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FeSe is a unique member of the family of iron-based superconductors, not only because of the high values of
Tc in FeSe monolayer, but also because in bulk FeSe superconductivity emerges inside a nematic phase without
competing with long-range magnetic order. Near Tc, superconducting order necessarily has s + d symmetry,
because nematic order couples linearly the s-wave and d-wave harmonics of the superconducting order parameter.
Here we argue that the near-degeneracy between s-wave and d-wave pairing instabilities in FeSe, combined with
the sign-change of the nematic order parameter between hole and electron pockets, allows the superconducting
order to break time-reversal symmetry at a temperature T ∗ < Tc. The transition from an s + d state to an s + eiαd

state should give rise to a peak in the specific heat and to the emergence of a soft collective mode that can be
potentially detected by Raman spectroscopy.
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I. INTRODUCTION

The discovery of FeSe brought renewed interest in the
field of unconventional superconductors, not only because
FeSe-based compounds display the highest superconducting
(SC) transition temperatures among all iron-superconductors,
but also because of their unique phase diagram [1]. Indeed, in
contrast to most Fe-based compounds, bulk FeSe undergoes
nematic and SC transitions without displaying long-range an-
tiferromagnetic order [2,3]. The microscopic origin of this un-
usual behavior has been the subject of intense debates [4–10].
Regardless of the microscopic origin of nematicity, the phase
diagrams of pure and doped FeSe provide a remarkable
opportunity to investigate the interplay between nematicity
and superconductivity without the interfering effects of the
antiferromagnetic order observed near the onset of nematicity
in other iron-based materials [11,12].

It is well established that nematic and SC orders coex-
ist microscopically in FeSe, with the former onsetting at
Ts ≈ 90 K [13,14] and the latter at Tc ≈ 8 K [13]. Recent
experimental [15–25] and theoretical works [26–29] have
highlighted how the modifications in the orbital compositions
of the Fermi surfaces below the nematic transition influence
the SC gap structure, and particularly the gap anisotropy
on both hole and electron pockets. These gap anisotropies
have been observed directly by Angle resolved photoemission
spectroscopy (ARPES) [15–19] and scanning tunneling mi-
croscopy (STM) [20–22], and also indirectly in specific heat
and thermal conductivity measurements [23–25].

General models for the pairing interaction in Fe-based
SC have revealed closely competing s+− and d-wave pairing
channels, with the latter even winning over the former in
certain models [30–38]. However, in Fe-pnictides, such near-
degeneracy holds only far enough from the magnetically
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ordered phase, otherwise the (π, 0)/(0, π ) stripe-type magnetic
fluctuations favor s+− pairing [39]. In FeSe, the situation is
different. First, there is no magnetic order. If one takes this as
evidence that magnetic fluctuations are not strong and treats
the pairing within the Kohn-Luttinger scenario, one finds (see
below) that s-wave and d-wave pairing amplitudes are quite
comparable. Second, if one takes a different point of view and
assumes that magnetic fluctuations in FeSe are strong enough
to justify a spin-fluctuation approach, one still has to include
into consideration not only (π, 0)/(0, π ) fluctuations, but also
(π, π ) Néel-type magnetic fluctuations [40,41], as both have
been observed in neutron scattering [42]. The stripe magnetic
fluctuations enhance the pairing strength in the s+− pairing
channel, and the (π, π ) fluctuations do the same in the d-wave
channel [38]. The existence of both fluctuations again keeps
the s+− and d-wave pairing amplitudes comparable.

It is well known that proximate s+− and d-wave states
can lead to the emergence at low enough T of an exotic SC
state that breaks time-reversal symmetry (TRS): the s + id

state. It emerges as the lowest-energy state because it gaps
out all states on the Fermi surfaces and by this maximizes
the gain of the condensation energy. An s + id state has
been proposed to exist in strongly hole-doped and strongly
electron-doped Fe-pnictides [31–33,35,38], but it has not been
yet unambiguously detected in experiments. As we just said,
in FeSe, s+− and d-wave states are likely closer than in
Fe-pnictides [26], so FeSe seems a natural candidate to search
for s + id order. However, there is a caveat—the nematic order
couples linearly the s-wave and d-wave channels. Because of
this coupling, the SC order parameter near Tc necessarily has
s + d symmetry rather than s + id [34,36,37]. An s + d SC
order preserves TRS and just changes the anisotropy of the gap
function. If the linear coupling between s-wave and d-wave
order parameters is strong enough, s + d state persists down
to T = 0. If, however, it is weak, the system may undergo
a transition at some T < Tc into a time-reversal symmetry
breaking (TRSB) state (see Fig. 1).
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FIG. 1. Schematic figure summarizing our main results. As func-
tion of a tuning parameter g (which in our paper is the ratio between
intraorbital and interorbital interband pairing interactions), the super-
conducting state changes from d-wave to s+−-wave in the tetragonal
phase, giving rise to an s + id state near the degeneracy point (dashed
red curves). In the nematic phase, the superconducting state becomes
s + d near Tc, which is enhanced near the s-wave/d-wave degeneracy
point. At low temperatures, an s + eiαd state can be stabilized (solid
blue curves). Such an exotic state, which breaks both time-reversal
and tetragonal symmetries, is much more favored for a sign-changing
nematic state, as compared to a sign-preserving nematic state.

