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By irradiating and observing at twice the 14N Larmor frequency, overtone (OT) nuclear magnetic
resonance (NMR) is capable of obtaining 14NOT spectra without first-order quadrupolar broadening.
Direct excitation and detection of the usually “forbidden” double-quantum transition is mediated by
the perturbation from the large quadrupole interaction to the spin states quantized by the Zeeman
interaction. A recent study [L. A. O’Dell and C. I. Ratcliffe, Chem. Phys. Lett. 514, 168 (2011)]
has shown that 14NOT NMR under magic-angle spinning (MAS) can yield high-resolution spectra
with typical second-order quadrupolar line shapes allowing the measurement of 14N chemical shift
and quadrupolar coupling parameters. This article has also shown that under MAS the main 14NOT

peak is shifted by twice the sample spinning frequency with respect to its static position. We present
the theory of 14NOT NMR of static or rotating samples and the physical picture of the intriguing
spinning-induced shift in the second case. We use perturbation theory for the case of static samples
and Floquet theory for rotating samples. In both cases, the results can be described by a so-called
OT parameter that scales down the 14NOT radio-frequency (rf ) excitation and signal detection. This
OT parameter shows that the components of the rf field, which are transverse and longitudinal with
respect to the magnetic field, are both effective for 14NOT rf excitation and signal detection. In the
case of MAS at angular frequency ωr , the superposition of the excitation and detection components
in the OT parameter makes either the +2ωr or −2ωr term the dominant 14NOT signal, depending
on the sense of sample spinning with respect to the magnetic field. This leads to an apparent 14NOT

signal shifted at twice the spinning frequency. The features of 14NOT NMR spectra for both static and
rotating samples are illustrated with simulations. The spinning induced shift and its dependence on the
spinning direction are confirmed experimentally by reversing the spinning direction and the field of the
36 T series-connected hybrid magnet at the US National High Magnetic Field Laboratory. Published
by AIP Publishing. https://doi.org/10.1063/1.5044653

I. INTRODUCTION

Nuclear magnetic resonance (NMR) is a powerful tool
for characterizing the structure and dynamics of polycrys-
talline and disordered solids. Much of its success relies on
its capability to resolve the chemical environments of atomic
sites through slight variations of their resonance frequency.
Nuclear spin interactions, such as chemical shift and dipo-
lar or quadrupolar couplings, are anisotropic in nature, and
thus, their orientation dependence leads to line broadening for
powder samples. The anisotropic broadening must be aver-
aged or reduced to achieve high spectral resolution. In solu-
tions, the averaging occurs naturally due to rapid isotropic

a)Author to whom correspondence should be addressed:gan@magnet.fsu.edu.
Fax: +1 850 644 1366.

molecular tumbling. In solids, magic-angle spinning (MAS)
of the sample averages out rank l = 2 spin interactions like
dipolar coupling and chemical shift anisotropy (CSA).1,2 For
nuclear spin values larger than 1/2, the quest for high spec-
tral resolution is confronted by the much larger interaction
between the electric field gradient (EFG) and the electric
quadrupole moment of the nucleus. The magnitude of the
quadrupole interaction is often in the megahertz range, far
larger than the fastest sample spinning frequency available.
Fortunately, the first-order quadrupole interaction vanishes for
the +1/2↔−1/2 central transition of half-integer spins, allow-
ing for its spectral acquisition without the large first-order
broadening. The remaining second-order interaction is much
smaller and can be partially reduced with MAS. Innovative
methods like double rotation (DOR),3 dynamic angle spin-
ning (DAS),4,5 and multiple-quantum and satellite transition
MAS (MQMAS and STMAS)6,7 have been developed for the
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complete removal of the second-order quadrupolar broadening
that has angular dependence up to rank l = 4. High magnetic
fields can also reduce directly the second-order broadening,
making solid-state NMR of quadrupolar nuclei one of the
most important driving forces for high-field NMR.8–10 The
capability to obtain high spectral resolution has indeed facili-
tated the widespread use of solid-state NMR for quadrupolar
nuclei, which constitute the majority of isotopes in the periodic
table.11,12

14N is the most abundant isotope (99.65%) of nitrogen,
an important element for all branches of chemistry, and one of
the few nuclei in the periodic table with an integer spin. It is
a spin S = 1 nucleus with a moderate quadrupole moment
(20.44 × 10−31 m2).13 The direct NMR detection of 14N
nuclei in solids is challenging as it often requires special-
ized experimental approaches in order to excite and observe
spectra that are typically several MHz wide (e.g., broad-
band MAS, field- or frequency-stepped piecewise acquisition,
broadband frequency sweep pulses, etc.).14–38 Obtaining site
resolution is even more difficult for solids containing distinct
14N sites. For samples with 13C or 1H nuclei near nitrogen sites,
two-dimensional (2D) MAS experiments, like heteronuclear
multiple-quantum correlation (HMQC), have been introduced
to observe 14N nuclei indirectly, partially overcoming the res-
olution and sensitivity difficulties of direct observation.39–54

