
Journal of Magnetic Resonance 294 (2018) 83–92
Contents lists available at ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier .com/locate / jmr
Engineering spin Hamiltonians using multiple pulse sequences in solid
state NMR spectroscopy
https://doi.org/10.1016/j.jmr.2018.06.012
1090-7807/� 2018 Elsevier Inc. All rights reserved.

⇑ Corresponding authors at: CAS Key Laboratory of Microscale Magnetic
Resonance and Department of Modern Physics, University of Science and
Technology of China, Hefei 230026, China (X. Peng) and National High Magnetic
Field Laboratory, Florida 32310, USA (R. Fu).

E-mail addresses: xhpeng@ustc.edu.cn (X. Peng), rfu@magnet.fsu.edu (R. Fu).
Jiangyu Cui a,d, Jun Li b, Xiaomei Liu a,d, Xinhua Peng a,c,d,⇑, Riqiang Fu e,⇑
aCAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
b Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
c Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
d Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
eNational High Magnetic Field Lab, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
a r t i c l e i n f o

Article history:
Received 14 April 2018
Revised 19 June 2018
Accepted 22 June 2018
Available online 23 June 2018

Keywords:
Solid-state NMR
Average Hamiltonian theory
Homonuclear decoupling
Multiple pulses
Heteronuclear correlation
a b s t r a c t

Multiple pulse sequences are often used to manipulate spin Hamiltonians in solid-state nuclear magnetic
resonance spectroscopy. In this paper, we analyze multiple pulse sequences using the well-known aver-
age Hamiltonian theory. We first expand the resulting average Hamiltonian into a reachable set of sub-
Hamiltonians and then develop a general procedure using both flip-angle and phase of the applied pulses
as control variables to select any of those sub-Hamiltonians. We use this method to analyze solid-echo
based sequences and to design new proton-proton homonuclear decoupling sequences in static solids.
It is found that this newly designed decoupling scheme, in the presence of finite pulse length, effectively
suppresses the 1H–1H homonuclear dipolar interactions while establishes variable scaling factors on the
heteronuclear dipolar interactions and chemical shift interactions, depending on the flip-angle of the
applied pulses. When the pulse flip-angle is close to 54.7�, this sequence possesses a large scaling factor
with relatively low average decoupling field. When the pulse flip-angle becomes �120�, the scaling factor
is almost zero. A static 15N-acetyl-valine crystal sample has been used as an example to confirm and val-
idate the performance of this new decoupling scheme.

� 2018 Elsevier Inc. All rights reserved.
1. Introduction

Since the earliest development of nuclear magnetic resonance
(NMR), multiple pulse techniques have been commonly used in
numerous experiments. In the first multiple pulse experiment,
two pulse Hahn-echo [1] was put forward to remove the effect of
inhomogeneity in static magnetic field in 1950, while three pulse
echoes and Carr-Purcell sequence [2] were the first cyclic multiple
pulse experiment. Although these pulse sequences were first
applied to solution samples, it was soon found that similar pulse
sequences could be applied to solids, capable of achieving high res-
olution spectra in solid-stateNMR. Later on a series ofmultiple pulse
sequences were designed for homonuclear decoupling [3–6],
heteronuclear decoupling [7,8] and multiple quantum excitation
[9] in solid-state NMR. Behind the techniques is the average
Hamiltonian theory (AHT) developed by Haeberlen and Waugh
[10]which is a provenpowerful theoretical framework for analyzing
multiple-pulse sequences in solid-state NMR [5,6,11]. Designing
valid multiple pulse sequences has continued to be an important
topic, and many relevant methods based on symmetry have been
proposed [8,12,13]. In principle, any external perturbations, either
in the spin space throughmultiple pulses or in the laboratory frame
via sample spinning, can manipulate the spin Hamiltonians [14]. A
fundamental issue in designingmultiple pulse sequences in the spin
space is to select a specific spin Hamiltonian of interest, while sup-
pressing any other Hamiltonians. This would allow us to simplify
the spin system in order to obtain useful spectroscopic information.
The ability to selectively average out undesired interactionswhile at
the same time to retain those interactions of interest is particularly
important in NMR quantum computation and simulation [15], as it
is related to the controllability problem of the system. Liquid-state
NMR has been recognized as a well-established small-sized qubit
quantum information processor to implement the quantum logic
gates and simulate quantum dynamics [16–21]. Due to the com-
plexity of the Hamiltonian and the indistinguishability of nuclear
spins in solid-stateNMR, it ismore challenging to selectively control
the Hamiltonian in solids.
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mailto:xhpeng@ustc.edu.cn
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In this paper, we use AHT to obtain constraint equations and
then solve such equations in order to select any desired Hamiltoni-
ans. We describe a general procedure using both flip-angle and
phase of applied pulses as control variables to design multiple
pulse sequences to achieve the desired average Hamiltonians from
an achievable set of average sub-Hamiltonians in solid-state
homonuclear NMR systems. In particular, constraint equations
for homonuclear decoupling sequences were discussed, and two
typical solutions were found: one for solid-echo based sequence
and the other for a new homonuclear decoupling scheme. The
remainder of the paper is organized as follows. In Section 2, a brief
description of solid-state NMR systems and concept of multiple
pulse sequences are given. In Section 3, the reachable set of aver-
age sub-Hamiltonians in solid-state NMR by AHT is derived theo-
retically and the general procedure of how to select any given
sub-Hamiltonian is described. The performance of the newly
derived homonuclear dipolar decoupling sequence is discussed
experimentally in Sections 4 and 5.