In general, the gap function of a SC state with s-wave and
d-wave components is parametrized by

� = �s + eiα�d . (1)

For definiteness, we assume that both �s and �d are real. The
relevant parameter in Eq. (1) is the relative phase 0 � α � π

between the two order parameters. In the s + d state, α = 0
or π , whereas in s + id state α = ±π/2. Other values of α

describe nematic SC states which also break TRS.
In this paper, we analyze the gap structure of FeSe below Tc

by solving the set of non-linear gap equations on the different
hole and electron pockets. We take as input the fact that in
FeSe the nematic order parameter changes sign between hole
and electron pockets [4,19,43,44]. We argue that for a sign-
changing nematic order, the linear coupling between s-wave
and d-wave gap components is much smaller than it would
be if nematic order was sign-preserving. We analyze the gap
structure and show that for parameters appropriate for FeSe it
is quite likely that below some T ∗ < Tc, α becomes different
than 0 or π , i.e., the system undergoes a transition into TRSB
state.

Such a SC-to-SC transition is manifested by the softening
of the collective mode associated with the fluctuations of α.
This can be probed by Raman spectroscopy. The signatures
of the transition into the TRSB state can also be found by
measuring thermodynamic quantities, such as the specific heat.
Interestingly, recent specific heat measurements on FeSe have
reported a peak well below Tc [45]. We conjecture that this
feature could be due to the formation of the TRSB state.

The paper is organized as follows. In Sec. II, we introduce
our microscopic model with hole and electron pockets and
on-site Hund and Hubbard interactions. We obtain the effective
pairing interactions in the s+− and d-wave channels within the

FIG. 2. The Fermi surface and its orbital content in the tetragonal
(left) and nematic (right) phases of FeSe in the 1-Fe Brillouin zone.
In the tetragonal phase, there are two hole pockets centered at �/Z =
(0, 0) and two electron pockets X and Y centered at (π, 0) and (0, π ).
Deep in the nematic phase there is one hole (h) pocket centered at
�/Z = (0, 0) (another sinks below the Fermi level) and two electron
pockets X and Y centered at (π, 0) and (0, π ), respectively. STM and
ARPES data [15,20] show that the h pocket is an ellipse elongated
along Y , and that the X electron pocket has a peanut-type form with
the minor axis along the Y direction.

Kohn-Luttinger formalism and rationalize an effective model
with s-wave and d-wave attractive interactions of comparable
magnitudes. In Sec. III, we study the pairing in the tetragonal
phase and obtain the TRSB s + id state for some range of
system parameters. In Sec. IV, we analyze the pairing in
the presence of nematic order. We show that near Tc the
pairing symmetry is necessarily s + d, but TRSB state may
still emerge at a lower T . In this section, we also compare the
effects of sign-changing and sign-preserving nematic order.
We argue that TRSB state is substantially more likely when
the nematic order is sign-changing, as in FeSe. In Sec. V,
we discuss experimental signatures of the transition into the
TRSB state, in particular the softening of the collective mode
associated with the fluctuations of the relative phase between
s-wave and d-wave order parameters. Section VI presents our
conclusions. Appendices A and B contain additional details
not discussed in the main text.

II. MICROSCOPIC MODEL

A. Noninteracting terms

Our microscopic Hamiltonian contains a noninteracting
part, H0, and an interacting part, Hint. The former is con-
structed based on ARPES measurements, which find, above
the nematic transition temperature Ts , two small hole pockets
at the center of the Brillouin zone and two small electron
pockets centered at QX = (π, 0) and QY = (0, π ) in the Fe-
only Brillouin zone [17,46–48]. We show the Fermi pockets
and orbital content of excitations around the pockets in Fig. 2.

The spectral weight of excitations near the hole pockets
comes predominantly from the dxz and dyz Fe orbitals. As a
result, the hole-band operators h1,k and h2,k can be expressed
in terms of the orbital operators dxz,k and dyz,k as [49,50]

h1,k = i(dxz,k cos θk + dyz,k sin θk ),

h2,k = i(−dxz,k sin θk + dyz,k cos θk ). (2)
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The imaginary prefactors are introduced for convenience, as
later we will search for TRSB solutions of the gap equations.
The relationship between the Bogoliubov parameter θk and
the polar angle θ around the hole pockets (measured with
respect to kx) depends on the tight-binding parameters. For our
purposes, it is sufficient to consider the special case of circular
hole pockets, in which case θk = θ . Because the hole pockets
are small, we can approximate their dispersions as parabolic,
εhi

= μh − k2/2mi , with m2 > m1.
The electron pockets are predominantly formed out of dxz/yz

and dxy orbitals. We describe them by the operators eX/Y,k.
We use as input the results of earlier renormalization group
(RG) studies [51] that the interactions involving fermions from
dxy orbitals flow to smaller values than the ones involving
fermions from dxz and dyz orbitals. The smallness of the
interactions involving dxy orbitals has also been proposed in
strong-coupling approaches [52–54] and phenomenologically
in recent studies of the linearized gap equation in FeSe [20,28].
To simplify the analysis, we then neglect fermions from the dxy

orbital in the pairing problem and approximate the excitations
near the X pocket as dyz (eX,k = dyz,k+QX

) and near the Y

pocket as dxz (eY,k = dxz,k+QY
), with electron-band disper-

sions εX,Y = −μe + k2
x/(2mX,Y ) + k2

y/(2mY,X ). This approx-
imation substantially simplifies the analysis of the transition
into the TRSB state at T ∗. The inclusion of dxy orbitals does
not change the main results, as it only shifts the value of T ∗.
By the same reason, we also neglect spin-orbit coupling [55]
and the variation of the size of the hole pockets along the kz

direction. The kz variation is relevant for the understanding
of the orbital composition of the hole pockets in the nematic
phase and of the gap anisotropy in the s + d phase [17,19,28],
but does not qualitatively alter the physics of the transition into
the TRSB state.