In this work, we focus on an approach, called nitrogen-14
overtone (14NOT) NMR, which directly excites and acquires
14N spectra at twice its Larmor frequency. The m = +1
↔−1 double-quantum (DQ) transition is usually considered as
forbidden, but it can become directly observable in the pres-
ence of large quadrupole interactions. The main advantage
of 14NOT NMR is that the first-order quadrupolar broaden-
ing vanishes similar to the central transition of half-integer
nuclei. 14NOT NMR was first demonstrated experimentally by
LeGros and Bloom55,56 and later applied to biomolecules.57–60

The 14NOT spectra of rotating samples have been recorded by
Tycko and Opella, aiming at further line narrowing of CSA
and second-order quadrupolar broadenings. However, for the
sample selected and the low magnetic field and spinning fre-
quency used, the spectra were found to be complicated by
overlapping spinning sidebands. As a result, no significant line
narrowing was materialized by sample rotation at that time.57

On the theoretical aspect, 14NOT NMR is different from con-
ventional NMR with single-quantum excitation and detection.
Tycko and Opella developed a formalism based on pertur-
bation theory.57 Two later studies by Marinelli et al.61 and
Trease and Grandinetti62 provided more general descriptions
in the form of density operators. They also explored the pos-
sibilities of applying advanced methods like DOR and DAS
to completely average the quadrupolar broadening of 14NOT

spectra. Numerical simulations were performed, which indi-
cated that possible complications may occur if those methods,
which were developed originally for half-integer quadrupo-
lar nuclei, were applied to 14NOT. However, no experimental
demonstration was performed.

Recently, O’Dell and Ratcliffe published an experimen-
tal study of 14NOT NMR under MAS using higher mag-
netic fields, faster spinning rates, and samples with smaller
quadrupolar couplings.63 Simple 14NOT MAS spectra were

obtained with line shapes typical of second-order quadrupo-
lar patterns, showing potential for measuring 14N chemical
shifts and quadrupolar coupling parameters. One of their
main findings is that the 14NOT peak position shifts under
MAS by twice the spinning frequency (ωr) with respect to
the non-spinning case. A brute-force simulation has con-
firmed this shift and predicted that its sign depends on
the relative sense of spinning with respect to the magnetic
field.64 However, no theory or explanation was given for this
intriguing feature. Recently, overtone excitation and detec-
tion have also been combined with double rotation, and the
results showed that DOR can completely cancel the second-
order quadrupolar broadening of 14NOT spectra.65 All these
experimental observations have renewed our interest in re-
examining the 14NOT NMR theory, particularly under sample
rotation.

In this article, we analyze the results observed in one-
dimensional pulse-and-acquire 14NOT experiment. First, the
14NOT NMR theory for the time independent case of static sam-
ples is presented, using a density operator formalism similar to
the work of Marinelli et al.61 and Trease and Grandinetti.62 An
overtone parameter, ξ, is introduced such that 14NOT NMR can
be described in a similar way as NMR applied to spin S = 1/2
nuclei. In the case of rotating samples, Floquet theory is used to
treat this time dependent problem to obtain analytical expres-
sions for the excitation and detection of the 14NOT transition.
With spinning samples, the overtone parameter becomes time
dependent and consists of five components ξk (k = 0, ±1, and
±2) modulated at 0, ±ωr , and ±2ωr , respectively. The rela-
tive amplitudes of these terms reveal that under MAS rotation
the dominant component is either the +2ωr or −2ωr sideband,
depending on the spinning direction relative to the magnetic
field B0, making the main overtone peak shift with the spin-
ning frequency. In addition to the explanation of the intriguing
MAS overtone features, the theory can also be used for rapid
numerical simulations of overtone excitation and spectral line
shapes.

II. THEORY FOR STATIC SAMPLES
A. In the laboratory frame

Let us consider a spin S = 1 nucleus in the laboratory frame
(L) where the magnetic field is along the z axis. The Hamilto-
nian including the Zeeman, quadrupole, and rf interactions in
this frame can be written as66

HL = HL
S + HL

rf , (1)

HL
S = ω0Sz + HL

Q, (2)

HL
rf = 2ω1(Sz cos θC + Sx sin θC) cos(ωirr t + φ), (3)

HL
Q = ωQ

∑2

m=−2
(−1)mAQ,L

2,m TQ
2,−m, (4)

where HL, HL
S , HL

rf , and HL
Q denote the total, spin, rf, and

quadrupolar Hamiltonians in the laboratory frame, respec-
tively, and Sx and Sz denote the S spin angular momentum
with respect to the x and z axes, respectively. Here ω0 = −γB0

and ωQ =
2πe2qQ

4hS(2S−1) are the Larmor and quadrupolar coupling
frequencies, respectively, where eQ is the electric quadrupole
moment of the S spin and eq is the principal component of the



064201-3 Gan et al. J. Chem. Phys. 149, 064201 (2018)

