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Using the constraints imposed by the crystalline symmetry of FeSe and the experimentally observed
phenomenology, we analyze the possible pairing symmetry of the superconducting order parameter focusing on
intercalated and monolayer FeSe compounds. Such analysis leads to three possible pairing symmetry states—s

wave, d wave, and helical p wave. Despite the differences in the pairing symmetry, each of these states is fully
gapped with gap minimum centered above the normal state Fermi surface, in agreement with photoemission
data of Zhang et al. [Phys. Rev. Lett. 117, 117001 (2016)]. The analysis provides additional insights into the
possible pairing mechanism for each of these states, highlighting the detrimental role of the renormalized repulsive
intraorbital Hubbard U and interorbital U ′ and the beneficial role of the pair hopping J ′ and the Hund’s J terms,
as well as the spin-orbit coupling in the effective low-energy Hamiltonian.
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I. INTRODUCTION

The wealth of physical phenomena exhibited by the iron-
based superconductors has lead to an active field of research
with challenging open questions [1,2]. Notable among them is
the pairing symmetry and the mechanism of high temperature
superconductivity which they exhibit [3,4]. Recently the focus
has shifted towards the iron-selenide (FeSe) family of super-
conductors, with reported transition temperatures as high as
8 K in the bulk [5], 40 K in (Li1−xFex)OHFeSe [6], 65 K in
monolayer FeSe grown on a SrTiO3 [7], and even 109 K [8] in
the latter system.

The monolayer FeSe is fundamentally a single iron plane
with selenium atoms puckered in and out of that plane Fig. 1.
In practice the 2D plane is grown on a substrate (e.g., SrTiO3),
leading to undoped [9] or doped [7,10,11] monolayer FeSe.
Bulk FeSe [12–14] is a three dimensional crystal composed of
vertically aligned FeSe planes. Additional three dimensional
arrangements can be formed by sandwiching intercalates
between the FeSe planes [6,15–17], where each stack is
connected by a weak interlayer coupling [17].

The family of FeSe superconductors can thus be viewed
as different arrangements of the same material, rather than
altogether different materials. This suggests that the common
structural unit, namely the FeSe plane, is responsible for the
common electronic properties and, importantly, for supercon-
ductivity. Any differences in the physical characteristics—such
as differences in Tc or the appearance of nematicity in the
bulk FeSe, etc.—then presumably arise from differences in
doping, strength of the interlayer coupling, inversion symmetry
breaking of monolayer on a substrate, or from a nonelectronic
origin (e.g., interface phonons) [10,11].

Indeed the common electronic feature to these materials is
the presence of two electronlike Fermi surfaces centered at the
Brillouin zone edge (the M point). Further, angularly resolved
photoemission spectroscopy (ARPES) in the bulk [12,14],
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intercalated [16,17], and monolayer [7,10] shows that the
electronlike Fermi surface bands originate from two separate
binding energies at the M point (see Fig. 2). The bulk FeSe
further exhibits a hole Fermi surface at the Brillouin zone center
(� point) [12,14]; the intercalated and monolayer systems
have only electron Fermi surfaces. These differences can be
understood to be primarily due to the differences in the Fermi
energy (doping), as opposed to changes in the band structure.

The superconducting gap in (Li1−xFex)OHFeSe is reported
to be nodeless, nearly isotropic with gap size (13 ± 2) meV
in Ref. [17], and ∼10 meV in Ref. [16]. Further, synchrotron
ARPES in the monolayer shows an anisotropic gap, varying
from 8 meV to 13 meV [7]. The superconducting gap is also
claimed to show “back-bending,” i.e., the gap sits directly
above the normal state Fermi surfaces [7]. This last obser-
vation, upon which we elaborate later, is not trivial in that the
separation between the two bands that cross the Fermi surface
in the �M direction is only about ∼15 meV (see Fig. 2 in
Ref. [7]), thus comparable to the pairing gap itself.

Scanning tunneling microscopy (STM) experiments also
support the existence of a large superconducting gap in these
materials [6,18]. More interestingly, they show a hard gap
followed by not one but two peaks in the dI/dV , Fig. 3 [6].
The two peaks occur at 8.6 meV and 14.3 meV in intercalated
(Li1−xFex)OHFeSe [6] and 9 meV and 20.1 meV in mono-
layer [18]. The suggestion that the higher energy peak directly
reflects the superconducting gap is at odds with the monolayer
ARPES data, whose gap maximum is, as we stated, ∼13 meV
(as shown in Fig. 4 of Ref. [7], it never exceeds 14 meV, even
considering experimental uncertainty).

In this paper, we concentrate on understanding to what
degree do the crystalline symmetry of FeSe, and the experimen-
tally observed phenomenology mentioned above, constrain
the possible pairing symmetry of the superconducting order
parameter. We focus on intercalated (Li1−xFex)OHFeSe and
monolayer FeSe epitaxially grown on SrTiO3 where the 3D
dispersion effects are absent (although we ignore the inversion
symmetry breaking due to the substrate in the monolayer
FeSe). To this end, we build upon the low energy model that
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FIG. 1. Unit cell of the FeSe plane. There are 2-Fe per unit cell,
with Se atoms puckered above and below the Fe plane. The constant a
is the lattice spacing. The space group of the iron selenide is discussed
in Ref. [19]. The three space group generators [19] are a mirror across
the yz plane mx , a mirror across the Yz plane mX followed by a ( a

2 , a

2 )
translation, and an xy-plane mirror mz followed by a ( a

2 , a

2 ) translation,
where X = x + y and Y = −x + y.

respects the full space group symmetry of the material and
includes spin-orbit effects [19], but extend it in ways that
better account for the observed phenomenology of FeSe. Such
analysis leads us to three possible pairing symmetry states—s

wave, d wave, and helical p wave. Despite the differences
in the pairing symmetry, each of these states is fully gapped
with gap minimum centered above the normal state Fermi
surface. Our analysis also gives us insight into the possible
pairing mechanism for each of these states, highlighting the
detrimental role of the repulsive intraorbital Hubbard U and in-
terorbital U ′, and the beneficial role of the pair hopping J ′ and

FIG. 2. Sketch of Fermi surfaces as seen in intercalated and
monolayer FeSe. There are two points of high symmetry: the Brillouin
zone center � = (0,0) and the zone edge M = ( π

a
, π

a
). In the proper

2-Fe/UC picture (shown here), two electron pockets cross at the M

point. The Fermi surface crossing occurs along the MX direction,
where X marks the Brillouin zone boundary.

FIG. 3. Experimental result Fig. (2.C), taken from Ref. [6] under
the Creative Commons Attribution 4.0 International License.

the Hund’s J terms in the effective low-energy Hamiltonian.
(As explained in Sec. II B each of the interaction couplings
should be understood as renormalized and orbital or, more
precisely, Bloch function dependent.) The Hund’s coupling,
together with spin orbit coupling, was recently proposed by
one of us and Chubukov to explain the phenomenology and
the mechanism of pairing in KFe2As2 [20]. This is another
example of an iron-based superconductor with only one carrier
type (hole) Fermi surface.

The paper is organized as follows. In Sec. II, we introduce
the low energy effective model—including a new momentum-
dependent intrapocket spin-orbit coupling—as well as the sym-
metry allowed interaction couplings. In Sec. III, we determine
the values of the symmetry allowed parameters in the normal
state based on the detailed comparison with the ARPES ex-
periment. In Sec. IV we classify all pairing states based on the
symmetry. Armed with the values of the parameters obtained
in Sec. III, we then highlight the details of the phenomenology
of the superconducting state, and critically compare them with
the predictions for all pairing states. Assuming an overall time

FIG. 4. Bloch sphere. The unit sphere embedded in a 3D space,
where each orthogonal direction is associated with an SU(2) gener-
ator. The north pole (+τ3 direction) and south pole (−τ3 direction)
represent the M1 and M3 reference states, respectively.
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reversal symmetry, we find that only s, d, and helical p states
are compatible with the mentioned phenomenology. Section V
provides detailed analysis of the three pairing states. The
discussion and the outlook are presented in the final section.

II. MODEL

We employ an itinerant model developed in Ref. [19] for
the electronlike Fermi surfaces at the M point. This low
energy effective theory is constructed by requiring invariance
under the FeSe space group symmetries and time reversal.
Using the nomenclature of Ref. [19], the two electronically
relevant M-point representations are M1 and M3. We con-
struct doublets ψX,α(k) = (1X,α(k),3X,α(k))T and ψY,α(k) =
(1Y,α(k),3Y,α(k))T . Our starting Hamiltonian in the normal
state is

H0 =
∑

k

∑
αβ=↑ , ↓

ψ
†
M,α(k)

(
h

′αβ

X (k) �αβ

�
†
αβ h

′αβ

Y (k)

)
ψM,β(k), (1)

where

ψM,α(k) = (ψX,α(k),ψY,α(k))T . (2)

The matrix h′
X in Eq. (1) is the Hamiltonian for one

electronlike pocket:

h
′αβ

X (k) = hX(k)δαβ

+ [λz(kx − ky) + pz1
(
k3
x − k3

y

)
+pz2kxky(−kx + ky)]σαβ

3 τ1, (3)

where τi and σi are Pauli matrices acting in orbital and spin
space, respectively. This is an extension of the Hamiltonian for
a single electron pocket hX, developed in Ref. [19]:

hX(k) =
(

ε1 + k2

2m1
+ a1kxky −iv(kx + ky)

iv(kx + ky) ε3 + k2

2m3
+ a3kxky

)

≡ hX0(k) + hX3(k)τ3 + hX2(k)τ2. (4)

Because the Hamiltonian h
′αβ

X (k) is diagonal in spin space, its
spin-diagonal elements will be referred to as h

′ ↑
X ≡ h

′ ↑ ↑
X and

h
′ ↓
X ≡ h

′ ↓ ↓
X .