2. Solid-state NMR and multiple pulse sequences

Let us consider a solid-state system of homonuclear spins
I = 1/2 that are coupled through the dipolar interactions. In the
usual rotating frame, the total Hamiltonian describing the nuclear
spin system can be written as

HðtÞ ¼ HCS þHD þHRFðtÞ; ð1Þ
where HCS describes the offset resonance and chemical shift (CS)
interactions, HD represents the homonuclear dipolar interactions,
and HRFðtÞ is the applied radio-frequency (RF) pulse. In high mag-
netic field for static solids,

HCS ¼
X
j

ðDxþxj
csÞIjz;

HD ¼
X
j<l

xjl
Dð3IjzIlz � Ij � IlÞ; ð2Þ

HRFðtÞ ¼
X
j

ðx1xI
j
x þx1yI

j
yÞ:

Here spin operators I ¼ ðIx; Iy; IzÞ, Dx is the frequency offset

Dx ¼ x�x0, xj
cs is the chemical shift frequency, xjl

D is the dipolar
constant between j and l spins,x1x andx1y denote the notation fre-
quencies of the time-dependent RF field in the x and y directions.

A multiple pulse sequence [22] is illustrated in Fig. 1, where the
kth pulse can be described by the operator Pk ¼ e�ihknk �I with the
flip angle hk along nk. Firstly, we study this multiple pulse
sequence with d-pulses, i.e., the evolutions during the pulses are
neglected. Here the pulse sequence is limited to be cyclic with a

cycle time sc ¼
PN

k¼1sk, that is

YN
k¼1

Pk ¼ 1; ð3Þ

where 1 denotes the identity operator.
Fig. 1. Illustration of a multiple pulse sequence. Here Pk is the kth operator for the
ideal pulse and sk are time intervals between pulses.
3. Theory

3.1. Average Hamiltonian theory

In order to understand the effect of the applied RF term on the
internal spin Hamiltonians, we transform the total Hamiltonian
into the interaction frame by the propagator

URFðtÞ ¼ T expf�i
Z t

0
dt0HRFðt0Þg; ð4Þ

where T is the Dyson time ordering operation. In the interaction
representation, the system Hamiltonian becomes

~HSðtÞ ¼ Uy
RFðtÞHSURFðtÞ; ð5Þ

where, HS ¼ HCS þHD. According to AHT, the zero-order average
Hamiltonian over sC is given by �Hð0Þ ¼ 1

sc

R sc
0

~HSðtÞdt ¼
1
sc

PN
k¼1

~HS;ksk, where ~HS;k is the Hamiltonian during the kth interval
in the interaction representation and can be expressed as:

~HS;k ¼
Yk
k0¼1

Pk0

 !y

HS

Yk
k0¼1

Pk0

 !
: ð6Þ

Pk0 is the global rotation of the spin, then we have

Yk
k0¼1

Pk0 ¼ RðXkÞ ¼ RzðakÞRyðbkÞRzðckÞ; ð7Þ

where Xk ¼ ðak; bk; ckÞ denotes the three Euler rotational angles due

to the RF fields. By inserting these matrices into ~HS;k, we get the fol-
lowing expression:

~HS;k ¼
X
j

ðDxþxj
csÞIjðbk ;akÞ þ

X
j<l

xjl
Dð3Ijðbk ;akÞI

l
ðbk ;akÞ � Ij � IlÞ: ð8Þ

Here, Iðbk ;akÞ ¼ sinbk cosakIx þ sinbk sinakIy þ cos bkIz. This for-
mula can be expanded as

~HS;k ¼
X
j

ðDxþxj
csÞ½sinbk cosakI

j
x þ sinbk sinakI

j
y þ cosbkI

j
z�

þ
X
j<l

xjl
D

�
3 cos2 bk � 1

2
ð3IjzIlz � Ij � IlÞ

þ 1
2
sinð2bkÞ cosakðIjzIlx þ IjxI

l
zÞ þ

1
2
sinð2bkÞ sinakðIjzIly þ IjyI

l
zÞ

þ 1
2
sin2 bk cosð2akÞðIjxIlx � IjyI

l
yÞ

þ 1
2
sin2 bk sinð2akÞðIjyIlx þ IjxI

l
yÞ
�

ð9Þ

Since ~HS;k is independent of ck, it can be denoted as ~HS;k ¼ Hðak;bkÞ.
With this notation, the internal Hamiltonian can be simply written
as HS ¼ Hð0;0Þ; and zero-order average Hamiltonian as
�Hð0Þ ¼ 1

sc

PN
k¼1½Hðak;bkÞsk�. By inserting the solution ðak;bkÞ into

Eq. (7),we canachieve theoverall rotationby the kthpulse in themul-
tiple pulse sequence. Since ck does not contribute to ~HS;k, it can be set
to any value. Although there are many ways to implement Pk experi-
mentally depending on the choice of ck, we can simply set ck ¼ �ak,
such that Pk can be expressed as a product of two rotation operations:

Pk ¼ RðXkÞRyðXk�1Þ
¼ RzðakÞRyðbkÞRzðckÞRzð�ck�1ÞRyð�bk�1ÞRzð�ak�1Þ
¼ Rakþp

2
ðbkÞRak�1þp

2
ð�bk�1Þ; ð10Þ

where X0 ¼ ð0;0;0Þ. In other word, the phase and flip-angle of the
applied RF pulse can be considered as two independent control
variables in the design of multiple pulse sequences.
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3.2. A reachable set of average sub-Hamiltonians

Obviously, �Hð0Þ is contained in the space spanned by a set of S:

S ¼ fHX
CS;H

Y
CS;H

Z
CS;H

Z
D;H

SQCX
D ;HSQCY

D ;HDQC
D ;HZQC

D g: ð11Þ
where

HX
CS ¼

X
j

ðDxþxj
csÞIjx

HY
CS ¼

X
j

ðDxþxj
csÞIjy

HZ
CS ¼

X
j

ðDxþxj
csÞIjz

HZ
D ¼

X
j<l

xjl
Dð3IjzIlz � Ij � IlÞ

HSQCY
D ¼

X
j<l

xjl
DðIjzIly þ IjyI

l
zÞ

HSQCX
D ¼

X
j<l

xjl
DðIjzIlx þ IjxI

l
zÞ

HDQC
D ¼

X
j<l

xjl
DðIjxIlx � IjyI

l
yÞ

HZQC
D ¼

X
j<l

xjl
DðIjxIly þ IjyI

l
xÞ

Here, HX
CS, H

Y
CS, and HZ

CS are considered as chemical shift compo-

nents along X, Y and Z, respectively; HZ
D is the Zeeman order term,

which does not affect the thermal equilibrium state; the single-
quantum coherence terms HSQCX

D and HSQCY
D flip one spin only, which

can be used to create the odd-order coherence from thermal equi-
librium state [9]; the double-quantum coherence term HDQC

D flips
both spins up and down together, which is the Hamiltonian used
to create even-order coherences in multiple-quantum solid-state
NMR spectroscopy [23–27]; The so-called zero-quantum coher-
ence term HZQC

D simultaneously flips one spin up and another down
and plays an important role in determining the proper zero-order
functions [22].