EFG at the position of the S nucleus. The linearly modulated rf
field, produced by the excitation coil tilted in the xz-plane at an
angle θC with respect to the magnetic field B0, is described by
its irradiation frequency ωirr , phase φ, and nutation frequency
2ω1 = 2γB1, where B1 is the peak amplitude of the rf field.
Figure 1 depicts a solenoid coil where the B1 field generated
by the coil consists of longitudinal, Sz cos θC , and transverse,
Sx sin θC , terms in the xz-plane. The longitudinal component
is usually negligible in conventional NMR but not for 14NOT

NMR and needs to be retained. The quadrupole interaction is
expressed in the irreducible representation, where the spatial
tensor components, AQ,L

2,m , can be obtained from those, AQ,P
2,m′ , in

the principal axis system P of the EFG tensor,

AQ,L
2,m =

∑2

m′=−2
AQ,P

2,m′D
2
m′m(αPL, βPL, γPL), (5)

where (αPL, βPL, γPL) are the Euler angles defining the ori-
entation of the P frame in the L frame. The AQ,P

2,m′ components
are given by

AQ,P
2,0 =

√
6, AQ,P

2,±1 = 0, AQ,P
2,±2 = −ηQ/2, (6)

where ηQ is the asymmetry parameter of the EFG tensor. The
elements of the Wigner matrix have the following form:

D2
m′m(αPL, βPL, γPL) = exp

(
−im′αPL

)
d2

m′m(βPL)

× exp(−imγPL), (7)

where d2
m′m(βPL) are the reduced Wigner matrix elements. It

can be shown that the complex conjugate of AQ,L
2,m is equal

to (
AQ,L

2,m

)∗
= (−1)mAQ,L

2,−m. (8)

The spin irreducible spherical tensor operators for the
quadrupolar coupling are given by

TQ
2,0 =

1
√

6

[
3S2

z − S(S + 1)1
]
,

TQ
2,±1 = ∓

1
2

[S±Sz + SzS±],

TQ
2,±2 =

1
2

S±S±,

(9)

where 1 denotes the unity operator. These tensor operators
satisfy the equation

TQ,†
2,m = (−1)mTQ

2,−m, (10)

FIG. 1. Depiction of the B1 rf field generated in the xz-plane by a rf solenoid
coil at an angle θC with respect to the main magnetic field B0 as typically
used in magic-angle spinning probes.

where TQ,†
2,m denotes the adjoint operator of TQ

2,m.

In the L frame, the evolution of the density operator σL(t)
from its initial state σL(0) is governed by the Liouville-von
Neumann equation

dσL(t)
dt

= −i[HL,σL(t)]. (11)

The expectation value of any observable represented by an
operator OL in the L frame, such as the NMR signal s(t), is
given by

s(t) = Tr[OL†σL(t)]. (12)

Using the same coil tilted at the angle θC for detection, the
14NOT signal also contains longitudinal and transverse com-
ponents similar to the rf irradiation, and hence, the detection
operator OL

det can be written in the laboratory frame as

OL
det = Sz cos θC + Sx sin θC . (13)

B. In the diagonal frame
1. Diagonal transformation of the spin Hamiltonian

We first transform the HL
S Hamiltonian into the diago-

nal frame, D, where it is represented by a diagonal matrix,
HD

S , with elements that represent the energy levels of the S
spin,

HD
S = T−1HL

S T , (14)

where T is a unitary matrix describing the transformation
between the D and L frames and T−1 = T† is the inverse of the
matrix T. In the absence of rf irradiation, the evolution opera-
tor or propagator, exp

(
−iHD

S t
)
, can be described simply by the

energy levels. Similarly, the density and detection operators in
the D frame can be expressed by the same transformation from
those in the L frame as

σD(t)= T−1σL(t)T ,

OD
det = T−1OL

detT .
(15)

Free evolution of the NMR signal can then be calculated in the
D frame as

s(t)= Tr
[
OD,†

det exp
(
−iHD

S t
)
σD(0) exp

(
iHD

S t
)]

= Tr
[
T−1OL,†

det T · exp
(
−iHD

S t
)
T−1σL(0)T exp

(
iHD

S t
)]

.

(16)

For S = 1/2 nuclei, this transformation can be neglected
because the perturbations from the chemical shifts and the
scalar and dipolar interactions to the spin states quantized by
the Zeeman interaction are very small. Thus, the energy levels
of the HD

S matrix can then be obtained by simply discarding
the small off-diagonal terms of all spin interactions that do
not commute with the Zeeman Hamiltonian. Under this “sec-
ular” approximation, the NMR signal excitation and detection
operators, usually a linear combination of Sx, Sy, and Sz, have
non-zero elements connecting only the single-quantum tran-
sitions. Therefore, multiple-quantum or overtone transitions
are “forbidden,” which means that they cannot be directly
excited and detected. It must be mentioned that in the form of
multi-dimensional experiments, multiple-quantum transitions
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can be easily detected indirectly via spin coherence trans-
fer through single-quantum signal observation42,44,49,53,67,68

including the overtone transition of 10B with S = 3 reported
recently.69,70

The diagonal transformation T is the key point for 14NOT

NMR, as it makes direct excitation and detection of the for-
bidden double-quantum (DQ) transition possible. Indeed, in
the case of large quadrupole interactions, HL

Q contains sizable
off-diagonal non-secular elements that can be written for S = 1
nuclei (e.g., 14N) as

HL
Q − ωQAQ,L

2,0 TQ
2,0 = ωQ



0 AQ,L
2,−1/
√

2 AQ,L
2,−2

−AQ,L
2,1 /
√

2 0 −AQ,L
2,−1/
√

2

AQ,L
2,2 AQ,L

2,1 /
√

2 0



.