The motivation for extending the Hamiltonian is explained
in Sec. III. The prefactor of the k-linear term is denoted λz,
because it couples the orbital degrees of freedom with the
out-of-plane spin σz; k-cubic terms were also introduced with
prefactors pz1 and pz2. It should be noted that this momentum-
dependent spin-orbit acts within each pocket and does not
mix the electron pockets, i.e., it is intraband. The extended
Hamiltonian for the second electron pocket at the M point can
again be obtained by performing a mirror reflection in the yz

plane:

h′
Y (kx,ky) = σ1 − σ2√

2
h′

X(−kx,ky)
σ1 − σ2√

2
. (5)

Note that σ3τ1 changed sign under the mirror reflection,
because σ3 is an axial vector.

It was further shown in Ref. [19] that a momentum-
independent interband spin-orbit coupling is allowed by sym-
metry. Such term, parametrized by λ, comes from the coupling

FIG. 5. Sketch of electron pockets at the M point in the presence
of an interband spin-orbit coupling λ. The band degeneracy in the MX

direction is lifted, and the Fermi surface crossing becomes avoided.
Two new Fermi surfaces are formed—an inner and outer pocket.

of the orbital degrees of freedom with the in-plane spin vector
�σ = (σX,σY ), thus breaking the spin SU(2) symmetry:

hSOC =
∑

k

∑
αβ=↑ , ↓

ψ
†
X,α�αβψY,β + H.c.

=
∑

k

ψ
†
X, ↑

(
0 iλ

λ 0

)
ψY,↓ + ψ

†
X, ↓

(
0 iλ

−λ 0

)
ψY,↑

+ H.c. (6)

Another important consequence of this (interband) hSOC is the
lifting of the degeneracy in the direction of the Fermi surface
crossing, leading to the formation of an “inner” and “outer”
Fermi surface (see Fig. 5).

A. Bloch sphere

The Hamiltonian for an electron pocket h′
X has one band

that disperses downward and one band that disperses upward
and crosses the Fermi level. Because the difference in energy
between the bands at the Fermi level and the bands below the
Fermi level is an order of magnitude larger than the pairing
scale, it is useful to project onto the prior. This reduces the size
of the Hamiltonian by half, facilitating the symmetry analysis.

This projected basis can be visualized in terms of a Bloch
sphere, Fig. 4. For each spin-diagonal element, we write the
nonidentity part of Eq. (3) as

/h ≡ h
′ ↑
X (k) − hX0(k)

= hX3(k)τ3 + hX2(k)τ2 + hX1(k)τ1, (7)

noting that /h and h
′ ↑
X have equivalent eigenstates. We can then

define

/̂h ≡ /h

|/h| =
(

cos θ sin θ e−iφ

sin θ eiφ − cos θ

)
, (8)

where the Bloch angles are functions of momentum
(θ (k),φ(k)). The up- and down-spin Hamiltonians map into
each other as h

′ ↑
X (θ,π − φ) = h

′ ↓
X (θ,φ), and the two elec-
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tron pockets map into each other as h
′ ↑
X (θ (−kx,ky),π −

φ(−kx,ky)) = h
′ ↑
Y (θ (kx,ky),φ(kx,ky)).

The eigenstate of h
′ ↑
X that crosses the Fermi level has the

form

|X ↑〉 =
(

cos
θ

2
e−iφ, sin

θ

2

)T

. (9)

All other eigenstates can be obtained through the above men-
tioned symmetry relationships.

B. Interactions

There are 14 SU(2) invariant couplings at the M point
which contribute to the interacting Hamiltonian H M

int. We write
each interaction in terms of the M1 and M3 symmetry rep-
resentations, using the doublets 1α = (1X,α,1Y,α)T and 3α =
(3X,α,3Y,α)T . The 14 couplings are listed in Eq. (10) in a form
facilitating to applying mean field, and with each coupling
constant being labeled by the symmetry of the corresponding
mean field order parameter listed in Tables III, IV, and V:

H M
int =

∑
k

∑
α,β∈{↑ , ↓}

g
(1)
A1g

1†α(k)τ01∗
β(− k)1T

β (− k)τ01α(k) + g
(1)
B2g

1†α(k)τ31∗
β(− k)1T

β (− k)τ31α(k)

+ g
(1)
A2u

1†α(k)τ11∗
β(− k)1T

β (− k)τ11α(k) + g
(1)
B1u

1†α(k)τ21∗
β(− k)1T

β (− k)τ21α(k) + g
(3)
A1g

3†α(k)τ03∗
β(− k)3T

β (− k)τ03α(k)

+ g
(3)
B2g

3†α(k)τ33∗
β(− k)3T

β (− k)τ33α(k) + g
(3)
B2u

3†α(k)τ13∗
β(− k)3T

β (− k)τ13α(k) + g
(3)
A1u

3†α(k)τ23∗
β(− k)3T

β (− k)τ23α(k)

+ gt
Eu

((1†α(k)τ0(σ2σj )αβ3∗
β (− k))(3T

μ(− k)τ0(σjσ2)μν1ν(k)) + (1†α(k)τ3(σ2σj )αβ3∗
β(− k))(3T

μ(− k)τ3(σjσ2)μν1ν(k)))

+ gs
Eu

((1†α(k)τ0(σ2)αβ3∗
β(− k))(3T

μ(− k)τ0(σ2)μν1ν(k)) + (1†α(k)τ3(σ2)αβ3∗
β(− k))(3T

μ(− k)τ3(σ2)μν1ν(k)))

+ gt
Eg

((1†α(k)τ1(σ2σj )αβ3∗
β(− k))(3T

μ(− k)τ1(σjσ2)μν1ν(k)) + (1†α(k)τ2(σ2σj )αβ3∗
β(− k))(3T

μ(− k)τ2(σjσ2)μν1ν(k)))

+ gs
Eg

((1†α(k)τ1(σ2)αβ3∗
β(− k))(3T

μ(− k)τ1(σ2)μν1ν(k)) + (1†α(k)τ2(σ2)αβ3∗
β (− k))(3T

μ(− k)τ2(σ2)μν1ν(k)))

+ g
(13)
A1g

(1†α(k)τ01∗
β(− k)3T

β (− k)τ03α(k) + 3†α(k)τ03∗
β(− k)1T

β (− k)τ01α(k))

+ g
(13)
B2g

(1†α(k)τ31∗
β(− k)3T

β (− k)τ33α(k) + 3†α(k)τ33∗
β(− k)1T

β (− k)τ31α(k)). (10)

These 14 invariant couplings can be given a physical meaning
by relating them to the “Bloch” Kanamori couplings Ua ,
U ′

a , Ja , and J ′
a , where the couplings are split into couplings

which are symmetry related. The on-site Bloch-Kanamori
Hamiltonian is Eq. (11), which takes into account the iron
mirror symmetries:

HBK(R ≡ Ri + δ)

= 1

2

∑
m

Um

∑
αβ

d†
mα(R)dmα(R)d†

mβ(R)dmβ (R)

+ 1

2

∑
m�=m′

U ′
mm′

∑
αβ

d†
mα(R)dmα(R)d†

m′β(R)dm′β(R)

+ 1

2

∑
m�=m′

Jmm′
∑
αβ

d†
mα(R)dm′α(R)d†

m′β(R)dmβ(R)

+ 1

2

∑
m�=m′

J ′
mm′

∑
αβ

d†
mα(R)dm′α(R)d†

mβ(R)dm′β(R). (11)

Using the method discussed in Ref. [19], we relate the
parameters of the symmetry allowed couplings of Eq. (10) to
Bloch-Kanamori couplings of Eq. (11). The results are listed
in Table I, and again with their corresponding mean field order
parameters in Tables III, IV, and V.

Lastly, it should be noted that we consider only tree-level
electron-electron Coulomb-type interactions, owing to the
existence of electronlike (and no holelike) Fermi surfaces in
monolayer [7] and intercalated FeSe [16,17]. In literature it
has been shown that attractive interactions can be produced

in monolayer FeSe by coupling to nematic-orbital [21] and
spin [22] fluctuations, which lead to spin-singlet s- and
d-wave superconductivity, respectively. However, this analysis
highlights an important problem for these mechanisms: any
attractive interaction in the spin-singlet s-wave (A1g) and
d-wave (B2g) channels must overcome the large intraorbital
Hubbard repulsion Ua in order to stabilize pairing.