It is obvious from Eq. (9) that each of these terms is manipu-
lated differently by groups of two Euler rotational angles ðak; bkÞ
induced by the RF pulses. Therefore, it is possible to design a speci-
fic pulse sequence such that the zero-order average Hamiltonian
over a cycle period sC becomes
Table 1
Solutions for (ak, bk) for selecting any given n while suppressing other terms.

n aþ bþ Cþ

HZ
CS ak ¼ k

2p bk ¼ hm 1ffiffi
3

p

HX
CS a1 ¼ a2 ¼ � 1

4p;
a3 ¼ a4 ¼ 1

4p
bk ¼ ð�1þ ð�1ÞkÞ p2 þ ð�1Þkhm 1ffiffi

3
p

HY
CS a1 ¼ a2 ¼ 1

4p;
a3 ¼ a4 ¼ 3

4p
bk ¼ ð�1þ ð�1ÞkÞ p2 þ ð�1Þkhm 1ffiffi

3
p

HZ
D

ak ¼ constant bk ¼ ð1þ ð�1ÞkÞ p2 1

HSQCX
D

a1 ¼ a2 ¼ � 1
4p;

a3 ¼ a4 ¼ 1
4p

bk ¼ ð1þ ð�1ÞkÞ p2 þ hm
2
3

HSQCY
D

a1 ¼ a2 ¼ 1
4p;

a3 ¼ a4 ¼ 3
4p

bk ¼ ð1þ ð�1ÞkÞ p2 þ hm
2
3

HDQC
D

a1 ¼ a2 ¼ 0;
a3 ¼ a4 ¼ p

bk ¼ ð1þ ð�1ÞkÞ p2 þ hm
2
3

HZQC
D a1 ¼ a2 ¼ 1

4p;
a3 ¼ a4 ¼ � 3

4p
bk ¼ ð1þ ð�1ÞkÞ p2 þ hm

2
3

�Hð0Þ ¼ 1
sc

X
k

Hðak;bkÞsk / n; ð12Þ

here n is any term in the set of S (i.e. n 2 S). It is worth noting that
when the number of the RF pulses in a cycle is small, the parameters
ðak;bkÞ may not have enough variables to provide a solution for
selecting any of these terms. Because there are eight elements in
S, while each pulse provides two variables, a minimum of four
pulses is required to have a meaningful set of solutions. More RF
pulses would provide more control variables such that more solu-
tions could be found. In this article, four pulses with equal pulse
intervals are considered for generality, so that the zero-order aver-
age Hamiltonian becomes:

�Hð0Þ / Hða1;b1Þ þHða2;b2Þ þHða3; b3Þ þHða4; b4Þ ¼ Cn ð13Þ
where C is the coefficient, which is considered as a scaling factor for
the given term n being selected.

As an example, if we want to select the HZ
CS term only (i.e. the z-

rotation), we can simply solve these constraint equations:

X4
k¼1

sinbke
iak ¼ 0

X4
k¼1

3 cos2 bk � 1
2

¼ 0

X4
k¼1

1
2
sin2bke

iak ¼ 0

X4
k¼1

sin2 bke
i2ak ¼ 0:

ð14Þ

It is important to note that both the flip-angle and phase of the
applied pulses can be used as control variables to solve the above
constraint equations, unlike in many multiple pulse sequences
where the phases of the applied pulses were primarily used to
design any specific averaging. One solution of ðak; bkÞ for selecting
the HZ

CS term can be easily obtained:

ak ¼ k
2
p;bk ¼ hm; ð15Þ

where hm ¼ 54:7
�
is the magic angle and k ¼ 1;2;3;4, such that we

have �Hð0Þ ¼ 1ffiffi
3

p HZ
CS. In this case, the coefficient C ¼ 1ffiffi

3
p is positive and

we label C and ða;bÞ as Cþ and ðaþ;bþÞ. Similarly, we label C and
ða;bÞ as C� and ða�; b�Þ when the coefficients are negative. In order
to make �Hð0Þ ¼ � 1ffiffi

3
p HZ

CS, we can simply set bþ
k ¼ pþ b�

k .

Analogously, possible solutions to select any term n in S while
removing other terms are listed in Table 1, where the positive
and negative scaling factors C+ and C- can be simply obtained by
a� b� C�

ak ¼ k
2p bk ¼ hm þ p � 1ffiffi

3
p

a1 ¼ a2 ¼ � 1
4p;

a3 ¼ a4 ¼ 1
4p

bk ¼ ð3þ ð�1ÞkÞ p2 þ ð�1Þkhm � 1ffiffi
3

p

a1 ¼ a2 ¼ 1
4p;

a3 ¼ a4 ¼ 3
4p

bk ¼ ð3þ ð�1ÞkÞ p2 þ ð�1Þkhm � 1ffiffi
3

p

ak ¼ constant bk ¼ ð2þ ð�1ÞkÞ p2 � 1
2

a1 ¼ a2 ¼ 3
4p;

a3 ¼ a4 ¼ 5
4p

bk ¼ ð1þ ð�1ÞkÞ p2 þ hm � 2
3

a1 ¼ a2 ¼ � 3
4p;

a3 ¼ a4 ¼ � 1
4p

bk ¼ ð1þ ð�1ÞkÞ p2 þ hm � 2
3

a1 ¼ a2 ¼ p=2;
a3 ¼ a4 ¼ 3p=2

bk ¼ ð1þ ð�1ÞkÞ p2 þ hm � 2
3

a1 ¼ a2 ¼ 3
4p;

a3 ¼ a4 ¼ � 1
4p

bk ¼ ð1þ ð�1ÞkÞ p2 þ hm � 2
3



86 J. Cui et al. / Journal of Magnetic Resonance 294 (2018) 83–92
changing either pulse phases or flip-angles. These solutions can be
used as a basic building block for selecting any desirable sub-
Hamiltonian n at zero-order averaging, while the odd-order aver-
aging can be removed by introducing the reflection symmetry
operations of the basic building block [12].