B. Interaction terms

The interacting part of the Hamiltonian Hint is responsible
for the SC instability. Let us first analyze SC in the absence of
nematic order. As discussed in the introduction, there are two
approaches to the pairing instability. One is to start with bare
interactions, such as the on-site Hund and Hubbard interac-
tions, and analyze the pairing to second order in perturbation
theory (the Kohn-Luttinger approach). Another is to adopt the
semiphenomenological spin-fluctuation scenario and analyze
the pairing mediated by spin fluctuations.

Within the first scenario, both s-wave and d-wave com-
ponents of the interaction emerge when one converts from
orbital to band basis using Eqs. (2). In the tetragonal phase,
the effective BCS Hamiltonian factorizes between s- and
d-channels. Symmetry analysis shows [4,50] there are three
relevant pairing interactions: one between fermions on the two
hole pockets, another between fermions on the two electron
pockets, and the third between fermions on hole and on electron
pockets. To be consistent with the notation in earlier works, we
label these three interactions, respectively, as U

s(d )
4 , U

s(d )
5 , and

U
s(d )
3 .
To write the BCS Hamiltonian in a compact form, we follow

Ref. [4] and introduce the pair operators

κe
μμ′ = eμ↑eμ′↓, κh

μμ′ = hμ↑hμ′↓, (3)

where μ = 1, 2, e1 = eY and e2 = eX, and

κe(h)
s = κ

e(h)
11 + κ

e(h)
22 ,

κ
e(h)
d = κ

e(h)
11 − κ

e(h)
22 . (4)

The pairing Hamiltonian is then given by

Hκ = Hκs
+ Hκd

, (5)

where

Hκs
= Us

5

(
κe

s

)†
κe

s +Us
4

(
κh

s

)†
κh

s + Us
3

((
κe

s

)†
κh

s + H.c.
)
, (6)

Hκd
= Ud

5

(
κe

d

)†
κe

d +Ud
4

(
κh

d

)†
κh

d + Ud
3

((
κe

d

)†
κh

d + H.c.
)
. (7)

We assume momentarily that the densities of states on all
pockets are equal to NF . Introducing u

s(d )
i = U

s(d )
i NF /2 and

solving the BCS gap equations in s-wave and d-wave channels,
we obtain two dimensionless couplings in each channel,
corresponding to same-sign (denoted by s++ and d++) or
opposite-sign (denoted by s+− and d+−) gaps on electron
and hole pockets. One of the two is repulsive for positive
U

s(d )
i , whereas the other can be of either sign, depending on

the interplay between the U5, U4, and U3 interactions. These
couplings are

λs =
(
us

3

)2 − us
4u

s
5

us
4 + us

5

, (8)

λd =
(
ud

3

)2 − ud
4u

d
5

ud
4 + 2ud

5

. (9)

Note that a positive λ implies attraction. Symmetry analysis
shows [56] that λs corresponds to the s+− channel and λd to
the d++ channel.

The bare values of the interactions U
s(d )
i are Us

5 =
Us

4 = Us
3 = (U + J )/2, Ud

5 = Ud
4 = Ud

3 = (U − J )/2. Sub-
stituting into Eqs. (8) and (9), we see that the couplings in
both s and d channels vanish. A nonzero λs(d ) emerge when
we include the renormalizations of the interactions between
given fermions due to the presence of other fermions. If the
system does not show a strong tendency toward a density-wave
order, these renormalizations can be computed to second order
in u

s(d )
i . Still, in systems with hole and electron pockets,

some renormalizations are logarithmically singular, i.e., they
depend on L = log W/E, where W is the bandwidth and E

is the energy at which we probe λs and λd . Keeping only
the logarithmical terms, and extracting the renormalizations
to order (us(d )

i )2 from the RG equations for the flow of the
couplings [4], we obtain, in terms of U and J ,

λs = 4U 2N2
F (1 + J/U − 2J 2/U 2)L, (10)

λd = 8
3U 2N2

F (1 − J/U + 2J 2/U 2)L. (11)

We see that for U > J , both λs and λd are positive, i.e., the
dressed couplings are attractive in both s-wave and d-wave
channels. For large U/J, λs > λd , i.e., the s-wave channel
is more attractive. However, for 0.65 < J/U < 1, λd > λs ,
implying that the d-wave channel is more attractive. For
nonequal densities of states on different pockets, the formulas
are more complex, but the key result is the same: the couplings
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λs and λd in s+− and d++ channels vanish if we use bare
interactions but become positive (attractive) when we include
the renormalizations of the interactions to order (us(d )

i )2.
From a physics perspective, λs(d ) becomes attractive be-

cause the corrections to order (us(d )
i )2 increase the interpocket

interaction u3 compared to the interactions between fermions
near only hole or only electron pockets. This generally moves
the system toward a stripe magnetic order. For large enough
U/J , this predominantly increases the interaction in the s+−
channel, but when U and J are comparable, this may increase
even more the pairing interaction in the d-wave channel. Note
that this is entirely due to the enhancement of the interaction
at the stripe wave vectors (0, π )/(π, 0). The (π, π ) interaction
between the electron pockets is present as the interpocket com-
ponent of the interaction U

s(d )
5 , but to logarithmical accuracy

it is not enhanced compared to the intrapocket component
of U

s(d )
5 .