TABLE I. Invariant coupling constants.

g
(1)
A1g

U1 + J ′
11

g
(1)
B2g

U1 − J ′
11

g
(1)
A2u

U ′
1 + J11

g
(1)
B1u

U ′
1 − J11

g
(3)
A1g

U3 + J ′
33

g
(3)
B2g

U3 − J ′
33

g
(3)
B2u

U ′
3 + J33

g
(3)
A1u

U ′
3 − J33

gt
Eu

U ′
1X3X − J1X3X

gs
Eu

U ′
1X3X + J1X3X

gt
Eg

U ′
1X3Y − J1X3Y

gs
Eg

U ′
1X3Y + J1X3Y

g
(13)
A1g

J ′
1X3X + J ′

1X3Y

g
(13)
B2g

J ′
1X3X − J ′

1X3Y
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TABLE II. Luttinger invariants: FeSe. These parameters were
acquired by fitting Eq. (4) to bulk ARPES data [12].

a1 782.512 meV Å
2

a3 −1400 meV Å
2

1
2m1

−492.01 meV Å
2

1
2m3

1494.14 meV Å
2

v 224.406 meV Å

III. MODEL-EXPERIMENT COMPARISON AND FITS

In Sec. II we discussed the low-energy effective theory
derived from the FeSe plane’s space group symmetry. The
low-energy theory captures four electronically relevant bands
emerging from two 2D symmetry representations at the M

point, M1 and M3. The energy of these representations at the
M point are ε1 and ε3; the precise geometry of these bands
emerging away from the M point depends on values of the
Luttinger invariants: a1, a3, m1, m3, and v. We constrain our
model by fitting the invariants to bulk FeSe ARPES [12],
which clearly displays bands originating at the M point at
ε1 = −5 meV and ε3 = −55 meV. Because of the shared
structural unit (the FeSe plane), the intercalated and monolayer
FeSe systems should have the same Luttinger invariants as
Table II, up to a uniform shift in the binding energies ε1 and
ε3 by ∼−50 meV.

The presence of interband spin-orbit coupling has been
shown in other Fe-based superconductors [23], the effect of
which is a splitting of the band degeneracy in the direction of
the Fermi surface crossing (XM direction) and an avoidance
of the Fermi surface crossing (see Fig. 5). The monolayer
FeSe shows a band structure comprised of two electronlike
Fermi surfaces at the M point with no mixing of the Fermi
surfaces up to an ∼5 meV resolution [7]. This constraint on
the size of the interband spin-orbit coupling λ, which directly
leads to the Fermi surface avoidance, is further supported by
photoemission in bulk FeSe, which shows no resolved avoided
crossing [12,13]. However, ARPES in the bulk [13] further
shows an 11 meV band splitting below the Fermi level in the
�M direction. This band splitting cannot be described by an
interband spin-orbit coupling, which opens a splitting of order
λ in the direction of the crossing, yet only opens a splitting of
order λ2/|ε1 − ε3| in the �M direction below the Fermi level.
Simply put, an interband spin-orbit coupling large enough to
open the 11 meV splitting below the Fermi level would violate
experiment by producing a large Fermi surface avoidance.

In order to resolve this problem, we introduced the sym-
metry allowed k-linear intraband spin-orbit coupling λz [and
higher order invariants pz1 and pz2; see Eq. (3)]. This term
directly splits the band crossing below the Fermi level but
does not mix the two bands that cross the Fermi level, thus
supporting an 11 meV splitting (shown in the �M direction in
Fig. 6), while not avoiding the electron Fermi surfaces.

In classifying and disqualifying pairing states, it is practical
to constrain the many parameters of the model; however, lim-
iting the study to an overconstrained model risks unjustifiably
disqualifying states. Thus we constrain the Luttinger invariants
of our model to Table II, as discussed above, and allow for the

FIG. 6. Band structure in the �M and XM directions. The
interband spin-orbit coupling is turned off (λ = 0) thus the bands
are fourfold degenerate in the XM direction. It should be noted
that, away from high symmetry directions, each band has a double
degeneracy, due to inversion and time-reversal symmetry. The other
model parameters used here are the Luttinger invariants Table II from

fitting Ref. [12], and the following: λz = 26 meV Å
−1

, pz1 = pz2 =
0, ε1 = −55 meV, and ε3 = −105 meV. The bands εX and ε̃X are
the eigenstates of h′α

X [see Eq. (3) and below Eq. (4)]; the bands εY

and ε̃Y are the eigenstates of h′α
Y , where α = ↑ or ↓.

values of the bands at the M point to vary in a ±10 meV
window about ε1 = −55 meV and ε3 = −105 meV (for in-
tercalated and monolayer FeSe). With respect to the spin-orbit
couplings, we choose λz (and higher order invariants) so as
to produce a splitting less than or equal to 20 meV below the
Fermi level, and we constrain interband spin-orbit λ � 5 meV
as discussed previously. These constraints are chosen with the
understanding that the key features to reproduce in the normal
state are two bands crossing the Fermi level to produce two
electronlike Fermi surfaces, and where superconductivity pri-
marily depends on the band structure close to the Fermi level.

IV. PAIRING AND SPIN-ORBIT COUPLING

In the absence of any spin-orbit coupling, the Hamiltonian
has full SU(2) spin symmetry. The intraband spin-orbit λz

couples the orbital degrees of freedom to the out-of-plane spin,
reducing the SU(2) spin symmetry to U(1). This reduced U(1)
symmetry reflects the freedom to rotate the in-plane spin vector
�σ = (σ1,σ2) about the z axis.

In simpler terms, space group operations act on the orbital
degrees of freedom (τi), while the spin transformations act on
the spin degrees of freedom (σi). The introduction of a term
in the Hamiltonian that goes as some product of τi and σi

demands that space group and spin transformations transform
together so as to preserve the invariance of the Hamiltonian
under space group transformations. The out-of-plane spin-orbit
λz introduces a term in the Hamiltonian that is proportional to
σz. Thus, while rotations about the z axis are still symmetries of
the Hamiltonian, i.e., [σz,H ] = 0, rotations about any in-plane
spin axis must be accompanied by rotations in the orbital space.

Only the spin-triplet pairing terms, whose generic form is

�d · ψT
M,α(−k)(iσ2 �σ )αβψM,β(k),
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are effected by spin-orbit coupling. Without spin-orbit cou-
pling, spin triplets have a full SU(2) spin symmetry and
thus the freedom to rotate the �d vector in any direction. The
introduction of λz decouples the out-of-plane component of
�d from its in-plane component. Triplets formed from in-plane
�d vector, i.e., iσ2 �σ = iσ2(σ1,σ2), have their spin symmetry
reduced to U(1) and are free to rotate about the z axis. On the
other hand, the out-of-plane spin-triplet pairs, with �d vector
iσ2σ3, become fixed and transform identically to (i.e., same
irreducible representation as) a singlet pair.

Before breaking the remaining U(1) spin symmetry, the
in-plane spin mirror (which is written in terms of Pauli matrices
in spin space as iσz) is a symmetry of the Hamiltonian; thus
the orbital and spin degrees of freedom are not constrained
to transform together under the in-plane mirror mz. In this
scenario spinors ψX and ψY transform odd and even under the
in-plane mirror, respectively, independent of their spin index.
Thus intraband pairings of the form ψX ⊗ ψX and ψY ⊗ ψY

transform even under the in-plane mirror, while interband
pairings of the form ψX ⊗ ψY transform odd under the in-plane
mirror.

Introducing momentum independent spin-orbit λ breaks the
remaining spin symmetry. This means that now [σz,H ] �= 0
and thus there exists no axis of rotation in spin space about
which the Hamiltonian is invariant. The spinors ψα

X and ψα
Y are

now required to transform both orbital and spin together under
the in-plane mirror. Consequently, now intraband pairings with
opposite-spin ψ

↑
X ⊗ ψ

↓
X and interband pairings with same-spin

ψ
↑
X ⊗ ψ

↑
Y transform even under the in-plane mirror, while

intraband pairings with like-spin ψ
↑
X ⊗ ψ

↑
X and interband

pairings with opposite-spin ψ
↑
X ⊗ ψ

↓
Y transform odd.

This in turn divides pairing into two classes: those pairings
even under the in-plane mirror, Table IV, and those which are
odd, Table V. The even class is represented by the �1 Nambu
spinor,

�1(k) = (ψ↑
X(k),ψ↓

Y (k),ψ↓
X
†(− k), − ψ

↑
Y
†(− k))T . (12)

The odd class is represented by �2a and �2b,

�2a(k) = (ψ↑
X(k),ψ↓

Y (k),ψ↑
X
†(− k), − ψ

↓
Y
†(− k))T ,

(13)
�2b(k) = (ψ↓

X(k),ψ↑
Y (k),ψ↓

X
†(− k), − ψ

↑
Y
†(− k))T .

The two classes are completely independent, with no single
irreducible (pairing) representation of the symmetry existing
in both classes simultaneously.

The two spinors in the odd classes �2a and �2b are related
by a spin flip. They constitute Kramer’s pairs, which are
independent in the presence of inversion symmetry. This is
evident in the double degeneracy of the bands throughout the
Brillouin zone. As a consequence of spin-orbit coupling, �2a

and �2b map into one another under the 45◦ mirror mX. This
mapping of independent spinors into one another allows for
odd class pairing states to change sign under the mirror mX

without requiring a node.

