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Abstract
Chronic fatigue syndrome (CFS) is a disorder associated with fatigue, pain, and structural/functional abnormalities seen 
during magnetic resonance brain imaging (MRI). Therefore, we evaluated the performance of structural MRI (sMRI) abnor-
malities in the classification of CFS patients versus healthy controls and compared it to machine learning (ML) classification 
based upon self-report (SR). Participants included 18 CFS patients and 15 healthy controls (HC). All subjects underwent 
T1-weighted sMRI and provided visual analogue-scale ratings of fatigue, pain intensity, anxiety, depression, anger, and sleep 
quality. sMRI data were segmented using FreeSurfer and 61 regions based on functional and structural abnormalities previ-
ously reported in patients with CFS. Classification was performed in RapidMiner using a linear support vector machine and 
bootstrap optimism correction. We compared ML classifiers based on (1) 61 a priori sMRI regional estimates and (2) SR 
ratings. The sMRI model achieved 79.58% classification accuracy. The SR (accuracy = 95.95%) outperformed both sMRI 
models. Estimates from multiple brain areas related to cognition, emotion, and memory contributed strongly to group clas-
sification. This is the first ML-based group classification of CFS. Our findings suggest that sMRI abnormalities are useful 
for discriminating CFS patients from HC, but SR ratings remain most effective in classification tasks.
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Introduction

Chronic fatigue syndrome (CFS) is a condition mainly 
characterized by disabling fatigue of unknown origin for at 
least 6 months (Gunn et al. 1993). In addition, CFS patients 
commonly report neurologic, psychiatric, and physical 
symptoms (Fukuda et al. 1994). Although the etiology of 
CFS is not fully understood, central nervous system (CNS) 
dysfunction (Chen et al. 2008) as well as sensitization of 
peripheral fatigue pathways (Staud et al. 2015) have been 
suggested. Magnetic resonance imaging (MRI) studies have 

described significant differences between patients with CFS 
and healthy controls (HC) across measures of structural and 
functional neuroimaging, as well as neurochemical factors 
(Chen et al. 2008).

Several studies have reported abnormal grey matter vol-
umes in patients with CFS. Whereas one study observed 
global grey matter reduction in CFS (de Lange et al. 2005), 
others described select reductions within prefrontal (Okada 
et al. 2004; de Lange et al. 2008) and occipital cortices (Puri 
et al. 2012) as well as within angular and parahippocampal 
gyri (Puri et al. 2012). Whether structural brain features can 
be used to classify individuals with CFS from HC, however, 
has not yet been tested.

Supervised machine learning (ML) classifiers are specific 
application of ML technology that uses individual feature 
values to predict the discrete and pre-assigned class to which 
a given example belongs. The performance of a given model 
can be assessed by characterizing its success in correctly 
predicting group membership, also allowing for the com-
parison of performance between feature sets (Pereira et al. 
2009). Model performance evaluation methods can yield 
estimates such as sensitivity (i.e., true positive rate) and 
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specificity (i.e., true negative rate), and allows for the assess-
ment of positive predictive value (PPV, i.e., probability that 
positive result occurs in a patient who has the condition) 
and negative predictive value (NPV, i.e., probability that a 
negative result occurs in an individual who does not have the 
condition). This method has been used in the classification 
of individuals with chronic pain (Ung et al. 2014; Labus 
et al. 2015) and depressed mood (Nouretdinov et al. 2011) 
with success. Self-report (SR) is the gold standard for clas-
sification of most chronic pain and psychiatric conditions, 
but only few studies have compared neuroimaging and self-
report data for patient classification (Robinson et al. 2015).

The present study had several aims. First, we exam-
ined the performance of structural neuroimaging data in 
classifying individuals with and without CFS (i.e., sMRI 
model). Our interest was in determining whether structural 
regions with previously observed functional abnormality 
were predictive of patient status. Second, we examined the 
performance of a model solely composed of self-reported 
symptoms (i.e., SR model). Finally, we measured how well 
each model (i.e., sMRI and SR) would perform in a range 
of application settings using ecologically valid base rates 
(i.e., prevalence) by applying Bayes’ theorem (Lopez Puga 
et al. 2015). This method may produce more representative 
estimates of classification metrics, given that calculations 
of PPV and NPV depend on the condition’s prevalence in 
the context of specific settings, where the classifier may be 
applied. For example, a classifier may be used as a diagnos-
tic tool in the clinic, where prevalence is high, or as a screen-
ing tool in the general population, where prevalence is much 
lower (Grimes and Schulz 2005; Robinson et al. 2016).