Therefore, a general way to engineer any desired Hamiltonian
is: (1) Decompose the spin Hamiltonians into a linear combination
of terms spanned in the set S; (2) Solve the constraint equations to
design a basic building block for any desired sub-Hamiltonian. As
an example, by directly composing the basic building block for
HZ

CS and �HZ
CS with eight equally interleaved pulses where ðak; bkÞ

satisfies these conditions:

ak ¼ k
2p; bk ¼ hm; ðk ¼ 1;2;3;4Þ

ak ¼ k�4
2 p;bk ¼ hm þ p; ðk ¼ 5;6;7;8Þ

(
; ð16Þ

all dipolar interactions as well as the chemical shift interactions will
be vanished.

3.3. Application to homonuclear decoupling

3.3.1. Constraint equations for homonuclear decoupling sequences
The target of homonuclear decoupling is to remove the dipolar

interactions, i.e.

�Hð0Þ
D ¼ 1

sc

XN
k¼1

½~HD;ksk� ¼ 0: ð17Þ

Now we substitute Eq. (9) into this expression and obtain the fol-
lowing three constraint equations for homonuclear decoupling

XN
k¼1

3cos2 bk�1
2 sk ¼ 0;

XN
k¼1

sinð2bkÞeiaksk ¼ 0;

XN
k¼1

sin2 bkei2aksk ¼ 0:

8>>>>>>>>>><
>>>>>>>>>>:

ð18Þ

with a total of 3 N unknown variables. If N ¼ 1, no solution could be
found; when N > 1, the solution is not unique because the number
of variables is larger than the number of constraints. For simplicity
in the multiple pulse sequence, we use the same interleaved delay
sk between pulses. It is difficult to obtain all analytical solutions for
the above constraint equations, but we can easily find two classes of
solutions: (i) sinð2bkÞ ¼ 0, (ii) cos2 bk ¼ 1=3.

It is found that the common solid-echo based sequences belong
to the class (i) as analyzed in Section 3.3.2, while the class (ii) leads
to a new homonuclear decoupling scheme, as illustrated in
Section 3.3.3.

3.3.2. Analysis of solid-echo based sequences
It is helpful for analyzing pulse cycles using similar notations as

in the literature [6]. Solid-echo based sequences are a combination
of basic solid-echo pulse pairs: �Rxðp=2Þ � s� Ryðp=2Þ � s� [28]
Table 2
Calculation of the WAHUHA sequence.

ða;b; sÞ ð0;0;1Þ ðp=2;p=2;1Þ ð0;p=2;1

HZ
D

1 �1/2 �1/2

HSQCY
D

0 0 0

HSQCX
D

0 0 0

HZQC
D

0 0 0

HDQC
D

0 �1/2 1/2
and are frequently used for decoupling purpose. The Hamiltonian
during the intervals in the basic pulse pairs exists six possible
states, namely Hðp2 � p

2 ;
p
2Þ, Hðp� p

2 ;
p
2Þ, Hð0;� p

2 � p
2Þ and can be writ-

ten briefly as H�X;H�Y;H�Z here. In order to illustrate this notation,
we consider WAHUHA [3] four pulse cycle as an example, one ver-
sion of which can be written as �s� Rxðp=2Þ � s� Ryðp=2Þ � s
�Ryð0Þ � s� Rxðp=2Þ � s� Ryðp=2Þ � s�; and the Hamiltonian
during the interval can be written in short as
ðHZ;HY;HX;HX;HY;HZÞ:

The bk for all six possible states is either 0 or p=2, i.e.,
sinð2bkÞ ¼ 0: Therefore, the solid-echo based sequences belong to
the class (i) solution. In order to illustrate its decoupling perfor-
mance, we calculated all terms in the set of S that are associated
with the dipolar interaction during the delays in the sequence, as
listed in Table. 2. In this table, the first row shows the value of
ða; b; sÞ in each delay, the other rows give the expansion coeffi-
cients of every term for the dipolar Hamiltonian ~H. Obviously the
sum of the values in each row is zero, meaning that the dipolar
interactions are removed at the zero-order averaging.

3.3.3. Derivation of a new scheme for homonuclear decoupling
For the class (ii) solution, since cos2 bk ¼ 1=3, the constraint

equations in Eq. (18) collapse into
PN

k¼1gke
iak ¼ 0PN

k¼1e
i2ak ¼ 0

(
, here

gk ¼ �1 corresponds to sinð2bkÞ ¼ �
ffiffiffi
2

p
=3. A new homonuclear

decoupling scheme can thus be designed as

ak ¼ 2kp
N

; bk ¼ hm: ð19Þ

Thus, one can design a sequence as:

R2p
Nþp

2
ðhmÞ � s� R2p

Nþp
2
ð�hmÞR4p

Nþp
2
ðhmÞ � � � � � R2kp

N þp
2
ð�hmÞR2ðkþ1Þp

N þp
2
ðhmÞ

� � � � � Rp
2
ðhmÞ:

There are N! permutations in the set f2pN ; 4pN ; � � � ; 2ðN�1Þp
N ;2pg, so that

the N! basic building blocks can be used to develop a series of cycles
for removing the effects of the homonuclear dipolar interactions
while preserving the off-resonance and chemical shift information.
In this scheme, the zero-order average Hamiltonian is

�Hð0Þ ¼ �Hð0Þ
CS ¼

ffiffiffi
3

p

3

X
j

ðxþxj
CSÞIjz: ð20Þ

This sequence scales the chemical shift interactions by a factor
of 1=

ffiffiffi
3

p
, which is the maximum scaling factor (SF) achievable in all

homonuclear dipolar decoupling sequences in solid-state NMR
spectroscopy [29]. Most importantly, the effective field for this
sequence is along the Z direction, being considered as a Z-
rotation operator.

