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Abstract
We investigate the structure ofmetastable states in self-generated Coulomb glasses. In dramatic
contrast to disordered electron glasses, wefind that these states lackmarginal stability. Such absence of
marginal stability is reflected by the suppression of the single-particle density of states into an
exponentially soft gap of the form  ~ x-( ) ∣ ∣g e V . To analytically explain this behavior, we extend
the stability criterion of Efros and Shklovskii to incorporate local charge correlations, in qualitative
agreementwith our numerical findings. Ourwork suggests the existence of a new class of self-
generated glasses dominated by strong geometric frustration.

How andwhy glasses form is one of themost intriguing open questions ofmodern science. A glass is a rigid
material yet lacks crystalline order. It has been recognized thousands of years ago that glasses can bemade by
fast-cooling a liquid below its solidus temperature to avoid crystallization. The resulting supercooled liquid
displays an exponential increase of its viscosity. As such, glasses are inherently nonequilibrium states ofmatter,
even though on any reasonable experimental timescale thematerial appears to be static [1–4].

The natural question is why the crystal does not nucleate inside the supercooled liquid phase. One of the
possible answers revolves around the existence of local short-range order in both the liquid, the supercooled
liquid and the glass phase. If the short-ranged density correlations in the liquid aremanifestly different than
those characterizing the preferred crystalline state, a glass can be formed through fast-cooling. The system then
freezes into a locally ordered frustrated configuration that requires amacroscopic number of rearrangements to
lower the energy and realize the standard crystalline form.

An example is the icosahedral short-range order first proposed [5] and later observed inmetallic glasses such
as Ti–Zr–Ni [6–8]. A single icosahedron ismuch denser packed than any crystalline structure like fcc or hcp,
which suggests that in the liquid phase the dominant density correlations are icosahedral. However, one cannot
fill spacewith icosahedral order, leading to glassy behavior at low temperatures.

Amore recent example is found in self-generated—whichmeans no quenched disorder—electron glasses
[9–12]. In the organic layeredmaterials of the θ-family, the electrons display distinct glassy features after fast-
cooling to avoid a stripe ordering transition. Upon cooling, the local charge order present in the high-
temperature liquid strengthens even furtherwithin the glassy regime.

In this Letter we propose, based on the assumption of glassiness due to locally frustrated order, that such self-
generated glasses display a characteristic soft gap in the single-particle density of states (DOSs). This implies that
self-generated glasses are notmarginally stable, [13]whichwould require saturation of the Efros–Shklovskii
bound [14, 15].We observe that the presence of local charge order stabilizes the glass and suppresses theDOSs to
 ~ x-( ) ∣ ∣g e V whereV is the interaction strength, and ξ is thefinite correlation length of the local order. As can

be seen infigure 1, this form is consistent with numerical simulations.
To derive this, we provide analytical arguments based on the Efros–Shklovskii stability criterion, which are

then further constrained by the local charge order.We numerically verify our claimusing amodel of long-range
interacting spinless electrons on a half-filled triangular lattice. Thismodel was introduced earlier to describe the
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glassy behavior of electrons in the θ-organic compounds [16, 17].Wefind a remarkable agreement between our
analytical formof theDOSs and the numerical results. Finally, we address the limitations and implications of our
model, and the relation tomodels with quenched disorder.

1.Definitions

Weconsider amodel systemof particles on a triangular lattice. On each lattice site the density is given by ni=0,
1, and the total energy is given by theCoulomb repulsion between the particles,

å= - -
¹

∣ ∣
( )( ) ( )E

V

r
n n n n

1

2
, 1

i j i ij
i j

,

where n is the average number of particles per site,

rij the (dimensionless) distance between site i and j andV

some unit of energy.We define the on-site energies as  = å -¹  ( )
∣ ∣

n ni j i
V

r j
ij

such that the total energy is

= å -( )E n ni i i
1

2
. It is important to note that we consider self-generated glasses only with a translationally

invariantHamiltonian, in contrast to the traditional electron glasses that require quenched disorder[18]. Details
on the glassy behavior of thismodel are presented in [16], wherewe also showed that the effective classical
description is still valid upon including a small quantumhopping term.