Comparison to experiment

The absence of a Fermi surface avoidance (to within
∼ 5 meV experimental resolution) in the monolayer FeSe [7]

TABLE III. Pairing symmetries with spin-orbit λz and without
spin-orbit λ. Each pairing is listed with its irreducible symmetry rep-
resentation and invariant coupling discussed in Sec. II B. (Notation:
σ1 ≡ σX , σ2 ≡ σY , and σ3 ≡ σz.)

Intraband �X,�Y

Pairing Symmetry irrep. Coupling

1T τ0iσ21 A1g U1 + J ′
11

3T τ0iσ23 A1g U3 + J ′
33

1T τ3iσ21 B2g U1 − J ′
11

3T τ3iσ23 B2g U3 − J ′
33

1T (τ0 ± τ3)iσ23 Eu U ′
1X3X + J1X3X

1T (τ0 ± τ3)σ2σ33 Eu U ′
1X3X − J1X3X

1T (τ0 ± τ3)σ2 �σ3 Eu × U(1) U ′
1X3X − J1X3X

Interband �XY ,�YX

Pairing Symmetry irrep. Coupling

1T τ1iσ21 A2u U ′
1 + J11

3T τ2iσ2σ33 A2u U ′
3 − J33

3T τ1iσ23 B2u U ′
3 + J33

1T τ2iσ2σ31 B2u U ′
1 − J11

1T τ2iσ2 �σ1 B1u × U(1) U ′
1 − J11

3T τ2iσ2 �σ3 A1u × U(1) U ′
3 − J33

1T (τ1 ± iτ2)iσ23 Eg U ′
1X3Y + J1X3Y

1T (τ1 ± iτ2)σ2σ33 Eg U ′
1X3Y − J1X3Y

1T (τ1 ± iτ2)σ2 �σ3 Eg × U(1) U ′
1X3Y − J1X3Y

seems to suggest that interband spin-orbit coupling λ does not
play the primary role in superconductivity at the M point,
although, as we discuss later, it does play a secondary role.
In Table III we list all symmetry derived pairing states at the
M point in absence of interband spin-orbit coupling λ. They
are separated into two symmetry separated classes—intraband
and interband pairing. To understand this distinction, note that
the energies of the single-particle fermionic excitations are the
positive eigenvalues of the matrix⎛

⎜⎝
εX(k) 0 �∗

X �∗
YX

0 εY (k) �∗
XY �∗

Y

�X �XY −εX(k) 0
�YX �Y 0 −εY (k)

⎞
⎟⎠.

The εX(k) is the normal state band energy of the pocket X [i.e.,
eigenvalue of Eq. (3)], and similarly εY (k) is the band energy
of the pocket Y . The intraband �X and �Y pair directly on the
Fermi surfaces, and the interband �XY and �YX directly pair
above/below the Fermi level. From Table III it can be seen that
there exists no irreducible representation that is simultaneously
intraband and interband, and thus no state that will open gaps
both on the Fermi level and above/below the Fermi level. As
an immediate consequence, all interband pairing states are
disqualified. This is because interband pairing states will not
open a gap at the Fermi level (save for at the Fermi surface
crossings) for T = Tc; thus no superconducting instability
exists in those channels.

In this scenario, intraband pairing is completely indepen-
dent between the two electron pockets, with no term to mix
the two pockets. The problem simplifies into two symmetry
related one-band problems. A general property of one-band
superconductors is the presence of the gap minimum above
the original Fermi surfaces, i.e., back-bending, in agreement
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TABLE IV. Pairing symmetries with spin-orbit λ: �1.

Pairing Symmetry irrep. Coupling

1T τ0iσ21 A1g U1 + J ′
11

3T τ0iσ23 A1g U3 + J ′
33

1T [(τ2 + iτ1)i + (τ2 − iτ1)σ3]3 A1g U ′
1X3Y − J1X3Y

1T τ3iσ21 B2g U1 − J ′
11

3T τ3iσ23 B2g U3 − J ′
33

1T [(τ2 + iτ1)(−i) + (τ2 − iτ1)σ3]3 B2g U ′
1X3Y − J1X3Y

1T [(τ2 + iτ1)σ3 + (τ2 − iτ1)(−i)]3 A2g U ′
1X3Y − J1X3Y

1T [(τ2 + iτ1)σ3 + (τ2 − iτ1)i]3 B1g U ′
1X3Y − J1X3Y

1T (τ0 ± τ3)iσ23 Eu U ′
1X3X + J1X3X

1T (τ0 ± τ3)σ2σ33 Eu U ′
1X3X − J1X3X

1T τ2iσ2 �σ1 Eu U ′
1 − J11

3T τ2iσ2 �σ3 Eu U ′
3 − J33

with observations in the monolayer [7]. This leaves only the
s- (A1g), d- (B2g), and p-wave [Eu × U(1)] pairing states in
Table III.

However, STM experiments show a hard gap followed
by not one but two peaks in the dI/dV , Fig. 3 [6]. The
two peaks occur at 8.6 meV and 14.3 meV in intercalated
(Li1−xFex)OHFeSe [6], and 9 meV and 20.1 meV in mono-
layer [18]. The suggestion that these two peaks come from
the superconducting gap is at odds with monolayer ARPES,
whose gap maximum is established to be less than 14 meV
(even considering uncertainty) [7]. This suggests the presence
of interband pairing, where the second peak originates from
the gap opened above/below the Fermi level. In fact, without
interband spin-orbit coupling, there is no way to produce a
two-peak dI/dV spectrum. This is because the peaks are
indicative of singularities in the density of states [24]. For an
anisotropic superconductor these singularities come from the
gap maximum, which is a saddle point. Two symmetry related
one-band superconductors will each identically produce only
one gap and thus only one gap maximum; thus only one peak
would be measured by tunneling.

The simultaneous observation of interband phenom-
ena [6,7,18] and the experimental constraints on the inter-
band spin orbit (λ � 5 meV [7]) lend themselves towards
the existence of a hierarchy. In this hierarchy, the leading
order contribution to superconductivity comes from the in-
traband pairing states—s, d, and p wave—and where the
introduction of a small interband spin-orbit coupling leads
to an experimentally observed two-peak tunneling spectrum.
The latter is primarily accomplished by the breaking of the
SU(2) spin symmetry, which changes the symmetry of the spin-
triplet pairs. This produces symmetry states of both intra- and
interband character (see Tables IV and V), thus opening gaps
above and below the Fermi level. Now a two-peak spectrum
is possible, with the second peak coming from the gap opened
above the Fermi level (such as is shown in Fig. 7).

We studied every possible pure symmetry state and found
that only those states which contributed both intraband and
interband pairing could generically meet our criteria: (i) node-
less, (ii) two-peak dI/dV spectrum, and (iii) back-bending.
Further, because the pairing energy is of the order of half
the difference in the band energies, we found that intraband
pairing had to dominate in order to preserve the shape of the

TABLE V. Pairing symmetries with spin-orbit λ: �2a (�2b).

Pairing Symmetry irrep. Coupling

1T i[(τ0 + τ3)σ3 + (τ0 − τ3)i]3 A1u U ′
1X3X − J1X3X

1T i[(τ0 + τ3)i + (τ0 − τ3)σ3]3 B1u U ′
1X3X − J1X3X

1T i[(τ0 + τ3)(−i) + (τ0 − τ3)σ3]3 A2u U ′
1X3X − J1X3X

1T τ1iσ21 A2u U ′
1 + J11

3T τ2iσ2σ33 A2u U ′
3 − J33

1T i[(τ0 + τ3)σ3 + (τ0 − τ3)(−i)]3 B2u U ′
1X3X − J1X3X

3T τ1iσ23 B2u U ′
3 + J33

1T τ2iσ2σ31 B2u U ′
1 − J11

1T (τ1 ± iτ2)iσ23 Eg U ′
1X3Y + J1X3Y

1T (τ1 ± iτ2)σ2σ33 Eg U ′
1X3Y − J1X3Y

back-bending. Scenarios involving only interband pairing, or
dominated by interband pairing, would result in a gap shifted
off the normal state Fermi surface, and possibly even merged
into a unified gap minimum in between the normal state Fermi
surface. Of all symmetry derived pairings at the M point, only
the s-, d-, and helical p-wave states could meet these criteria.

V. s WAVE

In this section we consider time-reversal invariant s-wave
superconductivity, both with and without interband spin-orbit
λ. Without spin-orbit λ the two electron pockets remain
independent, and the problem reduces to two independent
symmetry related one-band superconductors. Pairing within
the electron pocket opens up a gap at the Fermi level; however,
no interband pairing exists to open a gap above/below the
Fermi level. We show that this scenario cannot produce the
two-peak tunneling spectra, as there is no pairing above/below
the Fermi level to open a second gap. To complicate matters
further, the spin-singlet nature of the s-wave pairing has the

FIG. 7. Upper E+ and lower E− superconducting band in the
�M direction for the A1g state. The blue and yellow curves are the
dispersions without and with pairing, respectively. In the presence of
pairing, the lower band E− has two local minima directly above the
original Fermi surfaces. The lower and upper bands are split, with the
largest contribution to the splitting coming from the interband pair-
ing �t . The parameters used are �1 = 10.8 meV, �3 = 7.2 meV,
�t = −3 meV, λ = 5 meV, ε1 = −45 meV, ε3 = −95 meV, λz =
26 meV Å, and pz1 = pz2 = 0.
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added theoretical problem of overcoming the large repulsive
intraorbital Hubbard U (see Table III). Conveniently, the spin-
orbit coupling λ provides a remedy to both these problems, by
introducing an s-wave spin-triplet pair which pairs directly
above/below the Fermi level. In this way, a fully gapped
spectrum with a two-peak dI/dV and back-bending can be
produced. Further, the introduced spin-triplet pair is attractive
for (renormalized) Hund’s J larger than the interorbital Hub-
bard U ′ and independent of the strength of intraorbital U .