From the constraint equations in Eq. (18), N = 3 is the minimal
number for the case (ii) solution. Fig. 2 shows three new pulse
cycles with N = 3, abbreviated as JJXXR3 sequences. Fig. 2a shows
the basic building block. This sequence can only cancel the
Þ ð0;p=2;1Þ ðp=2;p=2;1Þ ð0;0;1Þ
�1/2 �1/2 1

0 0 0

0 0 0

0 0 0

1/2 �1/2 0



Fig. 2. Pulse sequences used for homonuclear dipolar decoupling. (a) JJXXR3-1; (b) JJXXR3-2; (c) JJXXR3-3. The vertical boxes in the sequences represent hp pulses of finite
length sp. l and�l denote the rotations of R2lp

3 þp
2
ð�hpÞ; ðl ¼ 1;2;3Þ. The inter-pulse delay sdelay should be optimized to compensate for the effect of finite pulse lengths in practical

uses.

Fig. 3. Plots of SF and DF as a function of pulse flip-angle hp.
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zero-order dipolar term under the d-pulse assumption. The sym-
metric cycles in Fig. 2b remove the zero-order dipolar term and
eliminate all odd-order terms over the entire cycle. The sequence
in Fig. 2c is composed of six basic building blocks in such a way
that the second-order dipolar term can be vanished, along the van-
ishing of all odd-ordered terms over a complete cycle due to the
symmetric cycles.

In practice, the pulses are not ideal d-pulses. Thus the effect of
finite pulse length must be considered. If tpulse and tdelay corre-
spond to the total durations for the pulses and delays in the
sequence, respectively, the total cycle time sC for the pulse
sequence is sC = tpulse + tdelay. By adapting the method described
in the literature [30], we can calculate the zero-order average
Hamiltonian in the toggling frame during the pulses in the seg-
ment of R2kp

N þp
2
ðhpÞ � s� R2kp

N þp
2
ð�hpÞ. The obtained zero-order aver-

age Zeeman Hamiltonian is

�Hð0Þ
CS;pulse ¼

sin hp
hp

X
j

ðxþxj
CSÞIjz; ð21Þ

while the zero-order average homo-nuclear dipolar Hamiltonian
becomes

�Hð0Þ
D;pulse ¼

1
4
HZ

D þ 3 sin 2hp
8hp

HZ
D ¼ 1þ 3sincð2hpÞ

4
HZ

D ð22Þ

Again, HZ
D ¼P

j<l
xjl

Dð3IjzIlz � Ij � IlÞ. On the other hand, the zero-

order average dipolar Hamiltonian during the delays with flip-
angle hp is

�Hð0Þ
D;delay ¼

3 cos2 hp � 1
2

HZ
D: ð23Þ

When hp ¼ hm ¼ 54:7
�
, the zero-order average dipolar Hamilto-

nian becomes null during the delays but partially remains during
the finite pulse lengths. Thus it cannot be canceled out over the
entire cycle with the pulse flip-angle hm. In order to cancel the
zero-order average dipolar Hamiltonian over the entire cycle in
the presence of finite pulse lengths, the pulse flip-angle hp can be
determined in such a way that

�Hð0Þ
D ¼ 1

sc
½1þ 3sincð2hpÞ

4
tpulse þ 3 cos2 hp � 1

2
tdelay�HZ

D

¼ DSF � HZ
D ð24Þ

Here, the dipolar scaling factor DSF is defined as

DSF ¼ 1
1þ DF

½AðhpÞ � DF þ BðhpÞ�; ð25Þ

where, AðhpÞ ¼ 1þ3sincð2hpÞ
4 , BðhpÞ ¼ 3 cos2 hp�1

2 , and the duty factor (DF) is
defined as DF = tpulse=tdelay. Clearly, when DF = �BðhpÞ=AðhpÞ, DSF = 0,
meaning that the zero-order average homonuclear dipolar Hamiltonian
over the entire cycle becomes null, while the zero-order average
Zeeman Hamiltonian should remain along the Z direction having
a scaling factor on chemical shift interactions

SF ¼ sinchpð�1� 3 cosð2hpÞÞ þ cos hp½1þ 3sincð2hpÞ�
�3 cosð2hpÞ þ 3sincð2hpÞ ð26Þ

Fig. 3 shows the plots of DF and SF as a function of the pulse flip-
angle hp. Three interesting points should be noticed in the plots:

	 When tpulse 
 tdelay, which is the ideal case for d-pulses,

hp ¼ 54:7
�
, the maximum SF of 1=

ffiffiffi
3

p
is obtained.

	 The maximum DF of 2.71 is found at hp ¼ 105:9
�
where SF =

0.31.
	 The Zeeman term can be also cancelled (i.e. SF = 0) when
hp ¼ 120:3

�
.

Table 3 lists the average Hamiltonians and the properties (scal-
ing factor and the overall tilt angle) of various homonuclear decou-
pling sequences. It can be seen from Table 3 that the newly
designed JJXXR3-3 sequences appear to have a large scaling factor
on chemical shift interactions while the average Hamiltonian is
along the z axis, possessing the so-called Z-rotation. The WAHUHA
sequence has a large scaling factor but the average Hamiltonian is
along the direction tilted by 54.7� away the Z axis. Another
sequence having such a Z-rotation is the MSHOT (magic sandwich
high order truncation) sequence [31], which has a relatively small
scaling factor on chemical shift interactions. Having the Z-rotation
average Hamiltonian would simplify the setup of high-resolution
two-dimensional (2D) heteronuclear correlation (HETCOR)



Table 3
Properties of Different Multiple Pulse Sequences.