Methods and materials

Participants

Participants comprised of 15 HC and 18 CFS patients. Two 
additional HC participants were initially recruited for this 
study; however, data quality issues resulted in their exclu-
sion from analyses. CFS participants were required to ful-
fill Center for Disease Control criteria for chronic fatigue 
(Fukuda et al. 1994), which include unexplained, persistent, 
or relapsing chronic fatigue that is of new or definite onset 
over a period of at least 6 months. The fatigue could not be 
the result of ongoing exertion and had to result in substantial 
reduction in the previous levels of occupational, educational, 
social, or personal activities. In addition, CFS participants 
were required to have at least four of the following additional 
symptoms in the 6 months prior to assessment, including 
impaired memory/concentration, sore throat, tender cervical 
or axillary lymph nodes, muscle pain, multi-joint pain, new 
headaches, unrefreshing sleep, and post-exertional malaise 

(Fukuda et al. 1994). CFS diagnosis was confirmed by a 
board-certified rheumatologist (RS). Subjects were excluded 
if they had a history of heart disease, chronic obstructive 
pulmonary disease, malignancy, psychiatric illnesses, or 
other disorders that could confound the diagnosis. CFS 
participants were recruited via outpatient medical clinics 
at the University of Florida, where they had completed 
the Center for Epidemiological Studies-Depression Scale 
(CES-D) to exclude depression (Radloff 1977), or through 
advertisements. Controls were excluded if they had a history 
of chronic fatigue, chronic pain, or psychiatric illness. All 
individuals were asked to sleep for at least 6 h and refrain 
from caffeine consumption prior to the study session. Con-
sumption of alcohol, psychoactive substances, or any medi-
cation except vitamins was prohibited 24 h before the study. 
Individuals were also excluded if they were current smokers, 
yielded a positive pregnancy test result (women of child-
bearing potential only) or contained any ferromagnetic metal 
within the body.

Because the focus of this study was primarily concep-
tual and mechanistic rather than diagnostic, Standards for 
Reporting of Diagnostic Accuracy Studies (STARD) guide-
lines (Cohen et al. 2016) have not been applied in the current 
report.

Clinical and affective ratings

Prior to MRI scanning, clinical fatigue, pain intensity, sleep 
quality, anxiety, anger, and depression were assessed using 
mechanical visual analog scales (VAS). VAS measures were 
selected as a comparison for MRI-based measures because 
of their reliability, validity, efficiency, and low cost (Price 
and Harkins 1987). Each scale was anchored on the left with 
“No (fatigue, pain, anxiety, anger, depression) at all” and 
on the right with “The most (fatigue, pain, anxiety, anger, 
depression) imaginable.” Sleep quality was also assessed 
using a VAS with “Best sleep/No problem sleeping” on 
left, and “Worst sleep/no sleep” on right. It is important 
to note that these SR measures were not used to diagnose 
CFS patients. As mentioned above, patients were diagnosed 
according to the criteria defined by Fukuda et al. (1994). As 
such, the SR feature set reflects subjective symptomatology. 
The SR feature set does, however, serve as a proxy for the 
process of clinical diagnosis, and as such is an appropriate 
comparison to assess the clinical utility of neuroimaging-
based classifiers.

Data acquisition and processing

Data were acquired on a Philips Achieva 3T MRI scanner 
with a 32-channel head coil. All participants completed one 
high-resolution, 3D anatomical, T1-weighted magnetization-
prepared rapid gradient-echo (MPRAGE) sequence. The 
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parameters were as follows: 176 sagittal slices (1 mm thick-
ness), TR = 7.2 ms, TE = 3.2 ms, FA = 8°, FOV = 240 mm, 
and voxel size = 1 mm3. Total acquisition time was 4 min 
and 34 s.