The s-wave symmetry (A1g) is invariant under all space
group operations. Without the momentum-independent spin-
orbit coupling λ, there are only two A1g pairings: 1T �1iσ21
and 3T �3iσ23. Both pairings are of the intraband type, consti-
tuting two independent symmetry related one-band problems.
Choosing to study the X pocket, we define the Nambu spinor
�X(k) = (ψ↑

X(k),ψ↓
X
†(− k))T . The pairing Hamiltonian is

then written as Eq. (14),

HBdG =
∑

k

�
†
X(k)

(
h

′ ↑
X (k) �̂X

�̂X −h
′ ↓
X

T (− k)

)
�X(k), (14)

where the �̂X is the constant 2 × 2 matrix

�̂X =
(

�1 0
0 �3

)
. (15)

Noting that, because h
′ ↓
X

T (− k) = h
′ ↑
X (k), Eq. (14) can be

written as Eq. (16),

HBdG =
∑

k

�
†
X(k)

(
h

′ ↑
X (k) �̂X

�̂X −h
′ ↑
X (k)

)
�X(k). (16)

The normal state Hamiltonian h′α
X has two eigenvalues—one

upward and one downward dispersing band. We project HBdG

onto the state which crosses the Fermi level, as discussed in
Sec. II A:

HBdG =
∑

k

�
†
X(k)

(
εX(k) �X(k)
�X(k) −εX(k)

)
�X(k), (17)

where the constant 2 × 2 matrix �̂X is reduced to a scalar
function, inheriting its momentum dependence from the band
structure,

�X(k) = 〈X ↑ |�̂X|X ↑〉
= �1 + �3

2
+ �1 − �3

2
cos θ. (18)

The pairing function Eq. (18) was previously studied by one
of us in a previous work, Ref. [19]. In Eq. (17), �X(k) directly
mixes the particle and hole bands, thus opening a gap at the
Fermi level. It can be seen from Eq. (18) that the gap anisotropy
is centered about the average of the two order parameters �1

and �3, with fluctuations about the average proportional to
the difference in the order parameters. If �1 = �3, the gap is
isotropic. For fixed values of the order parameters such that
�1 �= �3, the fluctuations of the anisotropy about the average
depends on cos θ . Since cos θ measures the projection onto
the polar axis of the Bloch sphere, which itself represents the
reference states M1 and M3, the anisotropies fluctuate largest
where the mixing between M1 and M3 is smallest (i.e., the
kx = −ky direction).

The pairing function for the second electron pocket �Y (k)
is a mirror image of �X(k) under mx , i.e., �X(kx,ky) =
�Y (−kx,ky). No mixing occurs between these two pockets,
and no gap is opened above/below the Fermi level.

Pairing with spin-orbit coupling λ

The interband spin-triplet pairing Eg × U(1) directly opens
gaps above/below the Fermi level, but does not open any
gap at the Fermi level. The momentum-independent spin-orbit
coupling λ breaks the Eg × U(1) spin-triplet state into four
one-dimensional representations, one of which is A1g . It is

�t1
T
α ((τ2 + iτ1)iδαβ + (τ2 − iτ1)σαβ

3 )3β. (19)

Spin singlets do not change symmetry with spin-orbit
coupling; therefore, the two original pairings�1 and�3 remain
A1g . The problem becomes a full two-band superconductor,
with the HBdG written as

HBdG =
∑

k

�
†
1(k)

⎛
⎜⎜⎝

h
′ ↑
X (k) � �̂

†
X �̂

†
YX

�† h
′ ↓
X (k) �̂

†
XY �̂

†
Y

�̂X �̂XY −h
′ ↑
X (k) −�

�̂YX �̂Y −�† −h
′ ↓
X (k)

⎞
⎟⎟⎠

×�1(k), (20)

where the constant 2 × 2 pairing matrices are

�̂X = �̂Y =
(

�1 0
0 �3

)
(21)

and

�̂XY = �̂
†
YX = �t

(
0 i

1 0

)
. (22)

Defining the projector

�
†
1 =

⎛
⎜⎝

|X ↑〉 0 0 0
0 |Y ↓〉 0 0
0 0 |X ↑〉 0
0 0 0 |Y ↓〉

⎞
⎟⎠ (23)

allows us to project HBdG onto the reduced band basis, as
discussed in Sec. II A. This reduces the size of the Hilbert space
by half, greatly simplifying the analysis. The Hilbert space is
halved and the pairing Hamiltonian becomes

H(k) ≡ �1HBdG(k)�†
1

=

⎛
⎜⎝

εX(k) λκ(k) �X(k) �tκ(k)
λκ∗(k) εY (k) �tκ

∗(k) �Y (k)
�X(k) �tκ(k) −εX(k) −λκ(k)

�tκ
∗(k) �Y (k) −λκ∗(k) −εY (k)

⎞
⎟⎠. (24)

The function κ(k) is defined as the projection

κ(k) = 〈X ↑ |
(

0 i

1 0

)
|Y ↓〉. (25)

The phase on the interband mixing λκ and the interband
pairing �tκ both come from κ(k). There is no relative phase
between the two; thus it is possible to define a unitary transform
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Eq. (26) which completely eliminates the phase,

V1 =

⎛
⎜⎜⎝

κ∗
|κ| 0 0 0
0 1 0 0
0 0 κ∗

|κ| 0
0 0 0 1

⎞
⎟⎟⎠. (26)

Rotating H into the new basis via V1HV
†

1 produces

H(k) =

⎛
⎜⎝

εX λ|κ| �X �t |κ|
λ|κ| εY �t |κ| �Y

�X �t |κ| −εX −λ|κ|
�t |κ| �Y −λ|κ| −εY

⎞
⎟⎠. (27)

Let τi and σi be Pauli matrices; the 4 × 4 Hamiltonian Eq. (27)
can be written in the convenient form

H = τ3(A + B3σ3 + B1σ1) + τ1(C + D3σ3 + D1σ1), (28)

where A = 1
2 (εX + εY ), B3 = 1

2 (εX − εY ), B1 = λ|κ|, C =
1
2 (�X + �Y ), D3 = 1

2 (�X − �Y ), and D1 = �t |κ|. And

for convenience B =
√

B2
1 + B2

3 and D =
√

D2
1 + D2

3 .
The eigenvalues of Eq. (28) are the superconducting
dispersion:

E2
± = A2 + B2 + C2 + D2 ± 2

√
(AB3 + CD3)2 + (AB1 + CD1)2 + (B1D3 − B3D1)2. (29)

Because of the two-band nature of this superconductor,
there are two distinct superconducting bands—one upper and
one lower. The “upper” and “lower” band are defined by
E+(k) > E−(k) for any momentum k ∈ R2. The supercon-
ducting gap is the difference between the lower band E− and
the Fermi level, which occurs due to intraband pairing. In
general, a second gap exists between the two superconducting
bands, defined by E+(k) − E−(k). The splitting E+(k) −
E−(k) depends entirely on interband pairing, which can come
indirectly from �X and �Y through λ, or directly from �t .
In Fig. 8 we plot the density of states, which is probed by
tunneling experiments. Two peaks occur in the spectrum, each
from saddle points on the upper and lower superconducting
bands. We further plot the dispersion in the �M direction for
the same parameters, Fig. 7, showing the gap lies above the
original Fermi surfaces.

FIG. 8. Density of states for the A1g state, numerically calculated
using the full 8 × 8 Hamiltonian Eq. (20). Two peaks are present—the
first coming from the intraband pairing gap and the second coming
from interband pairing above the Fermi level. The few states below
the first peak come from the gap minimum, which lies in the direction
of the crossing. The same parameters are used as in Fig. 7. [Please
note: a phenomenological scattering model (e.g., Dynes model) was
not implemented here. Such a model would smooth out the peaks but
introduce states into the gap.]

VI. d WAVE

The d-wave symmetry is defined by a sign change under
a 90◦ rotation. There are two crystallographic symmetry
representations that have this property: B2g and B1g . The B1g

representation has one interband pairing state, which only
appears in the presence of spin-orbit λ. There are no B1g

intraband pairing states, and thus B1g cannot reproduce the
back-bending reported in experiments. On the other hand,
the B2g representation has two intraband pairing states when
λ = 0: 1T �1τ3iσ21 and 3T �3τ3iσ23. Further, in the presence
of λ, the B2g state picks up a spin-orbit coupled triplet state.
This state is an interband pairing state, which directly opens
a gap above/below the Fermi level. Thus the B2g symmetry
representation can produce a two-peak dI/dV spectrum while
preserving back-bending.