Sequences �Hð0Þ
D

�Hð1Þ
D

�Hð1Þ
CS;D

�Hð2Þ
D

SF Tilt angle

JJXXR3-1 0 0 0 –0 0.57* 0�
JJXXR3-2 0 0 0 –0 0.57* 0�
JJXXR3-3 0 0 0 0* 0.57* 0�
WAHUHA [3] 0* 0 0* –0 0.57 54.7�
MREV-8 [5] 0 0 0* –0 0.47 45�
BR-24 [6] 0 0 0 0 0.38 54.7�
CORY-24 [4] 0 0 0 0 0.32 45�
MSHOT [31] 0 0 0 0 0.32 0�
FSLG [38] 0 –0 –0 –0 0.57 54.7�

Note that: �Hð1Þ
CS;D stands for the first-order cross term between Zeeman and dipolar interactions; Tilt angle corresponds to the direction of the average Hamiltonian with

respect to the Z axis; Asterisks indicate the values obtained with the assumption of d-pulses.
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experiments [32]. In the next section, we apply these Z-rotation
sequences in high-resolution 2D HETCOR experiments that corre-
late orientation-dependent, anisotropic 1H chemical shifts in the
t1 dimension with 15N chemical shifts in the t2 dimension.
4. Experimental

All NMR measurements were carried out on a Bruker Avance
600 NMR spectrometer with Larmor frequencies of 600.13 and
60.82 MHz for 1H and 15N, respectively. The SPINAL decoupling
sequence [33] with an 1H RF amplitude of 62.5 kHz was used in
all experiments during the 15N detection in the t2 dimension. 15N
and 1H chemical shifts were referenced to the 15N signal and water
peak of an aqueous 15N-labeled ammonium sulfate solution (5%,
pH 3.1) at 0 and 4.7 ppm, respectively.

The HETCOR pulse sequence used in our experimental studies is
shown in Fig. 4. In the t1 dimension, the MSHOT and JJXXR3-3
sequences were applied as homonuclear decoupling block in the
t1 dimension to suppress the proton homonuclear interactions, a
1H 90� pulse at the end of the t1 dimension is applied to select
the quadrature components using the States phase cycling in the
t1 dimension, followed by a short cross-polarization contact time,
sCP, to ensure that the 15N magnetization is the result of transfer
from its closest 1H. In the absence of the 15N 180� pulse in the t1
dimension, both the 1H chemical shifts and the 1H-15N dipolar cou-
plings are evolved, resulting in the 1H-15N dipolar splittings in the
1H chemical shift dimension of the HETCOR spectra, the so-called
dipolar-encoded HETCOR [32]. With a purple 180� 15N pulse in
the middle of the t1 period, the 1H-15N heteronuclear dipolar cou-
pling is refocused such that only the1H chemical shifts are evolved,
leading to typical 1H-15N HETCOR spectra.
Fig. 4. HETCOR pulse sequence for 1H–15N correlation experiments. With 180 15N
decoupling pulse (the purple pulse), the 1H chemical shift is obtained in the 1H
dimension, while in the absence of the 15N pulse, the 1H–15N dipolar splitting is
shown in the 1H dimension. The homonuclear decoupling sequence is applied in the
t1 dimension to remove the 1H–1H homonuclear dipolar interactions.
In order to determine the actual 1H-15N dipolar couplings, we
first performed the typical 1H-15N HETCOR using the MSHOT
homonuclear decoupling sequence in the presence of the 15N
180� pulse in the middle of the t1 period to remove the 1H-15N
dipolar couplings, as shown in Fig. 5a (purple). A basic magic sand-
wich unit consists of sdelay-sp(90�)sp(360�) sp(360�) sp(90�) -sdelay.
In our experiments, sdelay was set to 5.25 ls, and 90� and 360�
pulse length sp were 3 and 12 ls, respectively. Two basic magic
sandwich units were used as the t1 increment in this experiment,
which was 2x40.5 ls (=2sdelay+2sp(90�)+2sp(360�)), independent
of the dwell time used in the acquisition parameter. Therefore,
we can experimentally determine the dwell time in the acquisition
parameter in such a way that any change in the 1H offset can be
correctly reflected in the 1H chemical shift in the F1 dimension.
For instance, once we obtained a HETCOR spectrum, we changed
the 1H offset by 2000 Hz in another experiment. If the scaling fac-
tor due to the MSHOT decoupling sequence is correctly compen-
sated, we would expect that any 1H resonance should shift by
exactly the same amount of 2000 Hz. We could carefully adjust
the dwell time in the acquisition parameter to fulfill this exactly
same shift. In our experiments, when the dwell time was set to
28.26 ls, the 1H resonance shifted by exactly the same amount.
Thus, the experimentally determined scaling factor is 0.349
(=28.26 ls /81.0 ls). As shown in the HETCOR spectrum (purple,
Fig. 5a) of 15N-labeled acetyl-valine crystal sample, there are four
magnetically nonequivalent 15N resonances at 219.8, 187.8, 75.4,
and 72.4 ppm in this given crystal orientation, and their bonded
amide 1H chemical shifts are 10.5, 12.8, 19.4, and 16.0 ppm,
respectively.
5. Results and discussion

Fig. 5 displays the 1H-15N dipolar-encoded HETCOR spectra of
15N-labeled acetyl-valine crystal sample using different decoupling
schemes in the 1H dimension. In the left side of each spectrum
shows the corrected 1H chemical shift scale (black), while in the
right side (red) is the uncorrected chemical shift scale according
to the actual t1 increment used in the experiments, i.e. 81.0 ls
for MSHOT and 28.7 ls for JJXXR3–3. As shown in Fig. 5a (black),
for each 15N resonance, the splitting along the 1H chemical shift
dimension represents the 1H-15N dipolar coupling, while the corre-
sponding 1H resonance is positioned at the center of the doublet.
As indicated in the spectrum, the 1H-15N dipolar couplings are dif-
ferent for different 15N resonances. This is because their amide
1H-15N bonds were oriented differently in the magnetic field at this
crystal orientation. Thus, for the 15N resonances at 219.8, 187.8,
75.4, and 72.4 ppm, the obtained 1H-15N dipolar couplings are
8.1, 7.4, 9.8, and 10.1 kHz, respectively.