In the glass at low temperatures we assume the particles are frozen into a stable nonperiodic configuration.
The stability requirement implies that if wemove a particle from site i to site j, the total energy of the system
should increase [14]

 D = - - >∣ ∣
( )E

V

r
0. 2j i

ij

The ground state of the systemnaturally satisfies this single-particle stability criterion. Any configuration that
satisfies the stability criterion is called ametastable state. Note that these states are sometimes called ‘inherent
structures’ to avoid confusionwith the thermodynamic notion ofmetastability, or ‘pseudo-ground states’. Also
note that this definition is not unique: one can definemetastability with respect to one- ánd two-particle hops;
one, two ánd three-particle hops; or local single-particle hops only, etcetera.However, in this paper we stick to
the definition following equation (2).

Following the argumentsmentioned in the introduction, we assume that thesemetastable states have some
kind of local short-range order. This is characterized by the density correlation function

P = á - - ñ( )( ) ( )n n n n , 3ij i j

where the average á ñ is over the ensembleΓMS ofmetastable states. In typical systemswithout long-range
order, the density correlations decay exponentially at large distances while at shorter distances a certain

Figure 1.The exponentially suppressedCoulomb gap for ourmodel of a self-generated glass on a triangular lattice. Left: the density of
states g(ò) as a function of energy ò around the Fermi level ò=0, averaged over an ensemble ofmetastable particle configurations. The
density of states is normalized so that  ò =( )g d 1, and energy is expressed in units of the nearest neighbor repulsionV. For L=16
we average overNms=50 000metastable states, for L=32 overNms=16 336 and for L=64we haveNms=424metastable states.
The dashed line is the extrapolation for = ¥L assuming that  = ¥ + ´ -( ) ( )g L g L, , const. 2. The bump around  ~∣ ∣ 0.3 for
small L is an irrelevantfinite-size effect. Right: to show that we find an exponentially suppressed density of states near the Fermi level,
we show anArrhenius plot of the density of states—whichmeans the logarithmof g(ò) versus ∣ ∣1 .Wefind a clear regimewhere the
density of states follows  = -( ) ∣ ∣g ae b , and the dashed line shows thefit of this form.Note that quenched disorder Coulomb glasses
are expected to have a linear density of states, g(ò)∼ò, which is clearly violated here.
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modulation is expected.We therefore propose to approximate the density correlation function by

åP ~ x-  


( ) ( · ) ( )r M rcos e , 4
M

r M

where the sum runs over the short-range densitymodulationwavevectors


M , and ξM is the correlation length
for that givenwavevector. The Fourier transform tomomentum space yields a sumover Lorentzians,

å
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whichwewill assume is the generic formof the density correlation function in the remainder of this paper.

2.Numerical studies

We start by numerically studying the ensemble ofmetastable states for themodel of particles on a half-filled
( =n 1 2) triangular lattice of sizeN=L2 with periodic boundary conditions, introduced in [16, 17] and in
equation (1). The interaction potential contains both aCoulomb tail and nearest-neighbor repulsion, tunable by
the parameter x,

d= + - =


 ( )
∣ ∣

( ) ( )∣ ∣V r x
V

r
x V1 . 6

ij
r 1ij

The short-range component of the interactions reflects the fact that in realistic systems, such as the organics, the
charge distribution on a single site is not exactly point-like. At longer distances, the nontrivial shape of the onsite
orbitals can be neglected andwe regain the standardCoulomb term.

The long-range nature of theCoulomb interaction is taken care of using Ewald summation on a
parallelogram-shaped super unit cell with periodic boundary conditions [20].When only nearest neighbor
interactions in the second term in equation (6) are present, there is an exponentially large number of degenerate
ground states that are not separated by barriers. The inclusion of aCoulomb tail lifts the degeneracy and creates
barriers between different configurations.

To obtain an ensemble of uniquemetastable states numerically, we start with a completely random
configuration and lower the energy by random single-particlemoves (including nonlocalmoves) until the
stability criterion is explicitlymet. Thismeans thatwe checked all the possible short- and long-rangemoves to
make sure none of suchmoves can increase the energy.

Oncewe have ametastable configuration, we checkwhether it is a unique configuration.We explicitly check
uniqueness by comparing the newfound configuration to all the earlier foundmetastable states, including all L6 2

possible rotations and translations. The result for the counting of the number ofmetastable states is shown in
table 1.We have for a given system size L a collection ofM random initial configurations, fromwhich a stable
configuration is constructed as described above. This waywe find a set ofNms(M)uniquemetastable states.