All MRI data were processed individually through the 
automated subcortical segmentation and cortical parcellation 
tool in FreeSurfer, version 5.3 (Martinos Center for Biomed-
ical Imaging, Charlestown, MA, USA) (Fischl et al. 2002; 
Fischl 2012). To increase the probability that each discrete 
region is correctly labelled, FreeSurfer considers aspects of 
the collected data and general aspects of MRI such as sig-
nal intensity of different regions, producing accurate and 
reliably segmentation (Jovicich et al. 2009). The software 
produces indices of area, thickness, and volume for cortical 
structures, and volume for subcortical structures, resulting 
in 274 unique neuroanatomical features. White matter, gray 
matter, and pial matter boundaries were reviewed in each 
subject for gross artifacts and errors in segmentation by the 
authors (LS and JB).

Feature selection

Of the initial 274 anatomical features, a subset of 61 features 
was chosen for classification in the a priori feature model 
(sMRI). The areas selected were those in which abnormali-
ties in brain structure and function were previously observed 
in CFS patients compared to HC (Okada et al. 2004; Puri 
et  al. 2012; Boissoneault et  al. 2016; Gay et  al. 2016). 
Table 1 provides a complete list of regions. The SR model 
included all ratings discussed above except fatigue, which 
was excluded due to concerns regarding circularity of analy-
ses given the closeness of this construct to the most salient 
aspects of CFS.

Modeling approach

Classification analyses were performed within Rapid-
Miner Studio version 7.6.001 (RapidMiner, Inc., Boston, 
MA, USA). Data were normalized via z-transformation. 
Z-transformation produces standardized values across all 
features by calculating the mean value per feature, sub-
tracting individual scores, and dividing by the standard 
deviation. This procedure eliminates scale differences 
between features that may otherwise confound classi-
fier performance (Alpaydin 2014). The performance of 
two feature sets in classifying CFS patients and HC was 
compared: (1) structural MRI composed of the 61 regions 
based upon functional differences (sMRI) and (2) six clini-
cal and affective, self-reported VAS ratings (SR). Features 
were not further mathematically transformed in any way 
prior to model estimation. A linear support vector machine 
(SVM), as implemented by Chang’s Library of Support 
Vector Machines (LIBSVM) (Fan et  al. 2005) within 

the RapidMiner environment, was used in classification. 
SVMs classify labelled data by estimating the hyperplane 
that maximizes the width of the margin separating the 
hyperplane and data. Margin width maximization reduces 
the expected risk of model error (i.e., decreases model 
complexity). In cases where data are not perfectly sepa-
rated by a hyperplane, a soft margin may be used which 
allows for some cases to be on the wrong side of the mar-
gin (i.e., increased model complexity). This complexity is 
captured in a penalty proportional to how far cases are on 
the wrong side of the margin. The regularization param-
eter, C, balances the trade-off between model complexity 
and error frequency. This parameter was tuned by standard 
grid-search optimization according to Hsu et al. (2008). 
SVMs have previously been successfully applied to the 
classification of chronic low back and pelvic pain (Bagari-
nao et al. 2014; Ung et al. 2014). To aid in feature weight 
interpretation, weights were squared and ranked (Guyon 
et al. 2002). Broadly, greater values correspond to features 
that were more influential in the classification of each case.

Table 1   Regions used for classification analyses

For all regions, unless marked with superscript a, estimates of area, 
thickness, and volume were included. Those marked with an aster-
isk represent subcortical regions for which only estimates of volume 
were used. A total of 61 neuroanatomical features were included in 
analyses

Hemisphere Region

Left Caudatea

Left Palliduma

Right Hippocampusa

Right Palliduma

Left Caudal anterior cingulate cortex
Left Caudal middle frontal cortex
Left Insula
Left Lingual gyrus
Left Parahippocampal
Left Postcentral gyrus
Left Posterior cingulate cortex
Left Precuneus
Left Rostral anterior cingulate cortex
Left Rostral middle frontal cortex
Left Superior frontal cortex
Right Caudal anterior cingulate cortex
Right Cuneus
Right Inferior parietal lobe
Right Lateral occipital lobe
Right Precuneus
Right Rostral anterior cingulate cortex
Right Superior parietal lobe
Right Superior temporal lobe
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Performance assessment

