundant in the high-boiling fraction. Conventional DBE vs
carbon number plots (Figure 3b) show the same qualitative
trends but without the statistical measure provided by the
volcano plot.
Quantitative Comparison Plot: Combination of

Volcano Plot with Conventional Visualization Methods.
Quantitative comparison (QC) plots12,13 are generated by
combining the volcano plot with conventional visualization
methods such as Kendrick mass defect (KMD) plot, DBE vs
C# plot, and van Krevelen diagrams. For example, the volcano
plot for S1 class compounds in Arabian heavy oil and NIST
2717a, generated from positive APPI 9.4 T FT-ICR mass
spectra, is shown in Figure 4 d. The volcano plot p-value can be
used as a filter; e.g., only the peaks exhibiting statistically
significant magnitude difference (p < 0.05) were selected for a
DBE vs C# QC plot (Figure 4a, top left), van Krevelen QC plot
(Figure 4b, top middle), and Kendrick mass defect QC plot
(Figure 4c, top right). The data in Figure 4 (top) are color
coded according to their log2 FC values. Color-coding for
Figure 4d is as for Figure 2a. Thus, Figure 4a (top left) clearly
shows that the NIST 2717a sample contains more high carbon
number and DBE compounds than Arabian heavy oil. The QC
plots in Figure 4 (top) show that combining volcano and
conventional plots is beneficial by displaying only the more
statistically significant compositional differences.

■ CONCLUSION
The volcano plot comparisons reported here are for crude oils
whose composition differs sufficiently to distinguish them
(qualitatively) by visual images of isoabundance-contoured
plots of double bond equivalents (DBE) versus carbon number.
However, we were provided with previously published positive
atmospheric pressure photoionization FT-ICR mass spectral
data for two similar North Sea crude oils (samples A and B)
mixed in ratios ranging from 0% to 100% of A (or B) in 20%
increments.39 Although the DBE vs carbon number plots for
the hydrocarbon class were essentially indistinguishable (Figure
5, left), the corresponding volcano plots (Figure 5, right)
showed clear differences based on fold-change and p-value.
We have demonstrated that the volcano plot is a useful

comparative Petroleomics tool, either alone or in combination
with existing data visualization tools (DBE vs carbon number,
Kendrick mass defect, and van Krevelen diagram), as QC plots

and provides statistically valid quantitation of compositional
differences between petroleum crude oils and their products.
We look forward to future applications of the volcano plot to
improve understanding of the compositional basis for
distillation fractionation, chromatographic separation, corro-
sion, emulsions, process chemistry, etc.
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