An alternative to the Kohn-Luttinger approach is the phe-
nomenological spin-fluctuation approach. Here, one takes as
input the fact that stripe and Neel magnetic fluctuations are
enhanced and considers only interpocket interactions with
momentum transfer (π, 0)/(0, π ) and (π, π ). In the absence
of competing intrapocket interactions, λc and λd are definitely
positive. When U/J is large, (π, 0)/(0, π ) fluctuations fa-
vor s+− pairing. However, (π, π ) fluctuations favor a state
with sign-changing gaps between the electron pockets, which
by symmetry is d-wave. The interplay between λs and λd

is then determined by the details of spin-fluctuations near
(π, 0)/(0, π ) and (π, π ) [34,38].

We see that in both Kohn-Luttinger and spin-fluctuation
approaches, the couplings λs and λd are attractive, and their
ratio depends on microscopic details. Hereafter, we adopt a
combined approach in which we take the elements of both
Kohn-Luttinger and spin-fluctuation treatments. Specifically,
we keep in the interaction Hamiltonian one intraorbital, inter-
band interaction, V , and two interorbital, interband interac-
tions, W1 and W2. The interaction Hamiltonian, projected onto
the pairing channel, is

HSC = V
∑
k,μ

d
†
μ,k↑d

†
μ,−k↓dμ,k′+Qμ↓dμ,−k′+Qμ↑

+W1

∑
k,μ �=ν

d
†
μ,k↑d

†
μ,−k↓dν,k′+Qν↓dν,−k′+Qν↑

+W2

∑
k,μ �=ν

d
†
μ,k+Qμ↑d

†
μ,−k+Qμ↓dν,k′+Qν↓dν,−k′+Qν↑,

(12)

where μ, ν = xz, yz, Qμ = (π, 0) for μ = yz and Qμ =
(0, π ) for μ = xz. The terms V and W1 are interactions
between hole and electron pockets, while W2 term describes
interaction between the two electron pockets. Interaction V

acts within a given orbital (the same index μ for all fermions),
hence it is intraorbital, while momentum changes between
k and k + Q, hence it is interband. The interactions W1,2

act between fermions from different orbitals, hence, they are
interorbital, and the momentum changes between k and k + Q
for W1 and between k and k + (π, π ) for W2, hence these are
also interband interactions.

Equation (12) together with the kinetic energy term describe
the pairing in the tetragonal phase. In the nematic phase below
Ts , two new effects emerge. First, the kinetic energy changes
because nematicity (regardless of its origin) breaks C4 lattice
rotational symmetry and gives rise to orbital order, which
distinguishes between dxz and dyz orbitals. The corresponding
order parameter is �(k) = 〈nxz,k〉 − 〈nyz,k〉, where ni is the
occupation number operator. This order parameter has two
components: one on hole pockets, �h ≡ �(k = 0), another on
electron pockets, �e ≡ �(QX ) = −�(QY ). The orbital order
with �h and �e adds an additional term to the kinetic energy
in the form

Hnem =
∑
kσ

�h(d†
xz,kσ dxz,kσ − d

†
yz,kσ dyz,kσ )

+
∑
kσ

�e(d†
xz,k+QY σ dxz,k+QY σ − d

†
yz,k+QXσ dyz,k+QXσ ).

(13)

Orbital order modifies the shapes of the hole and electron
pockets: the hole pockets become elliptical and one of the
electron pockets becomes peanutlike-shaped. This has been
observed in ARPES and STM experiments [15–22]. The
observed geometry of the pockets is reproduced if �h and �e

have opposite signs [19,44]. In common terminology, such an
order is called sign-changing nematic order. Orbital order also
modifies the s-wave and d-wave components of the pairing
interaction once one converts it from orbital to band basis,
because in the presence of Eq. (13), the Bogoliubov parameters
θk in Eqs. (2) no longer coincides with the polar angle around
the hole pocket [36].

The second effect of nematicity is the splitting of the
pairing interaction between xz and yz orbitals already in the
orbital basis, i.e., in Eq. (12). In some earlier works this
effect has been included either phenomenologically [20,27], or
semiphenomenologically, by invoking spin-nematic scenario
and assuming stronger spin fluctuations at (π, 0) in the nematic
phase [19,29,34,57]. In our study, we neglect this effect on
the grounds that (i) in the band basis (which we will use to
study pairing) its result is qualitatively similar to nematicity-
induced change of the Bogoliubov parameter θk and (ii) the
strength of the dxz/dyz splitting of the pairing interaction in
the orbital basis has been argued [52] to be quite small if
the nematic order emerges as a spontaneous orbital order (a
d-wave Pomeranchuk instability). It can be potentially larger,
though, if the nematic order in FeSe has magnetic origin, like
in Fe-pnictides.

III. SUPERCONDUCTING INSTABILITIES
IN THE TETRAGONAL PHASE

To set the stage, we first solve the pairing problem in the
tetragonal phase, where �h = �e = 0. To model the situation
of FeSe, our first goal is to find the region in the three-
dimensional parameter space of interactions (V,W1,W2),
where the two leading SC instabilities, s+− and d-wave, are
comparable. To simplify the calculations, we hereafter set
W1 = W2. We argue that this will not affect our main conclu-
sions because we consider only two pairing channels and only
need two effective pairing interactions (two couplings), which
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are combinations of V, W1, and W2. For W1 = W2 = W , we can
express these two couplings in terms of two system parameters
and analyze the interplay between s-wave and d-wave pairings.
Keeping W1 �= W2 will not give rise to qualitative change
phases because the interplay between s-wave and d-wave is

still determined by the ratio of the two effective couplings
made out of V,W1 and W2.