Note that we explicitly refrain fromusing any approximate procedures thatwould allow us to study bigger
systems [19]. At the one hand, we already find sufficient convergence of results tomake claims about the
functional formof the low-energyDOSs.On the other hand, the use of an approximate procedure without
explicitly checking the stability criterion prevents us from correctly counting the number ofmetastable states.

For L=4we can explicitly check all possible configurations, andwefindNms=3 uniquemetastable
configurations. For L=6, we see that the number of uniquemetastable configurations saturates to a value of
Nms=93. The approach to this saturation value for smaller values ofM gives us a functionNms,6(M). For larger
systems L>6we approximate the expected total number ofmetastable states by scalingα−1Nms,6(αM). This
works for L=8 and L=10.However, for L=12 this estimate is conservative and provides a veryweak lower
bound on the total number ofmetastable states.

Table 1.The number of distinctmetastable states afterM sweeps for the lattice sizes L=4 to L=12. The
expected total number of uniquemetastable states is obtained by scaling the curvesNms(M) tomatch the
result for L=6. The estimate for L=12 is extremely conservative, and is possible larger.

L 2L2 M Nms (M) Expected totalNms Complexity S=L−2 logNms

4 65536 65536 3 3 0.069

6 ´7 1010 50000 93 93 0.126

8 2×1019 50000 13093 ∼17500 ∼0.153
10 1030 31950 31462  ´8 106 0.159

12 2×1043 21811 21810 > 109 > 0.14
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For these larger system sizes we can thus compute the complexity, defined as the entropy associatedwith the
number ofmetastable states, =S Nlog

L

1
ms2 . If there are less than exponentiallymanymetastable states, the

complexity should vanish. The results suggest that this is not the case, and that the complexity approaches a
value 0.14−0.16 in the thermodynamic limit, see alsofigure 2. This scaling is consistent with typicalmodels of
glass formation that exhibit an exponential number ofmetastable states, such as the randomSherrington–
Kirkpatrickmodel [2, 21–23].

The ensemble ofmetastable states has a narrowdistribution of energies. In the thermodynamic limit, all
metastable states have the same energy density E N , see figure 2, right. Consistent with our assumptions, the
ensemble has local charge correlations at the


M-points of the hexagonal Brillouin zone, seefigure 3, left. From a

depiction of this charge order in real space, including a typical snapshot of ametastable state, it is clear that there
exists no periodic arrangement of discrete particles that has this local structure, see figure 3, right inset. As shown
in the samefigure, the correlation length ξwe extract fromP


( )k by fitting to equation (5) seems to be

independent of the value of x.
We next proceed to compute theDOSs. This is obtained bymaking a histogramof the on-site energies,

averaged over a large ensemble ofmetastable configurations. For the pure Coulomb interaction (x=1), we
computed theDOS for linear lattice size L=16, 32 and 64, and extrapolated theseDOSs to = ¥L . The results

Figure 2. Left: a logarithmic plot of the number ofmetastableNms states versus linear lattice size L, for themodel of equation (6)with
x=1. Thefit ~N 2 L

ms
0.25 2

indicates an exponential number ofmetastable states. Right: the distribution of the energy density of the
uniquemetastable states, for L=12, 18, 24, and 36. The distribution isfittedwith aGaussian around the same average energy

= -E N 0.167 (which is higher than the striped ground state energy density [16]) andwidthσ(L). The standard deviationσ(L)
decreases with increasing system size, as shown in the inset, suggesting that in the thermodynamic limit there are infinitelymany
metastable states with the same energy density.

Figure 3. Left: the density correlation function P


( )k for x=1 averaged over an ensemble of 996metastable states on aN=48×48
lattice. Clear peaks at the


M -points are seen, indicating local charge order. Right: the extracted inverse correlation length at the

M -point as a function of x byfitting P


( )k to a Lorentzian shape of equation (5). The upper and lower bounds indicate the error bar.
Right, inset: real space density correlations P

( )r at x=1. The size of the balls indicate the strength of P
( )r whereas the blue (red)

indicates positive (negative) correlations.We also include a snapshot of a typicalmetastable configuration.
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are shown infigure 1. Thoughwe see that theDOS rapidly converges with increasing system size, we avoid
making conclusions for the energy regime below ∣ ∣ 0.1due to the scarcity of data points. The bestfit for the
DOSs g(ò) at low energies, but still above ò0.1, is given by the functional form  = -( ) ∣ ∣g ae b , rather than the

~ ∣ ∣g power-law form expected from the Efros–Shklovskii bound.
For other values of <x 1, we have a smaller set ofmetastable states up lattices of linear size L=48 to obtain

theDOSs, seefigure 4.We fit again the low-energyDOSs by an exponential form  = -( ) ∣ ∣g ae b . The
parameter b as a function of x is shown in the lower panel offigure 4, wherewefind that b is proportional to x.