For all models, accuracy [the sum of true positives (TP) 
and true negatives (TN) divided by the sum of TN, TP, 
false positives (FP) and false negatives (FN); (TN + TP)/
(TN + TP + FN + FP)], sensitivity [TP/(TP + FN)], and 
specificity [TN/(TN + FP)] were calculated. For a brief 
review of these performance measures in the context of 
brain biomarkers for chronic pain, see (Robinson et al. 
2016). To adjust for model optimism, bootstrapping was 
used to reduce bias in performance estimates (Cenzer et al. 
2013). Similar to model assessment in cross-validation and 
with holdout samples, this approach is a viable alternative 
to guard against overfitting and may produce more con-
servative estimates of model performance (Friedman et al. 
2009; Smith et al. 2014; Walsh et al. 2017). This approach 
is particularly germane for small sample sizes, such as 
those regularly used in human neuroimaging investiga-
tions. To estimate and correct for model optimism the fol-
lowing steps are used: (1) a classification model is trained 
on the full set of available data; (2) a set of bootstrap data 
sets are collected based upon the original data (200 rep-
lications were used in the current study); (3) models are 
estimated for each bootstrap sample replication; (4) the 
previously estimated bootstrap replication-derived model 
is then applied to the original data set; (5) differences in 
model performance between the models estimated in Steps 
3 and 4 are calculated and averaged (the resulting average 
metric reflects the optimism of the original model derived 
in Step 1); and (6) optimism-corrected performance esti-
mates are calculated by subtracting the optimism metric 
found in Step 5 from the performance metrics achieved 
by the original model estimated in Step 1. All perfor-
mance metrics are reported with this correction taken into 
account.

Prevalence‑sensitive performance evaluation

PPV [TP/(TP + FP)] and NPV [TN/(TN + FN)] were addi-
tionally calculated for each of the three models. PPV and 
NPV reflect the probability of true positive and true nega-
tive tests, respectively, and unlike sensitivity and specific, 
depend on the prevalence of the condition(s) in question in 
the setting where the classifier is applied. To evaluate clas-
sifier performance as a function of differential CFS preva-
lence across a variety of potential application contexts, 
PPV and NPV were calculated with incrementally varying 
prevalence in equal increments from 10 to 90%, including 
1 and 99%. Doing so allows for intuitive evaluation of 
model performance in different settings (e.g., screening 
of the general population or acting as a diagnostic marker 

in the clinic) in which the prevalence of CFS may vary 
greatly (Robinson et al. 2016).

Results

Participant characteristics

Participant demographics are displayed in Table 2. HC and 
CFS patients did not differ significantly in age (t31 = 0.28, 
p = .78). HC reported more years of education than CFS 
patients (t31 = 2.36, p = .03). All subjects were female with 
the exception of two males in the CFS group. In the CFS 
group, 83.3% identified as white, 11.1% as hispanic, and 
5.6% as black. In the HC group, 80% of participants identi-
fied as white, 13.3% as hispanic, and 6.7% black.

Model classification performance

Performance metrics for the primary models tested (sMRI 
and SR) are displayed in Table 5; all estimates displayed are 
optimism corrected. The model produced for the a priori 
sMRI feature set achieved an accuracy of 79.58% (sensitiv-
ity = 82.00%, specificity = 76.70%; see Table 3 for feature 
weights). The SR feature set achieved considerable greater 
values on all performance metrics (95.59% accuracy, sen-
sitivity = 95.44%, and specificity = 95.77%). Mean VAS 
ratings for each group on all six measures are displayed in 
Table 4.

To further clarify model performance, we also assessed 
the performance of a whole brain sMRI feature set with the 
same modelling approach (total number of features = 235, 
sMRI-W). This model achieved nearly identical perfor-
mance to our original, a priori-based sMRI model (accu-
racy = 79.44%, sensitivity = 82.00%, specificity = 76.70%, 
for feature weights refer to supplemental material Table S1).