In this section we consider time-reversal invariant B2g

superconductivity in the presence of interband spin-orbit λ.
As with s-wave superconductivity, without spin-orbit λ the two
electron pockets remain independent, and the problem reduces
to two independent symmetry related one-band superconduc-
tors. Similarly, the spin-singlet d-wave states have the added
problem of overcoming the large intraorbital Hubbard U . In
fact, without spin-orbit λ the d-wave and s-wave problems
are identical, save the d-wave superconductor changes sign
between pockets. As such, we will not repeat this discussion;
we instead point the reader to Sec. V.

Two important changes occur with the introduction of spin-
orbit λ. First is the introduction of an interband spin-triplet
pairing state, Eq. (30). Similar to the A1g triplet state discussed
in Sec. V, the B2g triplet pair comes from the reduction of the
Eg × U(1) state into one-dimensional representations:

�t1
T
α ((τ2 + iτ1)(−i)δαβ + (τ2 − iτ1)σαβ

3 )3β. (30)

The second important change is to the band structure. The
spin-orbit coupling λ is of the interband type, mixing h′α

X

and h
′β
Y bands (for α �= β), and avoiding the electron pocket

crossing (see Fig. 5). Because the B2g state changed sign
between the original electron pockets, the mixing of the pockets
at the crossing demands symmetry required nodes there. More
precisely, two nodes exist at every crossing, one each on the
inner and outer pocket. However, because of the large size
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of the superconducting gap [6,7,16] and the experimentally
constrained size of λ [7], the two nodes merge and open up a
gap. Theoretically, the merging of Dirac gap nodes has already
been studied in the context of hole pockets[25,26] and in
electron pockets of monolayer FeSe [22].

The pairing matrix HBdG is written

HBdG =
∑

k

�
†
1(k)

⎛
⎜⎜⎝

h
′ ↑
X (k) � �̂

†
X �̂

†
YX

�† h
′ ↓
X (k) �̂

†
XY �̂

†
Y

�̂X �̂XY −h
′ ↑
X (k) −�

�̂YX �̂Y −�† −h
′ ↓
X (k)

⎞
⎟⎟⎠

×�1(k), (31)

where the constant 2 × 2 pairing matrices are

�̂X = −�̂Y =
(

�1 0
0 �3

)
(32)

and

�̂XY = �̂
†
YX = �t

(
0 i

−1 0

)
. (33)

Projecting onto the reduced band basis via the projector
Eq. (23) produces

H(k) ≡ �1HBdG(k)�†
1

=

⎛
⎜⎝

εX(k) λκ(k) �X(k) �tγ (k)
λκ∗(k) εY (k) �tγ

∗(k) �Y (k)
�X(k) �tγ (k) −εX(k) −λκ(k)

�tγ
∗(k) �Y (k) −λκ∗(k) −εY (k)

⎞
⎟⎠.

(34)

Again, κ(k) is defined as the projection Eq. (25). Further, we
defined a second projection,

γ (k) = 〈X ↑ |
(

0 i

−1 0

)
|Y ↓〉, (35)

noting that in the Bloch sphere coordinates γ (θ,φ) =
κ∗(θ,π − φ).

Important to the symmetry of the superconductor is the
relative phase between the interband spin-orbit coupling λκ

and the interband pairing �tγ . It is in the difference in the
phase between κ and γ that the symmetry arises. Applying
unitary transform Eq. (26) pushes the phase from the spin-orbit
coupling onto the pairing, simplifying this picture:

H(k) =

⎛
⎜⎜⎜⎝

εX λ|κ| �X �t
κ∗
|κ|γ

λ|κ| εY �t
κ
|κ|γ

∗ �Y

�X �t
κ∗
|κ|γ −εX −λ|κ|

�t
κ
|κ|γ

∗ �Y −λ|κ| −εY

⎞
⎟⎟⎟⎠. (36)

If we let τi and σi be Pauli matrices, the 4 × 4 Hamiltonian
Eq. (36) can be written in the convenient form

H = τ3(A + B3σ3 + B1σ1)+τ1(C + D3σ3 + D1σ1 + D2σ2),

(37)

where A = 1
2 (εX + εY ), B3 = 1

2 (εX − εY ), B1 = λ|κ|, C =
1
2 (�X + �Y ), D3 = 1

2 (�X − �Y ), D1 = �tRe( κ
|κ|γ

∗), and

D2 = �t Im( κ
|κ|γ

∗), and for convenience B =
√

B2
1 + B2

3 and

D =
√

D2
1 + D2

2 + D2
3 . The superconducting dispersion is

FIG. 9. Superconducting dispersion in the MX direction for �t =
0.08 meV (yellow) and �t = 0.8 meV (blue), and with interband
spin-orbit λ = 0.5 meV. For � < λ, two Dirac gap nodes lie along
the kx > 0 line. Interband pairing opens a gap above the Fermi level.
Increasing �t grows the gap above the Fermi level, pulling the Dirac
nodes together. For �t > 0.5 meV, the nodes merge and open a gap.

thus:

E2
± = A2 + B2 + C2 + D2

±2((AB3 + CD3 − B1D2)2 + (AB1 + CD1 + B3D2)2

+ (B1D3 − B3D1 + CD2)2)1/2. (38)

The d-wave symmetry changes sign under 90◦ rotations. For
the B2g representation, this implies the inner and outer pockets
change sign in the direction of the avoided Fermi surface
crossings. Thus this requires the existence of Dirac gap nodes.
However, this is only true so long as the pairing energy is less
than half the difference in the band energies. In the direction of
the crossing, half the difference in the band energies is equal to
λ. In Fig. 9 we plot the superconducting gap in the direction of
the crossing. For values of �1, �3, and �t less than spin-orbit
λ, there exists two Dirac gap nodes. As the pairing parameters
increase, the gap above/below the Fermi level grows. This
pushes the nodes closer together, annihilating them for �’s
larger than spin-orbit λ.

In Fig. 10 we plot the density of states showing a two-peak
spectrum. The first peak comes from the saddle point in the
superconducting gap, while the second peak comes from
a saddle point in the upper superconducting band E+(k).
The dispersion in the �M direction is plotted in Fig. 11 for
the same parameters used to produce the two peaks, showing
the presence of back-bending above the original Fermi
surfaces.

VII. HELICAL p WAVE

The p-wave symmetry is characterized by its sign change
under inversion. Without interband spin-orbit coupling λ,
there exists two p-wave symmetries: Eu and Eu × U(1). The
irreducible symmetry representation Eu is also the in-plane
polar vector representation (kx,ky). The representation labeled
purely Eu—composed of one spin singlet and one spin triplet
with �d vector pointing out of plane—is nodal. Thus we shift out
attention to the second symmetry representation Eu × U(1).
This representation is an orbital Eu spin triplet, with the
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FIG. 10. Density of states for the B2g state, numerically calculated
using the full 8 × 8 Hamiltonian Eq. (31). Two peaks are present—the
first coming from the intraband pairing gap and the second coming
from interband pairing above the Fermi level. The same parameters
are used as in Fig. 11. [Please note: a phenomenological scattering
model (e.g., Dynes model) was not implemented here. Such a model
would smooth out the peaks but introduce states into the gap.]

�d vector pointing in plane. The continuous U(1) symmetry
represents the freedom to rotate the triplet’s �d vector about the
z axis. This representation

1T
α �±(τ0 ± τ3)(σ2 �σ )αβ3β (39)

is a fully gapped time-reversal invariant topological supercon-
ductor. Its sign change under inversion owes itself to the action
of spinors under the generators of symmetry.

Because Eq. (39) is an intraband pairing, pairing directly
on the Fermi level, with no mixing between the independent
electron pockets, this problem decouples into two one-band

FIG. 11. Upper E+ and lower E− superconducting band in the
�M direction for the B2g state. The blue and yellow curves are the
dispersions without and with pairing, respectively. In the presence of
pairing, the lower band E− has two local minima directly above the
original Fermi surfaces. The lower and upper bands are split, with the
largest contribution to the splitting coming from the interband pairing
�t . The parameters used are �1 = 10.8 meV, �3 = 7.2 meV, �t =
−4.8 meV, λ = 0.5 meV, ε1 = −45 meV, ε3 = −95 meV, λz =
26 meV Å, and pz1 = pz2 = 0.

problems. Further, since Eq. (39) pairs electrons with the
same spin on the same band, we are forced to define a
Nambu spinor with doubled degrees of freedom �X ↑(k) =
(ψ↑

X(k),ψ↑
X
†(− k))T . This doubling of the degrees of freedom

can be corrected by constraining momentum k to half the
Brillouin zone. In this way the spinors ψ

↑
X(k) and ψ

↑
X
†(− k)

are completely decoupled, and the anticommutation relation
Eq. (40) is satisfied:

{ψ↑
X(k),ψ↑

X
†(− k)} = 0. (40)

Because of the presence of time-reversal symmetry, it is not
enough to consider only the spin-up particles. A second spinor
�X ↓(k) = (ψ↓

X(k),ψ↓
X
†(− k))T exists. Using these spinors, the

pairing Hamiltonian is

HBdG =
∑

k

�
†
X ↑(k)

(
h

′ ↑
X (k) �̂

†
X ↑

�̂X ↑ −h
′ ↑
X (− k)T

)
�X ↑(k)

+�
†
X ↓(k)

(
h

′ ↓
X (k) �̂

†
X ↓

�̂X ↓ −h
′ ↓
X (− k)T

)
�X ↓(k). (41)

Using the fact that h
′ ↑
X (− k)T = h

′ ↓
X (k), we write

HBdG = HBdG ↑ + HBdG ↓

=
∑

k

�
†
X ↑(k)

(
h

′ ↑
X (k) �̂

†
X ↑

�̂X ↑ −h
′ ↓
X (k)

)
�X ↑(k)

+�
†
X ↓(k)

(
h

′ ↓
X (k) �̂

†
X ↓

�̂X ↓ −h
′ ↑
X (k)

)
�X ↓(k). (42)

The U(1) spin symmetry gives us the freedom to choose any
in-plane direction for the �d vector. We choose to point the �d
vector in the y direction, writing

�̂X ↑ = �̂X ↓ =
(

0 �+
−�+ 0

)
. (43)

Under time reversal spin-up and spin-down particles map
into one another as ψX ↑(k) → ψ↓(− k) and ψX ↓(k) →
−ψ↑(− k); this is followed by a complex conjugation. For
this choice of �d vector �̂X ↑ = �̂X ↓ are real matrices. As a
consequence, under time reversal ψT

X ↑(− k)�̂X ↑ψX ↑(k) and
ψT

X ↓(− k)�̂X ↓ψX ↓(k) map into one another exactly. Thus the
Eu × U(1) pairing is time-reversally symmetric.