Denoting the gap functions at each band a by �a (θ ),
we obtain the BCS-like nonlinear gap equations in the
form

−�h1 (θ1) = T
∑

n

{∫
d2kX

(2π )2

V sin2 θ1 + W cos2 θ1

ε2
X + ω2

n + |�eX
|2 �eX

+
∫

d2kY

(2π )2

W sin2 θ1 + V cos2 θ1

ε2
Y + ω2

n + |�eY
|2 �eY

}
, (14)

−�h2 (θ2) = T
∑

n

{∫
d2kX

(2π )2

V cos2 θ2 + W sin2 θ2

ε2
X + ω2

n + |�X|2 �eX
+

∫
d2kY

(2π )2

W cos2 θ2 + V sin2 θ2

ε2
Y + ω2

n + |�eY
|2 �eY

}
, (15)

−�eX
(kX ) = T

∑
n

{∫
d2k1

(2π )2

V sin2 θ1 + W cos2 θ1

ε2
1 + ω2

n + |�h1 |2
�h1 (θ1) +

∫
d2k2

(2π )2

V cos2 θ2 + W sin2 θ2

ε2
2 + ω2

n + |�h2 |2
�h2 (θ2)

+ W

∫
d2kY

(2π )2

�eY

ε2
Y + ω2

n + |�eY
|2

}
, (16)

−�eY
(kY ) = T

∑
n

{∫
d2k1

(2π )2

V cos2 θ1 + W sin2 θ1

ε2
1 + ω2

n + |�h1 |2
�h1 (θ1) +

∫
d2k2

(2π )2

V sin2 θ2 + W cos2 θ2

ε2
2 + ω2

n + |�h2 |2
�h2 (θ2)

+ W

∫
d2kX

(2π )2

�eX

ε2
X + ω2

n + |�eX
|2

}
. (17)

The gaps can be parametrized as

�h1 = �1 sin2 θ1 + �2 cos2 θ1,

�h2 = �1 cos2 θ2 + �2 sin2 θ2,

�eX
= �X, �eY

= �Y . (18)

The solutions can be decomposed into the two orthogonal
channels: the s+−-wave state, corresponding to �X = �Y =
�s

e and �1 = �2 = �s
h of opposite signs, and the d-wave state,

corresponding to �X = −�Y = �d
e and �1 = −�2 = �d

h,
leading to �h1 = −�h2 = �d

h cos 2θh.
Near Tc, we can linearize the gap equations and use

T
∑

n

∫
dk 1

ω2
n+ε2

a,k
≈ Na

2 ln
√

�μa

T
, where � is the high-energy

cutoff associated with the pairing interaction and μa is the
chemical potential of band a. Here, Na is the density of states
at the Fermi level. Fixing W to be W = 0.5 eV and solving
for Tc for varying V , we find a transition from d-wave to
s+− upon increasing V , as shown in Fig. 3. The values of
all the dispersion parameters are listed in Appendix A, and are
consistent with those used in our previous work [28].

We also solve the gap equations at T = 0. To search for
TRSB solutions, we introduce a relative phase between the
gaps �X and �Y , which is related to the relative phase α

between the s+−-wave and d-wave gaps, Eq. (1). As shown
in Fig. 3, we find that near the degeneracy point between the
s+− and d-wave states, 0.3 � V/W � 0.4, the gap structure
breaks TRS at T = 0, as signaled by the fact that α = ±π/2
in this regime. Note that α is not well defined in the other
parameter ranges in which s+− and d-wave SC do not coexist.
The resulting schematic phase diagram at all temperatures is
then that shown in Fig. 1. The presence of the spin orbital
coupling and the inclusion of dxy orbital on the electron pockets
will only change the value of V/W when the two pairing

instabilities are degenerate. The TRSB SC state still emerges
when V/W is close to the degenerate value.

IV. SUPERCONDUCTING INSTABILITIES
IN THE NEMATIC PHASE

We next solve the pairing problem in the fully reconstructed
nematic Fermi surface. The onset of the nematic order, de-
scribed by Eq. (13), has important effects on the low-energy
electronic spectrum. For the states near the hole pockets,
we follow earlier works [28,29] and introduce the Nambu
operators �

†
kσ = (d†

xz,kσ d
†
yz,kσ

) and write the quadratic

Hamiltonian as H̄h = ∑
kσ �

†
kσ Ĥh(k)�kσ , with

Ĥh(k) = τ̂0εh+,k + τ̂1εh−,k sin 2θk + τ̂3(�h + εh−,k cos 2θ ).

Here, τ̂i are Pauli matrices in Nambu space, θk is the parameter
in the transformation from orbital to band representation
(see below), and εh±,k = (εh1,k ± εh2,k )/2. A nonzero nematic
order parameter �h splits the top of the two hole bands
and distort the hole pockets, whose new dispersions become
E± = εh+ ±

√
�2

h + ε2
h− − 2�hεh− cos 2θ (here and below we

skip subindex k). To capture the experimental result that one
of the pockets is sunk below the Fermi level [47], we set
�h > μh, and focus only on the E+ dispersion for the outer
pocket. In terms of the original orbital operators, the band
operator for the outer pocket h2 ≡ h is still given by h =
i(−dxz sin θ + dyz cos θ ), but the transformation coefficients

064508-5



KANG, CHUBUKOV, AND FERNANDES PHYSICAL REVIEW B 98, 064508 (2018)

0.2 0.3 0.4 0.5 0.6 0.7

0.12

0.14

0.16

0.18

0.20

(a)

0.3 0.4 0.5 0.6 0.7

0.1

0.2

0.3

0.4

0.5

(b)