In conclusion, we found unambiguously that the low energy density of states in the self-generated Coulomb
glass is suppressedwith respect to the Efros–Shklovskii power-law gap. The degree of exponential suppression is
directly proportional to the strength of theCoulomb interactions. In the following section, we aim to
understand this suppression qualitatively.

3. Analysis of theCoulomb gap

The spectrumof a long-ranged ordered state would have a hard gap in the spectrum. This gap is now smeared
due to the spatial charge fluctuations reflecting the amorphous nature of themetastable states. In this sectionwe
will present analytical arguments how these charge fluctuations can qualitatively cause the resulting
exponential gap.

Recall that the traditional Efros–Shklovskii arguments [14, 15] use the stability criterion equation (2) to
restrict the possible position of low-energy particles.Wewill use the presence of charge correlations to further
constrain these positions.

For a givenmetastable state in the ensembleΓMS, we define the origin as some empty site with onsite energy
ò0 asymptotically close to zero. The probability that a site at the position


r is occupied equals

= - P
 ( ) ( ) ( )P r r

1

2
2 . 7e

Because of the local order, the density correlation function P
( )r is the product of an oscillating function and an

exponentially decaying function. Since the precise wavevector of the local order is irrelevant to further

Figure 4.The density of states g(ò) for various values of x given the interaction potential equation (6), for L=48 and an ensemble of
1000metastable states.We fit the numerical density of states at low energies with the functional shape  ~ -( ) ∣ ∣g e b , as shown in the
top panel. Thefit parameter b as a function of x is shown in the lower panel, consistentwith the central result of equation (11)wefind
b∼xV/ξ. Also note that the typical temperature of a glass is about 0.01 V, well within the hardest part of the gap.
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considerations, wewill only consider distances

r that are commensurate with thewavelength of the order, that is ·M r is amultiple of 2π; as wewill see, considerations for these distances will lead to strong constraints.Wewill

denote the density correlation function at such commensurate sites by P ~
~ x-( )r e

r
r1 .

Next we introduce the local distribution of on-site energies  ( )gr at distances

r . Since an occupied site has

negative onsite energy, the probability tofind a particle at position

r equals

 ò= ¢ ¢
-¥


( ) ( ) ( )P r gd . 8e r

0

Note that the spatial average of this local density of states equals the total density of states,  å = ( ) ( )g g
N i r
1

i
.

Our single assumption is that the local density of states is only restricted by the stability criterion of
equation (2). This criterion requires that there cannot be particles at distance


r with onsite energy in the range

- < <∣ ∣
0V

r
. Consequently,  ( )gr must be zero in this range.Outside this excluded region (i.e., at lower

energies), we assume that the local density of states is equal to the total density of states. Equating equation (7)
with equation (8) at commensurate sites, we thusfind

 ò- P = ¢ ¢
~

-¥

- 
( ) ( ) ( )∣ ∣r g

1

2
2 d , 9

V
r

where the stability constraint of equation (2) sets the upper bound on the energy integration.
While our interest lies in disorder free Coulomb type systems, we remark that the above considerations can

be appliedmutatis mutandis for any translationally and rotationally invariant interaction =
(∣ ∣)V f rij ij (wherein

equation (2) generalizes toΔE=òj−òi−Vij>0 and, accordingly, the upper limit of the integral of
equation (9) is replaced by -

( (∣ ∣))f r .
Taking the derivative with respect to the distance


r of both sides of equation (9), wefind at large distances









~ -x-

∣ ∣
( )

r

V

r
g

V

r

1
e . 10r

2

This implies that at low energies, the functional shape of the density of states should be

 ~ x
-( ) ( )∣ ∣g e , 11

V

consistent with our numerical results, up to a possible power-law pre-factor.

4. Relation to quenched disorder systems

The gapwe have found numerically in ourmodel is stronger, with amore suppressed density of states, compared
to the usual Coulomb gap in systemswith quenched disorder. There the Efros–Shklovskii bound is saturated
 = -( ) ∣ ∣g C d 1, withC a universal disorder-independent pre-factor [14, 15, 24]. Now in general, we know that

for large disorder strength there are no charge correlations other than the correlation hole around =

k 0

associatedwith theCoulomb tail. In this limit, the assumptions underlying equation (9) are invalid, and
consequently our analysis of the previous section cannot be used. In this regime the Efros–Shklovskii bound can
be saturated.However, when disorder is weak compared to theCoulomb energy scale it is an open question how
the gap changes from a power-law to an exponentially soft gap.