(17)

Assuming ωQ < ω0, the derivation of the transformation
matrix T and the resulting energy levels of matrix HD

S can be
treated to first-order with static perturbation theory in operator
form71

T ≈ 1 + εV with V =
∑

m=±1,±2
(−1)mAQ,L

2,m TQ
2,−m/m, (18)

where
ε = ωQ/ω0 (19)

is the ratio between the quadrupole and Zeeman interactions.
Using T−1 = T† and Eqs. (8), (10), and (18), it can be shown
that

T−1 ≈ 1 − εV . (20)

2. The internal spin Hamiltonian in the diagonal frame

Using perturbation theory under static conditions and
Eqs. (14), (18), and (20), we can derive the internal spin
Hamiltonian in the diagonal frame

HD
S ≈ (1 − εV )HL

S (1 + εV ) = HL
S + ε

[
HL

S , V
]
− ε2VHL

S V .

(21)

By neglecting the highest-order term ε2VHL
S V and substituting

HL
S by Eq. (2), the above expression can be written as

HD
S ≈ ω0Sz + HL

Q + ε
[
ω0Sz, V

]
+ ε

[
HL

Q, V
]
. (22)

By substituting HL
Q by Eq. (4) and V by Eq. (18), we obtain

HD
S ≈ ω0Sz + ωQAQ,L

2,0 TQ
2,0

+
ω2

Q

ω0

∑2

m′=−2

∑
m=±1,±2

(−1)m

m
AQ,L

2,m′A
Q,L
2,m

[
TQ

2,m′ , TQ
2,m

]

(23)

≈ ω0Sz + HD,(1)
Q + HD,(2)

Q . (24)

The third term in Eq. (22) cancels the off-diagonal elements
(m , 0) of the second term for the diagonalization HL

Q because

of the commutation relation
[
Sz, TQ

2,−m

]
= −mTQ

2,−m.72 HD,(n)
Q ,

n = 1 and 2, denote the first- and second-order quadrupole
Hamiltonians in the D frame, respectively. We can disregard
the off-diagonal elements of the third term in Eq. (23) and keep
only the diagonal elements for HD,(2)

Q ,

HD,(2)
Q =

ω2
Q

ω0

∑2

m=1
AQ,L

2,m AQ,L
2,−m

[
TQ

2,−m, TQ
2,m

]
/m, (25)

which for an isolated spin S = 1 nucleus is equal to

HD,(2)
Q =

ω2
Q

ω0

(
−AQ,L

2,1 AQ,L
2,−1 + AQ,L

2,2 AQ,L
2,−2

)
Sz = ω

(2)
Q Sz. (26)

The first-order quadrupole interaction, ωQAQ,L
2,0 TQ

2,0, vanishes
for the DQ transition between energy levels +1 ↔ −1, and
hence, the Hamiltonian in the absence of rf irradiation describ-
ing the energy levels and transition frequencies for 14NOT

NMR is given by

HDQ
S = 2(ω0 + ω(2)

Q )SDQ
z = ωDQSDQ

z , (27)

where ω(2)
Q is the second-order quadrupole frequency. Here

we have used a single-transition spin S = 1/2 operator SDQ
z to

describe the +1↔ −1 transition.66 The factor of 2 in Eq. (27)
comes from the reduction from the spin S = 1 Sz operator
to the S = 1/2 single-transition operator, which shows that
overtone NMR resonates at twice the Larmor frequency, i.e.,
ωDQ = 2(ω0 + ω(2)

Q ).

3. In the rotating frame

To simplify calculations, we can define a frame R rotating
at the irradiation frequency ωirr /2 around the z axis of the D
frame. The rotation matrix can be described in the spin S = 1/2
double-quantum transition operator R = exp

(
iωirr tSDQ

z

)
for

the transformation from the D to the R frame. In this frame,
the internal spin Hamiltonian becomes

HR
S = ΩDQSDQ

z = (ωDQ − ωirr)SDQ
z , (28)

where ΩDQ is the resonance frequency offset of the DQ
transition.