Feature importance

Feature weights are squared to aid in assessing importance in 
classification and are displayed in Table 3 for both models.

sMRI Model There was a greater representation of the left 
hemisphere regions among those most highly ranked. These 
included the left caudal anterior cingulate cortex (area and 

Table 2   Demographic characteristics by group

CFS chronic fatigue syndrome, HC healthy controls

CFS HC

Age (mean ± SD) 48.33 (12.67) 47.13 (11.67)
Education (mean ± SD) 14.25 (2.43) 16.00 (1.66)
Sex (F/M) 16/2 15/0
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volume; cACC), post central gyrus thickness, rostral middle 
frontal cortex (area and volume), caudate, lingual gyrus (vol-
ume and area), and insular cortex. The right superior temporal 
lobe thickness, cACC volume, and superior parietal thickness 
were also particularly salient in the classification of patients.

Self-Report Model For the SR Model, the most salient fea-
ture weights were sleep quality and pain intensity (Weights 
for all features are displayed in Table 3). Their contribution to 
participant classification exceeded that of depression, anger, 
and anxiety ratings by nearly an order of magnitude.

Prevalence‑sensitive performance evaluation

PPV and NPV values for each model can be seen in Table 5. 
PPV and NPV were calculated for each feature set with 
prevalence varying from 1 to 99% (Table 6). In general, as 
prevalence increases, PPV increases and NPV decreases. 
When comparing feature sets, the sSR feature set performed 
the best, followed by sMRI across all prevalence rates.

Discussion

To our knowledge, this study represents the first investiga-
tion of the utility of sMRI features for the classification of 
CFS patients versus HC (Fig. 1). We used a bootstrap-based 

Table 3   SVM feature weights

Feature set

Feature Weight Rank

SR
 Sleep quality 0.179 1
 Pain intensity 0.159 2
 Depression − 0.020 3
 Anger − 0.016 4
 Anxiety − 0.009 5

sMRI
 Left caudal anterior cingulate area 0.86 1
 Left postcentral thickness 0.85 2
 Left caudal anterior cingulate volume 0.71 3
 Right superior temporal thickness 0.68 4
 Left insula thickness 0.61 5
 Left rostral middle frontal area 0.57 6
 Left rostral middle frontal volume 0.57 7
 Left lingual volume 0.56 8
 Left caudate 0.53 9
 Left lingual area 0.52 10
 Right caudal anterior cingulate volume 0.43 11
 Left precuneus thickness 0.42 12
 Right superior parietal thickness 0.42 13
 Right pallidum 0.41 14
 Right lateral occipital area 0.41 15
 Right superior parietal volume 0.40 16
 Right caudal anterior cingulate thickness 0.40 17
 Left caudal middle frontal area 0.39 18
 Left pallidum − 0.38 19
 Left postcentral volume 0.37 20
 Left caudal middle frontal volume 0.37 21
 Right lateral occipital volume 0.35 22
 Right superior temporal volume 0.34 23
 Left superior frontal area 0.34 24
 Right superior parietal area 0.33 25
 Left posterior cingulate area 0.31 26
 Left rostral anterior cingulate area 0.29 27
 Left precuneus volume 0.29 28
 Left insula volume 0.28 29
 Right caudal anterior cingulate area 0.27 30
 Right superior temporal area 0.27 31
 Left postcentral area 0.26 32
 Left posterior cingulate volume 0.26 33
 Left insula area 0.26 34
 Left superior frontal volume 0.24 35
 Left rostral anterior cingulate volume 0.24 36
 Right rostral anterior cingulate volume 0.24 37
 Right precuneus area 0.23 38
 Right inferior parietal area 0.23 39
 Left rostral anterior cingulate thickness 0.23 40
 Right precuneus volume 0.21 41

sMRI structural MRI feature set, SR self-report feature set

Table 3   (continued)