FIG. 3. (a) The two leading eigenvalues λ = (ln(�/T ))−1 of
the linearized BCS gap equation at T = Tc as function of the ratio
V/W . Here, V is the intraorbital, interpocket interaction, and W is
the interorbital, intrapocket interaction. When V � W , the leading
pairing instability is d-wave. When V 
 W , the leading instability
is s+− pairing. (b) The phase difference α between the s+−-wave and
d-wave gaps at T = 0. When V 
 W or V � W , the pairing is either
purely s-wave or purely d-wave, and α is not well-defined. But when
V ∼ W , the system spontaneously breaks time-reversal symmetry by
forming an s + id state with α = ±π/2.

cos θ and sin θ are given by (see Ref. [28] for detail)

sin2 θ = 1

2

⎛
⎝1 + �h + εh− cos 2θ√

�2
h + ε2

h− + 2�hεh− cos 2θ

⎞
⎠,

cos2 θk = 1

2

⎛
⎝1 − �h + εh− cos 2θ√

�2
h + ε2

h− + 2�hεh− cos 2θ

⎞
⎠.

The effect of nematicity on the electron pockets is more
straightforward, as �e simply shifts the bottom of the electron
pockets centered at X and Y in opposite ways, giving rise
to the new dispersions EX/Y = εX/Y ± �e. The parameters
of the dispersion are fitted with ARPES data, and listed in
Appendix A.

The gap equations are essentially the same as in the previous
calculation, but with θ → θ�h

and μe,X/Y → μe ∓ �e. The
solid and dashed red curves in Fig. 4 show Tc of the two leading
pairing instabilities in our model with sign-changing ne-
maticity, i.e., sign(�h) = −sign(�e ). These two instabilities
correspond to the “bonding” and “antibonding” mixing of the

0.3 0.4 0.5 0.6 0.7 0.8

0.11

0.12

0.13

0.14

0.15

0.16

0.17

FIG. 4. Pairing instabilities in the nematic phase. The red
solid and dashed curves refer to the sign-changing nematic state
[sign(�h) = −sign(�e )], whereas the blue solid and dashed curves
refer to the sign-preserving nematic state [sign(�h) = sign(�e )]. The
splitting of the two leading pairing instabilities, corresponding to
“bonding” and “antibonding” mixing of the s+− and d-wave gaps,
is smaller in the case of sign-changing nematicity, illustrating the
reduced impact of nematic order on SC in this case.

s+− and d-wave gaps, �s ± �d . Observe that the degeneracy
between the s+− and d-wave gaps is lifted by the nematic
order. It is also important to note that only the instability with
a higher Tc is realized. Even though the second instability is
not realized, the splitting between the two solutions brings
important information on how strongly the nematic order lifts
the degeneracy between the s+− and d-wave states.

In this context, it is interesting to compare this case with
the case of same-sign nematicity, shown by the blue curves in
Fig. 4. The same parameters are used in this model except for
the relative sign of the nematic order parameters �h and �e.
We find that the splitting between the solutions corresponding
to “bonding” and “antibonding” mixing between the s+− and
d-wave gaps is larger in the case of the same-sign nematic
order parameters.

To gain a qualitative understanding of the difference be-
tween these two types of nematic order, we assume that the
nematic order parameter is small, and apply a Ginzburg-
Landau double-expansion in terms of the SC and nematic
order parameters. Although the Ginzburg-Landau expansion
is not technically valid in the case of FeSe, where Ts 
 Tc, it
still provides qualitative insight for our numerical results. To
leading order, the free energy is [34]

F (�) = as |�s |2 + ad |�d |2
− (βh�h + βe�e )(�∗

s�d + �s�
∗
d ) + O(|�|4),

(19)

where as = T − T (s)
c and ad = T − T (d )

c refer to the SC
transition temperatures in the tetragonal phase. The last term in
the free energy is allowed because the product �∗

s �d changes
sign under the rotation by π/2, i.e., has the same symmetry as a
d-wave nematic order parameter, and the two order parameters
of the same symmetry generally couple linearly in the free
energy. This term mixes s-wave and the d-wave pairings. As a
consequence, the single SC transition at the degeneracy point is
split in two, corresponding to the “bonding” and “antibonding”
s ± d states. The amplitude of the splitting �Tc between the
bonding and antibonding mixing of the s-wave and d-wave
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FIG. 5. The phase difference α between the s+− and d-wave gaps
at T = 0 in the nematic phase. When α is neither 0, π , or π/2 the
SC state breaks both tetragonal and time-reversal symmetries. The
solid red and dashed blue curves refer to the case of opposite-sign
nematicity and same-sign nematicity, respectively. In the former, we
find a much larger regime in which the SC state breaks time-reversal
symmetry.

gaps is given by

�Tc =
√(

T
(s)
c − T

(d )
c

)2 + (βh�h + βe�e )2. (20)

Therefore, if the coefficients βh and βe have the same sign,
the splitting �Tc will be smaller for sign-changing nematicity
(�h�e < 0) as compared to same-sign nematicity (�h�e >

0). The numerical results shown in Fig. 4 thus imply that
the coefficients βh and βe have the same sign. Analytical
calculations for the free energy, shown in Appendix B, confirm
this result.