4. The detection operator

By combining Eqs. (15), (18), and (20), the detection
operator in the D frame can be written as

OD
det = (1 − εV )OL

det(1 + εV )

= OL
det + ε

[
OL

det , V
]
− ε2VOL

detV

≈ OL
det + ε

[
OL

det , V
]

(29)

by neglecting the second-order term ε2VOL
detV . As stated pre-

viously [Eq. (13)], the detection operator in the laboratory
frame, OL

det = Sz cos θC + Sx sin θC , has no element connect-
ing the DQ transition. However, the diagonal transformation
leads to non-vanishing DQ elements in the OD

det operator. When
deriving the commutator

ε
[
OL

det , V
]
= ε

[
Sz cos θC + Sx sin θC ,

∑
m=±1,±2

(−1)m

× AQ,L
2,m TQ

2,−m/m
]
, (30)

we only keep the double-quantum elements TQ
2,±2 that give rise

to a NMR signal oscillating at twice the Larmor frequency. All
other elements are irrelevant for 14NOT NMR and hence can
be discarded, which leads to

OD
det ≈ ε

[(
AQ,L

2,−1 sin θC − AQ,L
2,−2 cos θC

)
TQ

2,2

−
(
AQ,L

2,1 sin θC + AQ,L
2,2 cos θC

)
TQ

2,−2

]
. (31)
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Again for simplicity, we use the single-transition operators to
describe the DQ transition of 14NOT with the detection operator
for the quadrature-detected 14NOT signal given by

OD
det = −ε

(
AQ,L

2,1 sin θC + AQ,L
2,2 cos θC

)
SDQ
− = ξ

∗SDQ
− , (32)

where the overtone parameter ξ is defined as

ξ = ε
(
AQ,L

2,−1 sin θC − AQ,L
2,−2 cos θC

)
. (33)

5. The rf Hamiltonian

Let us now consider the case of overtone excitation with
rf irradiation near twice the Larmor frequency. We assume the
rf Hamiltonian to be small with respect to HL

S , and hence, it
transforms into the D frame as

HD
rf = T−1HL

rf T . (34)

We can follow the same procedure used for the previous deriva-
tion of Eq. (31) and keep only the DQ elements for overtone
excitation,

HD
rf = 2ω1 cos(ωirr t + φ)

(
ξTQ

2,2 + ξ∗TQ
2,−2

)
. (35)

The rapid oscillation of the rf Hamiltonian in the laboratory
frame can be reduced by using the rotating frame R previously
defined in Sec. II B 3,

HR
rf = R−1HD

rf R

= ω1

[(
1 + exp

[
−i(2ωirr t + φ)

] )
ξTQ

2,2

+
(
1 + exp

[
i(2ωirr t + φ)

] )
ξ∗TQ

2,−2

]
. (36)

Indeed, when we neglect the effects of the non-resonant rotat-
ing component of the rf field, this Hamiltonian becomes
time-independent and can be written as

HR
rf ≈ ω1

(
ξe−iφSDQ

+ + ξ∗eiφSDQ
−

)
= 2ω1 |ξ | exp

(
−iφDQSDQ

z

)
SDQ

x exp
(
iφDQSDQ

z

)
, (37)

where

φDQ = φ + arg
(
ξ∗

)
. (38)

Equations (28), (32), and (37) summarize the results of the
14NOT theory under static conditions. 14NOT NMR can be
treated as conventional NMR of a fictitious spin S = 1/2 nucleus
with a single DQ overtone transition between two energy
levels. Both the rf excitation and detection is scaled by the
overtone parameter in Eq. (33).

In the R frame, the equilibrium state is defined by the
density operator σR(0) ∝ 2SDQ

z when considering only the
zeroth-order term in Eq. (15). The time evolution after pulse
excitation is given by

σR
(
t > τp

)
= exp

[
−iHR

S

(
t − τp

)]
exp

(
−iHR

rf τp

)
σR(0)

× exp
(
iHR

rf τp

)
exp

[
iHR

S

(
t − τp

)]
, (39)

where τp is the pulse length and t denotes the time elapsed from
the start of the pulse. SDQ

x , SDQ
y , and SDQ

z are three cyclically
commutating spin S = 1/2 operators for the double-quantum
transition. Using Eqs. (28) and (37), we obtain

σR
(
t > τp

)
= 2 cos

(
2|ξ |ω1τp

)
SDQ

z − 2 sin
(
2|ξ |ω1τp

)
×

(
sin

[
ΩDQ

(
t − τp

)
− φDQ

]
SDQ

x

− cos
[
ΩDQ

(
t − τp

)
− φDQ

]
SDQ

y

)
. (40)

Assuming that off-resonance effects can be neglected, i.e., the
HR

rf Hamiltonian is large with respect to HR
S , the 14NOT signal

can be calculated in the R frame as

s
(
t > τp

)
∝ Tr

[
OR,†

detσ
R
(
t > τp

)]

= |ξ | sin
(
2|ξ |ω1τp

)
exp

(
i
[
ωDQ

(
t − τp

)
+ ωirrτp − φ − π/2

] )
. (41)

The overtone signal detection [Eq. (34)] and rf excitation
[Eq. (37)] are scaled down by the same overtone parameter,
|ξ |, which is proportional to the ratio between the quadrupolar
coupling constant and the Larmor frequency: ε = ωQ/ω0.
The overtone parameter is anisotropic through the single-
and double-quantum elements of the quadrupole Hamilto-
nian, AQ,L

2,−1 and AQ,L
2,−2, respectively [Eq. (33)], and therefore,

it depends on the molecular/crystallite orientation [Eq. (5)].
ξ is also sensitive to the rf coil orientation with respect to
the magnetic field B0 as defined by the angle θC in Eq. (33).
These features are unique to 14NOT NMR in which the overtone
parameter plays a central role.