Fig. 5b shows the dipolar-encoded HETCOR spectrum of the
15N-labeled acetyl-valine crystal sample using the JJXXR3-3



Fig. 5. Dipolar-encoded 1H–15N correlation spectra of 15N-labeled acetyl-valine crystal sample using different decoupling schemes in the 1H dimension. In these experiments,
the 1H carrier was set to 16.0 ppm. (a) MSHOT homonuclear decoupling, with (Purple) and without (Blue) 15N 180� pulse in the middle of the 1H dimension. Two basic magic
sandwich units were used as the t1 increment leading to the uncorrected scale (red) in the 1H dimension in the right, while the chemical shift scale corrected using
experimentally determined scaling factor is shown in black in the left side. (b) JJXXR3-3 homonuclear decoupling using a pulse flip-angle of 70 (sp = 2.33 ls) and a delay time
sdelay of 4.9 ls. The uncorrected chemical shift scale (red in the right) in the t1 dimension was determined by a dwell time of 28.7 ls (=6sp + 3sdelay, i.e. the cycle time for the
basic unit in Fig. 2a). In the spectra, the corrected and uncorrected 1H–15N dipolar splittings are shown in black and red, respectively.

Fig. 6. Slices taken from the 15N resonances at 219.8, 187.8, 72.4, and 75.4 ppm
along the 1H dimension from (Left) MSHOT and (Right) JJXXR3-3 in Fig. 5 showing
the 1H–15N dipolar splittings at various 1H offsets. The vertical dashed lines indicate
where the 1H carrier position was in the experiments.
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homonuclear decoupling scheme shown in Fig. 2 with a pulse
angle hp of 70� (sp =2.33 ls) and a delay time sdelay of 4.9 ls. Since
the dwell time was set to the total time period for the basic unit in
Fig. 2a, i.e. 28.7 ls (=6sp+3sdelay), we obtained the respective
uncorrected 1H-15N dipolar couplings of 4.1, 3.7, 4.9, and 5.1 kHz
for the 15N resonances at 219.8, 187.8, 75.4, and 72.4 ppm. By com-
paring their actual 1H-15N dipolar couplings indicated in Fig. 5a, we
could determine a scaling factor of 0.5 for this sequence with the
pulse flip-angle of 70�, much larger than the scaling factor of
0.349 experimentally obtained in the MSHOT sequence.

Fig. 6 shows the slices taken at the 15N resonances at 219.8,
187.8, 72.4, and 75.4 ppm along the 15N dimension in Fig. 5. Since
the 1H carrier in our experiments was set to 16 ppm, the 15N reso-
nances at 219.8, 187.8, 75.4, and 72.4 ppm were irradiated under
the decoupling at different 1H offsets, which are the differences
between the 1H carrier position and their measured amide 1H
chemical shifts, corresponding to -3.3, -1.9, +2.1, and 0 kHz, respec-
tively, as indicated in the spectrum. It is clear from Fig. 6 that both
decoupling schemes have comparable 1H–1H homonuclear decou-
pling efficiency with 1H offsets up to -3.3 kHz. It can also be noticed
that the decoupling efficiency at positive 1H offsets appears to be
better than the negative offsets. In addition, it is important to note
that the new JJXXR sequence has a much less DF than the MSHOT
sequence. DF was 0.952 (=2sp/sdelay) in this JJXXR3-3 decoupling
sequence. While in the MSHOT experiment, DF was calculated to
be 2.857 (i.e. =[sp(90�)+sp(360�)]/sdelay) according to our experi-
mental setup. In other words, the average 1H decoupling power
used in the JJXXR3-3 decoupling is about 30% less than in the
MSHOT, but yielding a comparable decoupling efficiency. There is
more potential in this regard in case when hp is small, as demon-
strated in Fig. 3 where DF can be less with a smaller pulse
flip-angle. As indicated in Table 3, the second-order average Hamil-

tonian �Hð2Þ
D is vanished only when d-pulses are used in the JJXXR3-3

sequence. Thus, it is anticipated that the JJXXR3-3 decoupling
efficiency would be further improved with higher RF amplitude.

As indicated in Eq. (25), the zero-order average Hamiltonian can
be achieved by adjusting the pulse flip-angle and the inter-pulse
delay. As shown in Fig. 3, a smaller pulse flip-angle tends to give
a larger scaling factor. When the pulse angle is about 120�, the pro-
jected scaling factor is close to zero. Fig. 7 shows the dipolar-
encoded HETCOR spectra of the 15N-labeled acetyl-valine crystal
sample using the JJXXR3-3 homonuclear decoupling scheme at dif-
ferent pulse flip-angles. Clearly, the obtained 1H-15N dipolar split-
tings gradually became smaller with the increase of the pulse flip-
angle. Fig. 8a shows the slices taken from the 15N resonance at
75.4 ppm along the 1H dimension from the spectra shown in
Fig. 7. The measured uncorrected 1H-15N dipolar splitting was
5.36, 4.45, 3.05, and 0 kHz, corresponding to the scaling factor of
0.547, 0.454, 0.312, and 0, for the pulse flip-angle hp of 60�, 80�,
100�, and 120�, respectively. Fig. 8b shows the experimentally
measured scaling factors at various hp, as predicted by Eq. (26). It
can be noticed in Fig. 8a that the doublet at hp = 60� has broader
line-widths as compared to the pulse flip-angles at 80� and 100�,
suggesting that the homonuclear decoupling efficiency was com-
promised. This is owing to the fact that the total cycle time (i.e.,
6sp+3sdelay) for the basic unit was longer (33.6 ls at hp = 60� versus
26.68 ls at hp = 80�). However, the DF value was 0.556 at hp = 60�,
even smaller than 0.952 at hp = 70�, indicating that the average
decoupling power was lower. With 3 ls 1H 90� pulse, the B1 field
used in our experiments was 83 kHz. In the MSHOT decoupling
scheme, the average B1 field for 1H decoupling was 61.5 kHz (i.e.,



Fig. 8. (a) Slices taken from the 15N resonance at 75.4 ppm along the 1H dimension from the spectra shown in Fig. 7 showing the 1H–15N dipolar splittings at different pulse
angles. (b) The experimentally obtained scaling factor at various pulse flip-angles in agreement with the predicted red curve from Eq. (26).