The fact that |βh�h + βe�e| is smaller for sign-changing
nematicity also suggests that a TRSB transition is more likely
to take place at low temperatures in this case as compared
to the case of same-sign nematicity. To see this, we consider
higher-order terms in the free-energy expansion Eq. (19) that
are sensitive to the relative phase α between the s−wave and
d−wave gaps. The quartic order term is given by γ

4 (�∗
s�d +

�s�
∗
d )2, where γ > 0 favors α = π/2 in the tetragonal phase,

in agreement with our numerical results of the previous section.
Minimization with respect to α in the nematic phase leads to
the solutions α = 0, π , corresponding to s ± d, and

α0 = arccos

(
βh�h + βe�e

γ |�s ||�d |
)

. (21)

Close to Tc, the product |�s ||�d | is very small, and the
α0 �= 0, π solution is not possible. However, as temperature
decreases and the product |�s ||�d | increases, it is possible
at T ∗ < Tc for the free-energy minimum to move to α0 �=
0, π , signaling a TRSB nematic SC state (denoted here by
s + eiαd). Of course, smaller |βh�h + βe�e| leads to a higher
T ∗. Thus, the regime where a TRSB nematic state is realized
is expected to be larger in the case of sign-changing nematicity
as compared to same-sign nematicity.

To go beyond this qualitative analysis, we also solved the
gap equations at T = 0. The red curve in Fig. 5 shows the phase
difference α between the s+−-wave and d-wave gaps. We find
α > 0 for the range 0.39 � V/W � 0.48, signaling that the
system undergoes a SC-SC transition in which TRS is broken

at a temperature T ∗ below Tc. While the regime with TRSB
is narrower as compared to the tetragonal case, it is enhanced
by the fact that �e and �h have opposite signs. Indeed, in
Fig. 5, the blue curve shows α for the case in which �e has the
same sign as �h. In this case, the parameter regime with TRSB
SC is significantly reduced, in agreement with our qualitative
analysis.

V. EXPERIMENTAL CONSEQUENCES:
SPECIFIC HEAT AND SOFT MODE

The TRSB transition at T ∗ belongs to the Ising universality
class, and as such it is manifested in several thermodynamic
quantities, most notably as a peak in the specific heat. Because
most of the entropy related to the SC degrees of freedom is
released atTc, the features in the specific heat atT ∗ are expected
to be weaker than the jump at Tc. Interestingly, recent high-
precision specific heat measurements in FeSe reported a peak
in the specific heat at T ∗ ≈ 1 K [45], which is consistent with
a TRSB transition.

Direct evidence for TRSB could be obtained from measure-
ments such as μSR and Kerr rotation, although the issues of
TRSB Ising-like domains and induced current patterns may
render these measurements challenging. We point out that
recent STM data in FeSe has been interpreted in terms of
a TRSB-SC state forming at the twin boundaries [58]. This
observation is perfectly consistent with our results, as in the
absence of nematic order, the relative phase α between the
s-wave and d-wave gaps becomes π/2.

Alternatively, TRSB could be detected by probing the col-
lective modes of FeSe. Since the TRSB transition takes place
deep inside a nodeless SC state, the electronic spectrum is fully
gapped. As a result, the SC collective modes are long-lived, as
there are no quasiparticles to promote damping. To compute
the collective modes, we need to evaluate the dynamic SC
susceptibility. The latter can be obtained by expanding the gap
around its mean-field value �̄, � = �̄ + δ, and computing the
one-loop bosonic self-energy diagram containing the coupling
between the pairing fluctuations field δ and the fermions. In the
single-band case, the bare pairing susceptibility is a 2×2 matrix
whose diagonal components χi

n(ω) are the normal Green’s
function bubble and the off-diagonal components χi

a (ω) are
the anomalous Green’s function bubble. They are given by

χi
n(ω) = 1

4

∫
d2k

(2π )2

|�i |2 + 2ξ 2
i + ξiω√

|�i |2 + ξ 2
i (|�i |2 + ξ 2

i − ω2/4)
,

χi
a (ω) = −1

4

∫
d2k

(2π )2

|�i |2√
|�i |2 + ξ 2

i (|�i |2 + ξ 2
i − ω2/4)

.

(22)

In the nematic SC state, the gaps on the three pockets are
parametrized in terms of the four gap functions �1, �2, �X,
and �Y , as discussed in Eqs. (18). Thus, we need to introduce
four pairing fluctuation fields, resulting in an 8×8 bare SC
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FIG. 6. Energy ωr of the collective mode associated with the
relative phase between the gaps at the X and Y pockets at T = 0
as function of the ratio V/W . Note that ωr becomes soft when the
transition to the time-reversal symmetry-breaking state takes place.

susceptibility matrix of the form

χ̂ (ω) =

⎛
⎜⎜⎝

χ̂h
n (ω) 0 χ̂h

a (ω) 0
0 χ̂ e

n (ω) 0 χ̂ e
a (ω)(

χ̂h
a

)†
(−ω) 0 χ̂h

n (−ω) 0

0
(
χ̂ e

a

)†
(−ω) 0 χ̂ e

n (−ω)

⎞
⎟⎟⎠.

Here, the 2×2 matrices are given by

χ̂h
α (ω) =

( 〈
χh

α (ω) cos4 ϕh

〉 〈
χh

α (ω) sin2 2ϕh

〉
〈
χh

α (ω) sin2 2ϕh

〉 〈
χh

α (ω) sin4 ϕh

〉
)

,

[4pt]χ̂ e
α (ω) =

(
χeX

α (ω) 0

0 χeY
α (ω)

)
, (23)

with α = a, n for anomalous and normal Green functions.
〈· · · 〉 is the average over the polar angle φh. Within RPA, the
renormalized SC pairing susceptibility is then given by

(χ̂R )−1 = (χ̂ )−1 + Û , (24)

with

Û =

⎛
⎜⎜⎝

0 Û2 0 0
Û2 Û1 0 0
0 0 0 Û2

0 0 Û2 Û1

⎞
⎟⎟⎠, (25)

and 2×2 matrices:

Û1 =
(

0 W

W 0

)
,

Û2 =
(

V W

W V

)
. (26)