Feature set

Feature Weight Rank

 Left precuneus area 0.20 42
 Left parahippocampal volume − 0.20 43
 Right inferior parietal volume 0.18 44
 Right cuneus area − 0.17 45
 Left caudal middle frontal thickness 0.16 46
 Left caudal anterior cingulate thickness 0.15 47
 Right lateral occipital thickness 0.12 48
 Left rostral middle frontal thickness 0.12 49
 Left parahippocampal area 0.11 50
 Left posterior cingulate thickness − 0.11 51
 Right rostral anterior cingulate thickness 0.09 52
 Left lingual thickness 0.08 53
 Right cuneus volume − 0.08 54
 Left parahippocampal thickness − 0.08 55
 Right cuneus thickness − 0.07 56
 Right inferior parietal thickness 0.07 57
 Right rostral anterior cingulate area 0.06 58
 Left superior frontal thickness 0.04 59
 Right hippocampus 0.03 60
 Right precuneus thickness 0.00 61
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optimism correction, which allowed us to create a model that 
both uses all available data and maintains minimal bias is 
performance estimation. Our data suggest that sMRI features 
alone are able to classify CFS patients with ~ 80% accu-
racy, which is comparable to that obtained for other chronic 
musculoskeletal pain conditions, including FM (Robinson 
et al. 2015), irritable bowel syndrome (Labus et al. 2015), 
chronic low back pain (Baliki et al. 2011; Ung et al. 2014), 
and knee osteoarthritis (Baliki et al. 2011). Results were 
nearly identical when classifier performance was assessed 
on a reduced sample excluding the two male CFS patients 
and another randomly determined CFS patient, resulting in 
equivalent sample size and sex composition between groups. 
As expected, the modified models displayed a comparative 
decrease in sensitivity and increase in specificity in relation 
with the original estimates (see the Appendix for additional 
details). This suggests that the slightly unbalanced sample 
size and inclusion of men in the CFS group did not mean-
ingfully bias classifier performance. Results also suggest 

that performance is largely unchanged with the inclusion 
of a whole brain feature set versus our theoretically derived 
feature set. However, future replication of our model perfor-
mance in other samples is needed.

When interpreting SVM feature weights, it is important to 
emphasize that these cannot be interpreted in the same way 
as voxel weights in standard, GLM-based mass-univariate 
analyses. SVM feature weights do not support inferences 
regarding underlying biological processes that separate 
groups (Haufe et al. 2014). Rather, these weights exist in 
the context of the entire multivariate pattern, in which the 
direction and magnitude of the weight indicate influence 
on classifier decision (Mansson et al. 2015). Furthermore, 
although weights assigned to individual features reflect the 
relative importance of those features in calculating the dot 
product used to predict class membership (i.e., which side 
of the hyperplane each case falls on), they do not neces-
sarily reflect the biological states that may distinguish CFS 
patients from healthy controls. They also do not imply that 
features with relatively lower weights do not meaningfully 
contribute to classification decisions. Features were selected 
from the previous work that displayed structural and func-
tional connectivity abnormalities in CFS patients (Okada 
et al. 2004; Boissoneault et al. 2016, 2018; Gay et al. 2016; 
Wortinger et al. 2016). Performance metrics for the sMRI 
model suggest initial convergence among those regions that 
display abnormalities and those that aid in structure-based 
classification of CFS patients. As noted above, although all 
features contributed to the observed performance estimates, 

Table 4   Mean VAS ratings by 
group

HC healthy control, CFS chronic fatigue syndrome

HC mean (SD) CFS mean (SD) t31 p Cohen’s d

Fatigue 7.87 (9.35) 52.33 (20.17) 7.85 <  .0001 2.83
Sleep quality 15.33 (21.81) 56.11 (19.32) 5.70 <  .0001 1.98
Pain intensity 1.87 (5.46) 43.28 (22.39) 6.98 <  .0001 2.54
Depression 4.47 (15.67) 32.44 (26.42) 3.60 .001 1.29
Anxiety 2.67 (6.11) 39.94 (27.65) 5.10 <  .0001 1.87
Anger 0.13 (0.52) 24.11 (24.22) 4.20 .0006 1.40

Table 5   Classification results

PPV positive predictive value, NPV negative predictive value, sMRI 
structural MRI feature set, SR self-report feature set

Feature 
set

Accuracy 
(%)

Sensitivity 
(%)

Specific-
ity (%)