III. THEORY FOR ROTATING SAMPLES
A. Periodically time-dependent spin Hamiltonian

We now consider a solid rotating in the L frame. The inter-
nal spin Hamiltonian, HL

S , becomes time modulated, including
the off-diagonal elements of the quadrupolar interaction that
make the overtone transition detectable,

HL
Q(t) = ωQ



AQ,L
2,0 (t)/

√
6 AQ,L

2,−1(t)/
√

2 AQ,L
2,−2(t)

−AQ,L
2,1 (t)/

√
2 −AQ,L

2,0 (t)
√

2/3 −AQ,L
2,−1(t)/

√
2

AQ,L
2,2 (t) AQ,L

2,1 (t)/
√

2 AQ,L
2,0 (t)/

√
6



.

(42)

The spatial tensor components, AQ,L
2,m (t), can be obtained from

those, AQ,P
2,m′ , in the P frame of the EFG tensor by two consecu-

tive rotations, one from the laboratory to the rotor frame with
the Euler angles (−ωr t, θC , 0) and the second from the rotor
to the P frame (αPR, βPR, γPR),

AQ,L
2,m (t) =

∑2

k,m′=−2
AQ,P

2,m′D
2
m′k(αPR, βPR, γPR)

×D2
km(−ωr t, θC , 0), (43)

where

D2
m′k(αPR, βPR, γPR) = exp

(
−im′αPR

)
d2

m′k(βPR) exp(−ikγPR),

(44)

D2
km(−ωr t, θC , 0) = exp(ikωr t)d2

km(θC). (45)

We assume here that the spinning axis and rf coil axis coincide
at angle θC with respect to the B0 field, as it is usually the case
in MAS probes. For rotating solids, the AQ,L

2,m components can
thus be expanded as a Fourier series with respect to the angular
rotation frequency ωr ,
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AQ,L
2,m (t) =

∑2

k=−2
ak

m exp(ikωr t) (46)

with

ak
m =

∑2

m′=−2
AQ,P

2,m′D
2
m′k(αPR, βPR, γPR)d2

km(θC). (47)

The quadrupolar Hamiltonian can thus be written as a sum of
five matrices hk

Q,

HL
Q(t) = ωQ

∑2

k=−2
hk

Q exp(ikωr t) (48)

with

hk
Q =



ak
0/
√

6 ak
−1/
√

2 ak
−2

−ak
1/
√

2 −ak
0

√
2/3 −ak

−1/
√

2

ak
2 ak

1/
√

2 ak
0/
√

6



. (49)

Here we assume that ωr < ωQ, and hence, we must consider
the terms with k , 0 in Eq. (48). Similar to the static case, we
can focus only on the off-diagonal quadrupolar elements of
Eq. (49) that make 14NOT NMR possible.

B. Floquet’s theory and the diagonal
tilted transformation

Floquet’s theory is invoked to treat the periodic, mod-
ulated perturbations.73,74 Floquet’s theorem states that the
propagator of a periodic Hamiltonian, H(t), can be expressed
in terms of a time dependent periodic operator, T (t), and a
constant diagonal Hamiltonian, HD

S ,

U(t) = T (t) exp
(
−iHD

S t
)
T (0)−1. (50)

Assuming ε = ωQ/ω0 < 1 and ωr � ωQ, the T (t)
operator that diagonalizes the Hamiltonian can be obtained
using a first-order perturbation treatment of the Floquet
Hamiltonian,73,74

T (t) = 1 + ε
∑

k=±1,±2
Vk exp(ikωr t), (51)

where

Vk =



0 ak
−1/
√

2 ak
−2/2

−ak
1/
√

2 0 −ak
−1/
√

2

ak
2/2 ak

1/
√

2 0



. (52)

C. The internal spin Hamiltonian

The HD
S in Eq. (50) of the Floquet theory is related to the

average Hamiltonian 〈H〉,

〈H〉 = T (0)HD
S T (0)−1. (53)

Thus it can be calculated as in the static case [Eqs. (21)–(27)],
retaining only the diagonal and time-independent terms

HD
S = 2(ω0 + ω̄(2)

Q )SDQ
z = ω̄DQSDQ

z . (54)

Here, ω̄DQ is the time-averaged resonance frequency of the
DQ transition. The time-averaged second-order quadrupole
frequency [see Eq. (26)] is given by

ω̄(2)
Q =

ω2
Q

ω0

∑2

k=−2

(
−a−k

1 ak
−1 + a−k

2 ak
−2

)
. (55)

This frequency can also be expressed as a function of second-
and fourth-rank spatial tensors.74