We verified this by introducing onsite disorder,

å m= ( )E n , 12
i

i idis

whereμi is randomly chosen from the uniformdistribution [−W,W]. Instead of averaging over themanifold of
metastable states, we now average over different disorder realizations.

Infigure 5we show our results for 1000 disorder realizations for various disorder strengths. There seems to
be a smooth transition from the exponential gap in the absence of disorder to a power-law gap. Also the charge
correlations, crucial for our understanding of the exponential gap, seem to disappear upon inclusion of disorder.
However, these results should be treatedwith caution. It is well-known thatfinite-size effects are increasingly
important for systemswith quenched disorder, when studied on a square lattice [36, 37].We therefore only
present these results to show that the relation between quenched disorder and the exponential gapwarrants
further study.
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5.Outlook

Weproposed that self-generated glasses withCoulomb interactions have an exponentially suppressed density of
states, following equation (11). This relation is satisfied in a simplemodel of particles on a triangular lattice that
was shown earlier to form a glass [16, 17].

In self-generated electron glasses, our result can be directly studied by performing tunneling experiments.
The structure of the low-energy density of states can bemeasured indirectly via theDC conductivity. For
structural glasses composed of atoms ormolecules it is difficult tomeasure the density of states directly. In
general, the existence of single-particle excitations of arbitrary low energy lead to characteristic dynamical
properties such as crackling and avalanches. However, because ourmodel does not saturate the Efros–Shklovskii
bound, we do not expect a scale-invariant avalanche distribution [13, 25–27].

We verified our hypothesis using a simplemodel of Coulomb interacting particles on a triangular lattice. It
would be interesting to seewhethermodels that exhibit icosahedral local order also display the exponentially soft
gap [8]. Furthermore, we expect a similar gap structure on other sufficiently frustrated lattices as long as there is a
first-order transition that can be supercooled to formmetastable states, such as in the 1/3-filled square lattice
[28] or the 3d pyrochlore lattice. The arguments presented in this Letter generalize trivially to an arbitrary
power-law interaction of the formV/r γ. However, interactions that decay faster than the dimensionality of the
system,V∼1/r γwith γ>d do not lead to glassy behavior. Indeedwewere not able to reproduce a soft gap for
the triangular latticemodel with dipolar interactions. It remains an interesting open questionwhether long-
range interactions are a sine qua non for glass formation [13, 29].

Note that we only studied the density of single-particle excitations.Many-particle excitations, especially the
ones that transition fromonemetastable state to another, play an important role in the slow dynamics of glasses.
A full theory of glass-formationwould treat both thesemany-particle events and the single-particle excitations at
the same level. However, this is outside the scope of the current paper.

In this Letter, our considerations and analysis centered on the zero-temperature ensemble ofmetastable
states. Atfinite temperature the gapwill befilled, and earlier results are consistent with an exponentially weak
scaling atfinite temperature,  = ~ --( ) ( )g T T V T0, exp1 2 [17]. Again, notice the relative stability
compared to systemswith quenched disorder where g(ò=0,T)∼T [30, 31]. Finally, real glasses are obtained
by a fast quench after which the gap needs time to develop. In fact, it has been shown that the soft gap forms
extremely slowly, with power-law or even logarithmic time dependence g(ò=0, t)∼(log t)ξ [32–35]. In our
case, however, the absence ofmarginal stability opens up the possibility of a true thermodynamic phase
transition into a glass phase. How the glass, with its soft gap and the concomitant local density correlations,may
be dynamically generated in various systems following a quench to nonzero temperatures is an interesting
question for future research.

Figure 5. Left: the density of states upon increasing the quenched disorder on a L=36 size lattice for 1000 disorder realizations. The
density of states displays a smooth crossover from the exponential structure atW=0 to a power-law form. Right: the density–density
correlations along the line ( )k0, in themomentum space, for various disorder strengths (color coding is same as on the left side).
Upon introduction of quenched disorder, we rapidly lose the peak at theM-point (0, 2π) associatedwith local charge correlations.
Only the broad feature at the edge of the Brillouin zone remains.
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