PPV (%) NPV (%)

sMRI 79.58 82.00 76.70 81.96 76.70
SR 95.59 95.44 95.77 96.74 95.43

Table 6   Predictive values by 
model accounting for variable 
prevalence

sMRI structural MRI feature set, SR self-report feature set, sMRI + SR combined structural MRI and self-
report feature set

Prevalence (%)

1 10 20 30 40 50 60 70 80 90 99

Positive predictive value
 sMRI 3.43 28.11 46.80 60.13 70.12 77.87 84.07 89.14 93.34 96.94 99.71
 SR 18.56 71.48 84.94 90.63 93.77 95.76 97.13 98.14 98.90 99.51 99.99

Negative predictive value
 sMRI 99.76 97.46 94.46 90.86 86.47 80.99 73.96 64.61 51.58 32.13 4.13
 SR 99.95 99.47 98.82 98.00 96.92 95.45 93.33 90.00 84.00 70.00 17.50
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certain features exerted much greater influence on classifica-
tion than others.

While the previous studies have identified global and 
focal brain abnormalities in brain perfusion, function, and 
structure in CFS patients (Okada et al. 2004; Boissoneault 
et al. 2016, 2018; Gay et al. 2016; Wortinger et al. 2016), it 
appears that a subset of these regions is most salient in the 
classification of CFS patients from healthy controls. Among 
these, we found that regions that most contribute to classi-
fication include aspects of midline cortical and subcortical, 
parietal, temporal, and occipital structures. Taken together, 
these regions subsume multiple functions including cogni-
tive, emotional, reward, sensory, visual, and regulatory pro-
cesses. This constellation is consistent with the range of CFS 
symptomatology. Functional perturbations relative to HC in 
these regions during wakeful rest (Boissoneault et al. 2016; 
Gay et al. 2016) and task performance (Miller et al. 2014) 
have been previously reported in CFS.

For example, a third of the 15 highest ranked features were 
estimates from the cACC and rostral middle frontal gyrus. 
These regions are involved in both cognitive and affective 
processes, and may be particularly important for the inte-
gration of these elements of experience. The rostral medial 
aspect of the PFC may be particularly involved in inhibitory 
functions of both cognitive and affective processes, while 
the cACC, particularly salient to CFS, is involved in cogni-
tive aspects of movement, including intention (Hoffstaedter 

et al. 2014). In CFS patients, our group previously identified 
resting-state perturbations in functional connectivity among 
the precuneus and basal ganglia structures (Boissoneault 
et al. 2018), which may be related to abnormalities in atten-
tion switching or reward-related gating during attentional 
switching. The potential importance of these processes is 
confirmed in relatively high SVM weights assigned to these 
structures in the present analysis. Other studies have also 
demonstrated structural, functional, and neurometabolic per-
turbations in occipital lobe structures in CFS patients (Puri 
et al. 2002, 2012; Boissoneault et al. 2016). Our findings 
suggest that these structures may further aid in discrimi-
nating from among patients and controls. It is also notable 
that among the highest ranked features, there was a greater 
representation of the left hemisphere than right hemisphere 
estimates. Future studies should examine lateralization of 
structural abnormalities in chronic fatigue syndrome to aid 
in identifying potential hemisphere-specific discriminatory 
mechanisms.

As previously noted, we also tested a classification model 
using SR measures of affect and pain. Clinical utility of this 
classifier is limited, because CFS diagnosis was confirmed as 
part of the study screening process. Thus, the SR model used 
in this investigation was intended primarily as a compara-
tor for the sMRI model, so that its potential utility in clini-
cal settings could be gauged. Classification of CFS patients 
with this model was approximately 96% across performance 