The diagonal tilted transformation can also induce a geo-
metric phase term or the so-called Berry’s phase from the
time dependent Hamiltonian to the averaged peak position
for rotating samples. Berry’s phase can be visualized as the
solid angle encompassed by the sweeping quantization axis of
the cyclic Hamiltonian.75 The accumulation of Berry’s phase
can result in a shift proportional to the spinning speed and
sensitive to the spinning direction with respect to the quanti-
zation axis as it was experimentally demonstrated by Nuclear
Quadrupole Resonance (NQR) of a rotating single crystal at
and near zero-field.76 In the case of 14N overtone at high fields,
the quantization axis is just slightly off from the main magnetic
field. The encompassed solid angle or Berry’s phase is small,
in the order of (ωQ/ω0)2/4π. Therefore the resulting shift can
be estimated in the order of (ωQ/ω0)2ωr/4π, ωr/ωQ smaller
the second-order quadrupolar shift in Eq. (55). Berry’s phase
may become observable at low fields under fast spinning.

D. The detection operator

The detection operator in the D frame, which is trans-
formed into the L frame by the matrix T (t), is given by

OD
det = T (t)−1OL

detT (t). (56)

Following the same procedure we have used to derive Eq. (32)
in the static case, we obtain for the overtone detection operator
under sample rotation,

OD
det = ξ

∗
rot(t)S

DQ
− , (57)

where

ξ∗rot(t, θC) =
∑2

k=−2
ξ∗k (θC) exp(ikωr t), (58)

ξk(θC) = ε(ak
−1 sin θC − ak

−2 cos θC). (59)

By inserting Eq. (47) into Eq. (59), we obtain

ξk(θC) = ε χk(θC)
∑2

m=−2
AQ,P

2,m D2
m,k(αPR, βPR, γPR) (60)

with

χk(θC) = d2
k,−1(θC) sin θC − d2

k,−2(θC) cos θC , (61)

which provides the following expressions:

χ0(θC)= −
3
2

√
3
2

cos θCsin2θC ,

χ1(θC)= −χ−1(π − θC)

= 2cos2(θC/2)(1 + 3 cos θC)sin3(θC/2),

χ2(θC)= −χ−2(π − θC) = −(2 + 3 cos θC)sin4(θC/2),

(62)

Equations (58), (60), and (61) show that for rotating samples
the overtone parameter have five modulating components. The
relative amplitudes among the five components are constants
for all orientation in powder samples which are determined
only by the angle of spinning and coil axis with respect to
the magnetic field. In Sec. IV B, the numerical values of the
constant show that either k = 2 or −2 component is dominant
under magic-angle spinning leading to apparent overtone peak
shifting at twice the spinning frequency. This is the key finding
from theory which explains the intriguing feature of 14N over-
tone NMR observed experimentally under MAS.63 Previous
theoretic studies57,61,62 have not gone far enough to reach this
conclusion.
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E. The rf Hamiltonian

The rf spin Hamiltonian can also be expressed in the D
frame as

HD
rf = T (t)−1HL

rf T (t). (63)

Using the same procedure as in the static case, we can express
the rf Hamiltonian in a frame R rotating at the irradiation fre-
quency ωirr /2 around the z-axis of the D frame (Sec. II B 3).
Neglecting the non-resonant rotating component of the rf
field, the rf spin Hamiltonian in such a R frame can be
written into a form similar to Eq. (37) derived in the static
case as

HR
rf ≈ ω1

(
ξrot(t, θC)e−iφSDQ

+ + ξ∗rot(t, θC)eiφSDQ
−

)
. (64)

The sample spinning adds additional modulations to the oscil-
lating rf field through the overtone parameter. With short rf
pulses in the linear excitation regime, the contributions from
the five modulating components are additive. We can express
the overtone signal as

s
(
t > τp

)
∝

∑2

k=−2
|ξk(θC)| sin

(
2|ξk(θC)|ω1τp

)
× exp

(
i
[(
ω̄DQ + kωr

) (
t − τp

)
+ (ωirr + kωr)τp − φ − π/2

] )
. (65)

The overtone signal of rotating solids hence contains five
modulating components, which lead to five resonances sep-
arated by the spinning frequency. Their appearance is similar
to the spinning sidebands often seen in solid state NMR of
rotating samples, however with a fundamental difference. Con-
ventional spinning sideband intensities depend on the ratio
between the magnitude of the observed NMR frequency mod-
ulation and the spinning frequency, and hence, they diminish
with faster spinning. On the contrary, the five overtone peaks
do not result from the modulation of the 14N second-order
quadrupole interaction, which affects the resonance frequency
of the overtone signal [Eq. (54)], but from the modulation
of the total quadrupole interaction, which affects the effi-
ciency of excitation and detection of the overtone transition
under sample rotation. The intensities of the five components
are hence independent of the spinning frequency. Moreover,
Eq. (62) shows that the relative intensity of the five overtone
sidebands depends on the angle of the rotor axis, θC , which
will be discussed later. When the CSA or the 14N second-
order quadrupole interaction is larger than ωr , the modulation
of the overtone DQ frequency leads to extra spinning side-
bands in addition to the five overtone components. These
sidebands behave like the conventional ones and thus disap-
pear with higher spinning frequencies like those typically used
experimentally in 14NOT NMR.