Fig. 7. Dipolar-encoded 1H–15N correlation spectra of 15N-labeled acetyl-valine crystal sample using the JJXXR3-3 decoupling scheme with different pulse flip-angles. In our
experiments, the pulse flip-angle was calculated based on the experimentally measured 1H 180� pulse length of 6 ls, while the inter-pulse delay sdelay was optimized to be
7.2, 3.9, 2.5, and 6.5 ls for the pulse flip-angle hp of 60�, 80�, 100�, and 120�, respectively. The uncorrected 1H chemical shift scale is shown in all spectra.
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=83 kHz ⁄ 2.857/(1 + 2.857)). While for the JJXXR3 decoupling
scheme, the average B1 field for 1H decoupling became 40.5 kHz
(i.e., =83 kHz ⁄ 0.952/(1 + 0.952)) at hp = 70� and 29.7 kHz (i.e.,
=83 kHz ⁄ 0.556/(1 + 0.556))at hp = 60�. To improve the decoupling
efficiency, we can simply reduce the 1H 90� pulse length thus to
shorten the total cycle time in the JJXXR3 scheme. Using such an
efficient decoupling sequence with low average decoupling field
would be a great help to prevent the RF heating in NMR experi-
ments of hydrated biological samples [34].

The RF field inhomogeneity, which can be represented by the
deviation e of the pulse flip-angle across the sample region, is
another factor that influences the decoupling efficiencies. As indi-
cated in Eq. (24), averaging the zero-order dipolar Hamiltonian
over the entire cycle in the basic unit of the JJXXR3 sequence is
based on the cancelation of two dipolar components, one from
the remaining dipolar interactions during the pulses and another
one from during the delay, both of which are associated with the
pulse flip-angle hp. In the presence of RF field inhomogeneity
across the sample region, the pulse flip-angle becomes
(hp + e), the dipolar scaling factor in Eq. (25) becomes:
DSFðhp þ eÞ ¼ 1

1þDF ½Aðhp þ eÞ � DF þ Bðhp þ eÞ�, where DF = tpulse=tdelay
¼ �BðhpÞ=AðhpÞ, as the setting without pulse deviation. Fig. 9 shows



Fig. 9. Plot of DSF as a function of hp and e. The color scale in the right represents
the DSF values.
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the plot of DSFðhp þ eÞ as a functions of hp and e. It is apparent from
Fig. 9 that the DSF value is small with a few degrees of pulse flip-
angle deviation when hp is less than 110�, implying that the decou-
pling efficiency is insensitive to the RF field inhomogeneity. On the
other hand, when hp is close to 120�, the DSF value increases quickly
as e increases (plot not shown), meaning that the decoupling effi-
ciency becomes more sensitive to the RF field inhomogeneity. Typi-
cally, the RF field inhomogeneity can be compensated by
constructing supercycles and designing symmetries in the pulse
sequences [31,35–37]. Similarly, the symmetric cycles used in the
JJXXR3-3 sequence could compensate the effect of the RF field inho-
mogeneity. As a matter of fact, with given pulse flip-angles, the
JJXXR3-3 decoupling remained efficient even when the inter-pulse
delay time sdelay was varied by as large as 10% (spectra not shown),
although the scaling factor on the chemical shift and heteronuclear
1H-15N dipolar coupling changed slightly.

Like many other homonuclear decoupling sequences [3–6], this
decoupling sequence is designed to average the homonuclear dipo-
lar interactions in the spin space where the time-dependent per-
turbation is introduced into the spin Hamiltonians through RF
pulses. On the other hand, the spin Hamiltonians also become
time-dependent when the sample is spinning, which may interfere
with the time-dependent perturbation introduced into the spin
Hamiltonians via RF pulses in the spin space. Typically, with the
assumption of that the cycle time sC of a multiple pulse sequence
is much shorter than the sample rotational period, it can be consid-
ered no interference takes place between them. In this regard, it
appears that the frequency-switched Lee-Goldburg (FSLG)
sequence [38] has the shortest sC among all available homonuclear
decoupling sequences, thus it is simply applied when the sample
spinning is fast. With the RF amplitude of 83 kHz (i.e. 90� pulse
length of 3 ls) used in our experiments, sC for the basic unit of
the JJXXR3 sequence was 28.7 ls (at hp = 70�), which can hardly
fulfill the above assumption even with a moderate spinning rate.
In this case, the averaging in the spin space must be synchronized
with the sample spinning in order to avoid destructive interference
between the RF pulses and the sample spinning [14,39,40].
6. Conclusion

To conclude, we have theoretically derived a maximum achiev-
able set of average Hamiltonians, each of which is manipulated dif-
ferently by Euler angles induced by applied RF pulses, allowing us
to design specific pulse sequences for selecting or engineering any
given term from this set of the average sub-Hamiltonians. We have
developed a general procedure using constraint equations where
both flip-angle and phase of the applied pulses are used as control
variables to select any of those sub-Hamiltonians. Using this proce-
dure, we have successfully designed a novel homonuclear decou-
pling scheme using unconventional pulse flip-angles. It has been
confirmed experimentally that this sequence effectively sup-
presses the 1H–1H homonuclear dipolar interactions and selects
only the Iz term, meaning that the average Hamiltonian is along
the Z direction, the so-called Z-rotation. Under the assumption of
d-pulses, this sequence has a maximum scaling factor of 0.57 on
chemical shift and heteronuclear dipolar interactions. While with
the finite pulse length, the scaling factor varies, depending on the
flip-angles of the applied pulses. When the pulse flip-angle is close
to 54.7�, this sequence possesses a large scaling factor with rela-
tively low average decoupling field, as compared to the MSHOT
sequence [31]. When the pulse angle becomes �120�, the scaling
factor is almost zero, as if forming a ‘‘quadratic echo” [41] during
which all interactions are refocused. We expect the general proce-
dure developed here could be used in designing new pulse
sequences to select any desirable Hamiltonian to obtain useful
spectroscopic information and to achieve quantum logic gate con-
trols in solid-state systems in the field of NMR quantum computa-
tion and simulation.
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