Not only is this pairing time-reversally symmetric, it is
fully gapped. In order to show this, it is enough to consider
only HBdG ↑. This is because HBdG ↑ and HBdG ↓ are related by
time reversal and share no cross terms. Defining H↑ to be the
projection of HBdG ↑ onto the bands that cross the Fermi level,
we produce Eq. (44):

H↑(k) =
(

εX(k) �∗
X ↑(k)

�X ↑(k) −εX(k)

)
. (44)

Projecting the 2 × 2 constant pairing matrices Eq. (43)
into this basis reduces them to scalar functions �X ↑(k) and
�X ↓(k). The momentum dependence of these scalar functions
is inherited from the εX(k) band structure. Inheriting their
symmetry from the band structure, the up-spin and down-spin
pairing functions are related by �X ↑(θ,φ) = �X ↓(θ,π − φ),
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where �X ↑(k) in Bloch coordinates (θ (k),φ(k)) is

�X ↑(k) ≡ 〈X ↓ |�̂X ↑|X ↑〉
= − sin θ e−iφ�+. (45)

The form factor of Eq. (45) is the azimuthal projection of /̂h

onto the Bloch sphere. Recall that in the Bloch representation
/̂h = τ3 cos θ + sin θ (τ1 cos φ + τ2 sin φ). As a consequence of
the spin-orbit λz, the projection onto the azimuthal plane of
the Bloch sphere is always nonzero. Thus the pairing function
�X ↑(k) [and by extension �X ↓(k)] is nodeless.

This state Eu × U(1) is rather novel. While for λ = 0 the
s-wave, d-wave, and p-wave states can produce a full gap at the
Fermi level, the p-wave state is the only state which does not
have to fight the large intraorbital repulsion. The spin-triplet
nature of the pair provides a pathway for stabilization via the
Hund’s term. The Bloch-Kanamori couplings are listed with
their symmetry (for λ = 0) in Table III. The coupling for the
Eu × U(1) state is U ′

1X3X − J1X3X, which is attractive when
the Hund’s term J1X3X is greater than the interorbital Coulomb
repulsion U ′

1X3X.

With spin-orbit λ

As discussed in Sec. IV, with λ = 0 the p-wave state is
a one-band problem. This generically leads to gaps opening
on the Fermi level but never above/below the Fermi level.

Consequently, the dI/dV spectrum will only have one peak at
the energy of the gap maximum. Turning on the momentum-
independent spin-orbit λ resolves this problem. With finite λ,
the full spin symmetry is broken. This breaks the Eu × U(1)
state into four one-dimensional representations, which are
listed in Table V: A1u, B1u, A2u, and B2u. Two of these
representations—A2u and B2u—contribute two interband pair-
ing states which pair directly above/below the Fermi level.
The combination of intraband triplet and interband singlets
has the ability to produce a two-peak dI/dV spectrum and
back-bending.

The A2u and B2u representations are similar; thus it will
suffice to discuss the A2u pairing. The three A2u pairings are
listed in Table V. The two interband pairings are 1T �1τ1iσ21
and 3T �3τ2iσ2σ33. The spin-triplet coming from the reduction
of Eu × U(1) is

�t1
T
α ((τ0 + τ3)δαβ + (τ0 − τ3)iσ αβ

3 )3β. (46)

TheA2u representation is odd under in-plane mirror mz; thus
the pairing Hamiltonian Eq. (47) is written using the �2a(k)
and �2b(k) Nambu spinors. As with the λ = 0 scenario, we
avoid the doubling of degrees of freedom by constraining mo-
mentum to half the Brillouin zone. This decouples the ψX ↑(k)
and ψX ↑(− k) components, satisfying the anticommutation
relation Eq. (40):

HBdG = HBdGa + HBdGb

=
∑

k

�
†
2a(k)

⎛
⎜⎜⎜⎝

h
′ ↑
X (k) � �̂

†
X �̂

†
YX

�† h
′ ↓
Y (k) �̂

†
XY �̂

†
Y

�̂X �̂XY −h
′ ↓
X (k) �∗

�̂YX �̂Y �T −h
′ ↑
Y (k)

⎞
⎟⎟⎟⎠�2a(k) + �

†
2b(k)

⎛
⎜⎜⎜⎝

h
′ ↓
X (k) −�∗ �̂

†
X −�̂T

YX

−�T h
′ ↑
Y (k) −�̂T

XY −�̂
†
Y

�̂X −�̂∗
XY −h

′ ↑
X (k) −�

−�̂∗
YX −�̂Y −�† −h

′ ↓
Y (k)

⎞
⎟⎟⎟⎠

×�2b(k). (47)

The 2 × 2 constant intraband pairing matrices are

�̂X = �t

(
0 1

−1 0

)
(48)

and

�̂Y = �t

(
0 i

−i 0

)
. (49)

The 2 × 2 constant interband pairing matrices are

�̂XY = �̂YX =
(

�1 0
0 i�3

)
. (50)

The pairing Hamiltonian HBdGa maps to HBdGb under
time reversal. The two Hamiltonians share no cross terms
and are otherwise independent. Thus it is sufficient to focus
on HBdGa in studying the superconducting gap structure.
Numerical diagonalization of the full 8 × 8 HBdGa(k) shows
two superconducting bands near the Fermi surface, which we
refer to as the “upper”E+(k) and “lower”E−(k) bands. Plots of
both the dispersion in the �M direction, Fig. 12, and the density
of states, Fig. 13, show both back-bending and a two-peak

tunneling spectrum. The two peaks in the spectrum come from
saddle points on both the upper and lower superconducting
bands. As with the s- and d-wave scenarios, the requirement
that there be back-bending implies the dominance of the in-
traband pairing. Unlike the s- and d-wave scenarios, however,
the dominant intraband pairing for the p-wave state is a spin
triplet. As mentioned previously, spin-triplet pairs are attractive
when the (renormalized) Hund’s J overcomes the interorbital
Hubbard U ′, independent of the strength of the intraorbital U .
For the dominant (i.e., the intraband) pairing to be spin-triplet
supports a hypothesis in which the pairing in this channel is
stabilized by the Hund’s term.

VIII. CONCLUSION

The constraint on the size of the interband mixing (λ �
5 meV) from ARPES on the monolayer [7] and bulk [13]
suggests the superconducting state and gap in the FeSe’s is
dominated, to leading order, by pairing within two independent
electron pockets at M (i.e., intraband pairing). However, the
presence of a two-peak dI/dV STM spectrum [6,18] in the su-
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FIG. 12. Upper E+ and lower E− superconducting band in the
�M direction for the A2u state. The blue and yellow curves are the
dispersions without and with pairing, respectively. In the presence of
pairing, the lower band E− has two local minima directly above
the original Fermi surfaces. The lower and upper bands are split,
with the largest contribution to the splitting coming from the inter-
band pairing �1 and �3. The parameters used are �1 = 6 meV,
�3 = 7 meV, �t = −9 meV, λ = 3 meV, ε1 = −55 meV, ε3 =
−105 meV, λz = −31.968 meV Å, pz1 = 4178.88 meV Å

3
, and

pz2 = 2.5pz1.

perconducting state strongly implies the presence of interband
pairing, which is necessary to open a sizable gap at the band
crossing above/below the Fermi level. We studied all symmetry
derived order parameters at the M point in the absence of
interband mixing through the interband spin-orbit coupling
λ, and found that no single pairing symmetry simultaneously
opens gaps at the Fermi level and above/below the Fermi level
(see Table III). Three states open a full gap centered above the
original Fermi surfaces—s-, d-, and helical p-wave intraband

FIG. 13. Density of states for theA2u state, numerically calculated
using the full 8 × 8 Hamiltonian HBdGa in Eq. (47). Two peaks are
present—the first coming from the intraband pairing gap and the
second coming from interband pairing above the Fermi level. The
few states below the first peak come from the gap minimum, which
lies in the direction of the crossing. The same parameters are used as
in Fig. 12. [Please note: a phenomenological scattering model (e.g.,
Dynes model) was not implemented here. Such a model would smooth
out the peaks but introduce states into the gap.]

pairing states—but open no gap above/below the Fermi level,
and thus cannot reproduce the second tunneling peak [6,18].
The introduction of a small interband spin-orbit coupling
resolves this problem by breaking the SU(2) spin symmetry,
which changes the symmetry of spin-triplet pairs, and leads
to symmetry states of mixed inter- and intraband pairing
character. We further studied all possible pairing symmetries in
this scenario (see Tables IV and V), and found that only those
symmetry states with intra- and interband pairing, where the
intraband pairing dominated, was able to meet out criteria:
(i) full superconducting gap [6,7,16,18], (ii) gap centered
above original Fermi surface (i.e., back-bending), and (iii)
two-peak local density of states (corresponding to a two-peak
dI/dV tunneling spectrum [6,18]). These states are the s-, d-,
and helical p-wave intraband pairing states, where interband
spin-orbit coupling λ mixes in some interband pairing, leading
to a two-peak spectrum as a subleading effect.