Fig. 1   Analysis pipeline used to classify CFS patients and HC. Two 
models using different features were compared: (1) FreeSurfer seg-
mented regional estimates based upon previously detected functional 
abnormalities and (2) clinical and affective VAS ratings. Across fea-
ture sets, classification was performed with SVM and performance 
evaluated following bootstrap optimism correction. PPV and NPV 

were then calculated based upon incrementally increasing estimates 
of CFS prevalence to aid in assessing clinical utility of the results. 
sMRI structural MRI feature set, VAS visual analogue scale, SR self-
report VAS rating feature set, SVM support vector machine, PPV pos-
itive predictive values, NPV negative predictive value, CFS chronic 
fatigue syndrome, HC healthy control
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indices. This is consistent with a previous report in which 
SR measures achieved ~ 85–95% classification accuracy 
distinguishing patients with fibromyalgia syndrome from 
HC (Robinson et al. 2015). Consistent with the diagnostic 
criteria for CFS, which emphasize musculoskeletal pain and 
sleep disruption as secondary symptoms of CFS (Fukuda 
et al. 1994), SR measures of pain intensity and sleep quality 
were each strong contributors to the SR-only model. The 
SR model also performed considerably better than the sMRI 
model. This suggests that while sMRI features aid in clas-
sification, there is additional information vital to classifica-
tion that is not adequately captured in the sMRI feature set. 
Combinations of both functional and structural features may 
improve performance and give key mechanistic insights.

Finally, the utility and accuracy of any ML classifier also 
depend on the prevalence of the condition of interest in a 
particular setting (i.e., the base rate, or overall likelihood 
of encountering an individual with the condition), and will 
directly affect the PPV and NPV. For instance, the base rate 
of patients with a specific condition is likely much higher in 
a specialty clinic than among the general population (Robin-
son et al. 2016). In high prevalence settings, a biomarker will 
have an excellent PPV, but poor NPV even if specificity is 
very high. For this reason, PPV and NPV were calculated for 
each model on a spectrum of CFS prevalence ranging from 
1 to 99%. For reference, estimates of the prevalence of CFS 
in the general population range from 0.07 to 2.8% (Afari and 
Buchwald 2003; Vincent et al. 2012). Our results indicate 
that none of the models performed well at extremely high 
or low base rates due to expected drops in NPV and PPV, 
respectively. However, PPV and NPV for the SR model were 
above 80% for the range of base rates from 20 to 80%. It is 
obvious from these data that extremely accurate models will 
be needed to function as useful classifiers in settings where 
CFS is either very common (e.g., the clinic) or rare (e.g., the 
general population).

Study limitations and future directions

Because of this study’s cross-sectional nature, we were 
unable to determine whether perturbations in the structural 
features contributing to the sMRI model are cause or conse-
quence of CFS. Longitudinal studies are required to clarify 
whether individuals who exhibit similar abnormalities are 
predisposed to developing CFS or whether these abnormali-
ties are a consequence of CFS pathology. Our results provide 
additional support for the role of structural classification of 
CFS in regions with previously demonstrated functional 
alterations (Boissoneault et al. 2016, 2018; Gay et al. 2016). 
These regions may serve as targets for future neurometabolic 
studies to identify any underlying abnormalities. Similar to 
many classification studies of other chronic pain conditions 
[e.g., (Ung et al. 2014; Robinson et al. 2015)], the small 

sample size of our current investigation may represent a lim-
itation due to the risk of model overfit. However, optimism 
correction adds confidence to these results and decreases the 
likelihood of overfitting. Nevertheless, replication and exten-
sion of our study with a larger sample are needed. With the 
present samples, it is impossible to determine whether the 
features found to be important to classification are unique to 
CFS. Studies attempting to classify between patient groups 
will be necessary to increase model validity. In addition, 
given that a subset of CFS patients was misclassified by our 
sMRI models, it is possible that clinically meaningful sub-
groups exist within this population. Reliable identification of 
unbiased subgroups, however, is not feasible with the current 
sample size. Future studies will have to identify and validate 
subgroups within the CFS population based upon degree of 
morphological abnormality or with the inclusion of brain 
regions not assessed in the current investigation.

Conclusions

The results of our study demonstrate that structural brain 
features derived from frontal cortical and subcortical, pari-
etal, basal ganglia, and occipital regions can be used to clas-
sify patients with CFS using ML algorithms. In addition, our 
findings may generate new insights into the pathogenesis of 
CFS. Our sMRI classification model identified CFS patients 
with high accuracy. Model built on self-report features was 
found to outperform those built on structural estimates.
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