Since the relative phase between �X and �Y assumes a
nontrivial value in the TRSB state, we expect that one of the
eigenmodes of χ̂R (ω) vanishes at the transition. Of course,
because we did not consider the coupling to the density, the
mode of χ̂R (ω) corresponding to the global phase is always
zero, which we ignore in our analysis, as this mode becomes
massive due to the Higgs mechanism. In Fig. 6, we plot the
energy of the “Leggett-like” mode across the TRSB transition
at T = 0. This mode describes fluctuations of the relative phase
of the two order parameters and must soften at the critical point
of an Ising second-order transition, below which this relative

phase acquires an expectation value different from 0 or π .
Comparing to Fig. 5, it is clear that softening occurs precisely
at the boundaries delineating the regime where the nematic
SC state breaks time reversal. Therefore, it follows that such
a soft mode should also appear at T ∗. We propose Raman
experiments to verify whether such a soft mode exists in FeSe.

VI. CONCLUSIONS

In summary, we showed that the properties of FeSe favor
a second SC transition at T ∗ < Tc from a nematic s + d SC
state to a nematic TRS breaking s + eiαd SC state (with
α �= 0, π, π/2). In particular, these properties are the near
degeneracy between the s-wave state and the d-wave state,
the absence of competing long-range magnetic order, and a
nematic state in which the nematic order paramater changes
sign between electron and hole pockets. We showed that this
phase transition is manifested not only in standard thermody-
namic quantities, but also by softening the Legget-like mode,
which can be detected by Raman spectroscopy. Furthermore,
measurements such as μSR and Kerr rotation should also
directly observe TRSB at T ∗. It is tantalizing to attribute
the recently observed peak in the specific heat at 1 K to
this TRSB phase [45], although additional experiments are
necessary to elucidate the origin of this peak. Finally, we note
that the s + d state that sets in below Tc but above T ∗ has been
reported to be strongly anisotropic [15–20]. TRS is expected to
partially suppress this anisotropy, which could also be observed
experimentally.
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APPENDIX A: BAND DISPERSION PARAMETERS

The band dispersion parameters used in our paper are given
in Table I.

APPENDIX B: FREE-ENERGY EXPANSION

In this Appendix, we derive the Ginzburg-Landau coeffi-
cients coupling the nematic and SC order parameters:

F (�) = as |�s |2 + ad |�d |2
− (βh�h + βe�e )(�∗

s �d + �s�
∗
d ) + O(|�|4).

(B1)

TABLE I. Band parameters.

μh N1 N2 �

13.6 meV 0.11 eV−1 0.38 eV−1 1.0 eV
μe Ne �h �e

30 meV 0.33 eV−1 10 meV −18 meV
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Although, as discussed in the main text, the nematic order
parameter is not necessarily small in FeSe, this expansion
allows us to gain a qualitative understanding of the differences

between the cases of sign-changing and sign-preserving ne-
matic states. The linearized BCS gap equations are given by
(for simplicity, we set μh ∼ μe = μ)

−�h = Ne ln

√
�μe

T
(V cos2 θ + W sin2 θ )�X + Ne ln

√
�μe

T
(W cos2 θ + V sin2 θ )�Y ,

−�X = NeW ln

√
�μe

T
�Y + Nh ln

√
�μh

T
〈(V cos2 θh + W sin2 θh)�h〉θ ,

−�Y = NeW ln

√
�μe

T
�X + Nh ln

√
�μh

T
〈(V sin2 θh + W cos2 θh)�h〉θ . (B2)

The s-wave solution corresponds to �X = �Y = �(s)
e and

�h = �
(s)
h , whereas the d-wave solution gives �X = −�Y =

�(d )
e and �h = �

(d )
h cos 2θh. In terms of these parametriza-

tions, the coupled gap equations become

(
λs (V + W ) 1

1 + λsW
Nh

Ne
λs

V +W
2

)(
�(s)

e

�
(s)
h

)
= 0, (B3)

and

(
λd (V − W ) 1

1 − λdW
Nh

Ne
λd

V −W
4

)(
�(d )

e

�
(d )
h

)
= 0, (B4)

where we defined the coupling constants λ(s,d ) = Ne ln
√

�μ

T(s,d )
.

The ratios between �h and �e in the s- and d-wave channels,
defined as α(s,d ) = �

(s,d )
h /�(s,d )

e , can be readily extracted
from the equations above. We have αs = −λs (V + W ) < 0,
corresponding to an s+− state, and αd = λd (W − V ) > 0,
corresponding to a d++ state (recall that the d-wave state takes
place only when V < W ).

To compute the coupling constants βe and βh in Eq. (B1),
we first calculate the coefficients γe and γh defined by

δFe = −γe�e(|�X|2 − |�2
Y |),

δFh = −γh�h

(
�

(s)∗
h �

(d )
h + c.c

)
. (B5)

Straightforward calculation of the triangular Feynman dia-
grams gives

γe = 2Ne

1 − 2nf (μ)

2μ
> 0,

γh = −Nh

1 − 2nf (μh)

2μh

< 0. (B6)

Now, using the fact that |�X|2 − |�Y |2 = (�(s)∗
e �(d )

e + c.c),
and the results �

(s,d )
h = α(s,d )�

(s,d )
e derived above, we arrive

at

δF = −(γhαsαd�h + γe�e )
(
�(s)∗

e �(d )
e + c.c

)
(B7)

Therefore, we can identify βh = γhαsαd and βe = γe. Since
γe, αd > 0 and γh, αs < 0, it follows that βh, βe > 0. We
checked that inclusion of the contributions arising from the
changes in the pairing interaction caused by nematicity does
not alter this result.
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