The connection between the symmetry of the order pa-
rameter and the (renormalized) Hubbard-Hund’s interactions
highlights the detrimental role of the intra- and interorbital
Hubbard repulsion, U and U ′, and the beneficial role of the
pair-hopping and Hund’s interactions, J ′ and J . In particular it
reveals that, in the scenario without a small interband mixing,
the spin-singlet s- and d-wave pairing states fight the large
intraorbital Hubbard U , while the spin-triplet helical p-wave
state benefits from the possibility of an attractive interaction
when U ′ < J , completely avoiding the large repulsive intraor-
bital U (as was shown for hole pockets in Ref. [20]). However,
with the introduction of a small interband spin-orbit λ, all three
qualifying symmetry states (s, d, and helical p wave) receive
contributions from spin-triplet pairs, and thus all three have an
attractive mechanism when U ′ < J , independent of the size of
the intraorbital Hubbard U .

We make no conclusion to the exact nature of the supercon-
ductivity in FeSe, instead concluding the existence of a pairing
hierarchy. This hierarchy is dominated by intraband pairing,
which leads to full gap [6,7,16,18] and back-bending [7],
and where a small interband spin-orbit coupling mixes in
interband pairing, which in turn leads to a two-peak tunneling
spectrum [6,18] as a subleading phenomenon.
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APPENDIX A: GAP MINIMA WITHOUT SPIN-ORBIT
COUPLING

ARPES experiment Ref. [7] reported no visible Fermi
surface avoidance within ∼5 meV resolution. This in turn
constrains any interband spin-orbit coupling, which would mix
the electronlike bands and avoid the Fermi surfaces (see Fig. 5).
At the same time, STM on the same material (monolayer on
SrTiO3) shows the presence of two features, at energies 9 meV
and 20.1 meV [18], with the high energy feature occurring far
above the reported gap maximum in Ref. [7] (which is less than
14 meV, including uncertainty). In Sec. IV we discussed how
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this, as well as the back-bending [7], implies the existence of a
hierarchy, dominated by intraband pairing along independent
electron pockets, and where the second STM feature occurs
as a subleading phenomenon supported by interband pairing.
We argued that without an interband spin-orbit coupling, there
exists no pairing symmetry that opens a gap both at the Fermi
level and above/below, which is necessary to produce the
two STM features; however, with a small interband spin-orbit
coupling (constrained to the resolution of the experiment [7]),
the SU(2) spin symmetry is broken, contributing interband
pairing to the dominant intraband pairing states.

There is, in fact, another piece of evidence for a small sub-
leading contribution from interband pairing. The anisotropy
of the superconducting gap in the monolayer as measured by
ARPES [7] reports a gap minimum above the original normal
state Fermi surface, with the smallest value of the gap occurring
above the original Fermi surface crossing. Without interband
pairing, the electron pockets are independent, and the direction
of the crossing constitutes no special direction. Why then
would the global gap minimum be found there? In fact, without
interband spin orbit coupling to mix the electron pockets, no
global gap minimum (or maximum) will generically occur in
that direction. We show that here by a general analysis of
pairing in the absence of interband spin-orbit coupling, i.e.,
λ = 0.

To begin, recognize first that, with λ = 0, the two electron
pockets are independent. Thus, because they are related by
symmetry, it is sufficient to focus on one electronlike pocket.
We choose the X pocket and define the spin-generalized
Nambu spinor �(k) = (ψX,α(k),ψ†

X,β (− k))T , where α,β ∈
{↑ ,↓}. The pairing Hamiltonian is then written as Eq. (A1):

HBdG =
∑

k

�(k)†
(

h′α
X (k) �̂

†
X

�̂X −h
′β
X (− k)T

)
�(k). (A1)

The pairing matrix �̂X is a 2 × 2 constant matrix; the exact
contents of which are fixed by a particular choice of intraband
pairing symmetry in Table III. For example, the s-wave (A1g)
pairing state is of the form Eq. (15). We write a generalized
pairing matrix as Eq. (A2), where a,b,c,d are constants,

�̂X =
(

a c

d b

)
. (A2)

Further, notice in Table III that there exists no intraband
pairing symmetry that has both diagonal elements of �̂X and
off-diagonal elements of �̂X. This distinction is due to a
difference in symmetry between those states of type intra-
representational 1 ⊗ 1 and 3 ⊗ 3, and inter-representational
1 ⊗ 3. This produces two possible scenarios: either (i) a,b �= 0
with c,d = 0 or (ii) c,d �= 0 with a,b = 0.

The 2 × 2 band Hamiltonian h′α
X has two eigenstates, one

downward dispersing and one that crosses the Fermi level. We
are only interested in the geometry of the gap, which depends
on those bands that cross the Fermi level. Projecting onto this
reduced band basis simplifies HBdG to a 2 × 2 matrix, which
we define H,

H(k) =
(

εX(k) �∗
X(k)

�X(k) −εX(k)

)
. (A3)

We are interested in the form of the projected pairing
function �X(k), which inherited its momentum dependence
from the band basis; defined in Bloch coordinates,

�X(θ,φ) = 〈X,β(θ,π − φ)|�̂X|X,α(θ,φ)〉. (A4)

We now discuss Eq. (A4) for all (i) intra- and (ii) inter-
representational pairing symmetries, respectively. We show
that the gap anisotropy of (i) takes the form | cos θ | and (ii) takes
the form of | sin θ |, neither of which are generically maximum
or minimum in the direction of the Fermi surface crossings.

1. Intrarepresentational; a,b �= 0, c,d = 0

There are two intraband intrarepresentational symmetries
in Table III: A1g and B2g . Both are spin singlets and
thus both can be represented by the Nambu spinor �(k) =
(ψX ↑(k),ψX ↓(− k))T . The pairing function for these states
takes the form of Eq. (A5):

�X(θ,φ) = 〈X,↑(θ,φ)|�̂X|X,↑(θ,φ)〉
= a + b

2
+ a − b

2
cos θ. (A5)

For a,b such that �X is not nodal, the critical point of gap |�X|
occurs where | cos θ | is largest.

2. Interrepresentational; c,d �= 0, a,b = 0

There are two intraband inter-representational symmetries
in Table III: Eu and Eu × U(1). The Eu pairing state is
nodal. The Eu × U(1) (helical p-wave) pairing state is a
spin triplet and, for understanding the gap geometry (see
Sec. VII), is sufficiently represented by the Nambu spinor
�(k) = (ψX ↑(k),ψ†

X ↑(− k))T . The fully gapped pairing func-
tion takes the form of Eq. (A6):

�X(θ,φ) = 〈X,↓(θ,φ)|�̂X|X,↑(θ,φ)〉
= −(c + d) cos

θ

2
sin

θ

2
e−iφ

= −c + d

2
sin θ e−iφ. (A6)

Thus the maximum/minimum in the gap |�X| depends on the
maximum/minimum of | sin θ |.

APPENDIX B: SYMMETRY GENERATORS AND TABLE
OF IRREDUCIBLE REPRESENTATIONS

A complete study of the space group symmetry of iron-
based superconductors [19] was worked out by Cvetkovic and
one of us. In order to assist the reader, we list here all irreducible
representations at the � point and those representations at the
M point essential to this paper (i.e., M1 and M3). There are
three generators of symmetry (see Fig. 1): two mirrors followed
by a fractional translation mXt and mzt and one mirror mx .
With respect to representations of the group P� , it is sufficient
to consider all three mirrors without fractional translations:
mX, mz, and mx . This is because P� is isomorphic to D4h [19].
(See Tables VI and VII.)
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TABLE VI. Irreducible representations of group P� [19].

P� mXt mzt mx

A1g/u ±1 ±1 ±1
A2g/u ∓1 ±1 ∓1
B1g/u ∓1 ±1 ±1
B2g/u ±1 ±1 ∓1

Eg/u

(±1 0
0 ∓1

) (∓1 0
0 ∓1

) (
0 ∓1

∓1 0

)

TABLE VII. Irreducible representations M1 and M3 of group
PM [19].

PM mXt mzt mx

M1

(−1 0
0 −1

) (−1 0
0 1

) (
0 1
1 0

)

M3

(
1 0
0 −1

) (−1 0
0 1

) (
0 1
1 0

)
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