IV. RESULTS AND DISCUSSIONS

The 14NOT NMR theory presented above centers on the
overtone parameter, ξ or ξk for static or rotating conditions,
respectively, which depends on the quadrupole interaction, the
crystallite orientation, and the spinning/rf coil axis angle, θC ,
with respect to B0.

First, ξ and ξk scale both rf excitation and signal detec-
tion and are proportional to the ratio between the quadrupole

and Zeeman interactions through the parameter ε = ωQ/ω0

[Eqs. (33) and (59)]. Because of the scaling factor, 14NOT NMR
may look a priori less favorable at high magnetic fields. How-
ever, there are several advantages with increasing B0 magnetic
field: (i) an increase in spin polarization due to the Boltz-
mann factor, (ii) a decrease of second-order quadrupolar line
broadening, (iii) an increase in sensitivity due to the induc-
tively detected NMR signal being proportional to frequency,
and (iv) an increase in separation between various resonances
through chemical shift differences. The overall overtone sen-
sitivity still increases with the magnetic field considering all
these factors.77

Second, ξ and ξk depend on the molecular orientation
through the AQ,L

2,−1 and AQ,L
2,−2 [see Eq. (33)] or ak

−1 and ak
−2

[see Eq. (59)] terms in static or rotating samples, respectively,
which in turn depend on the angle between the coil and the
magnetic field, θC . The consequences will be discussed further
below for the cases of static and rotating samples.

A. Static samples

Figure 2(a) shows the distribution in amplitude and
phase of the overtone parameter ξ in a static powder sam-
ple [Eq. (33)]. We have used the 14N parameters of glycine
and a field of B0 = 11.74 T in comparison with the previously
reported simulations and experimental results.63,64 In this case,
|ξ | ranges from 0% to 1.5%, and therefore, both the overtone
rf excitation and detection are much reduced. Furthermore,
Fig. 2(a) also shows that the phase of this complex parameter is
randomly distributed as a result of the distributed orientations
of the quadrupolar tensor with respect to the magnetic field.

FIG. 2. Simulations of 14NOT NMR data under static conditions with
B0 = 11.74 T (ω0,14N/(2π) = 36.118 MHz), a short pulse, and the param-
eters of glycine (CQ = 1.18 MHz, ηQ = 0.53, δiso = 6 ppm). (a) Distribution
of the magnitude and phase of overtone parameter ξ , with θC = 54.74◦. Line
shapes with rf coil (b) perpendicular or (c) parallel to the magnetic field B0.
The overtone signal was scaled by |ξ |2 as in Eqs. (33) and (66).
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This random phase distribution may lead to a confusing physi-
cal picture as opposed to conventional NMR. In the latter case,
(i) rf excitation and signal detection are usually coherent for all
spins; (ii) the polarizations from all crystallites align with the
magnetic field before excitation and they remain coherent after
excitation; and (iii) this coherent alignment leads to an overall
NMR signal with almost no cancellation. As a result, we often
relate the spin polarization directly with the NMR signal. All
these facts are no longer true for 14NOT NMR due to the ran-
dom phase distribution of ξ. One may then wonder why it is
still possible to detect 14NOT signals. Indeed, if the overtone
DQ polarization was excited uniformly, in a similar way as the
excitation of multiple-quantum coherences in MQMAS, then
a powder average of ξ during overtone detection would annihi-
late the signal. The key point to overtone NMR is that the same
overtone parameter ξ and its phase distribution apply for sig-
nal detection and rf excitation at twice the Larmor frequency.
Therefore, the two phase distributions cancel each other and
result in a 14NOT signal proportional to the magnitude of ξ
[see Eq. (41)], which is observable even for a powder sample.
Nevertheless, the excitation and detection profiles depend on
|ξ |, which makes the line shape sensitive to the excitation pulse
length. In the short pulse limit, sin(2|ξ |ω1τp) ≈ 2|ξ |ω1τp, and
the overtone peak intensity is proportional to the square of the
overtone parameter,

s(ω) ∝ |ξ |2. (66)

Figures 2(b) and 2(c) show that the short-pulse static line shape
varies with the angle θC between the rf coil and B0, a feature
unique to 14NOT NMR. Overall, only the magnitude of the
overtone parameter |ξ | needs be considered. For 14NOT excita-
tion, the spin dynamics is then almost identical to that of spin
S = 1/2 nuclei, except for the rf scaling and its anisotropic
angular dependence. However, as a general rule, the effective
overtone rf field is proportional to ω1|ξ | [Eq. (37)] and hence
to ω1ωQ/ω0. The practical consequences of the scaled down
effective rf field lead to (i) long pulse durations with small
excitation bandwidths, (ii) difficulties in generating 14NOT

spin-echoes without loss of efficiency and line shape distor-
tions, and (iii) non-uniform excitation due to the anisotropic
angular dependence.

B. Magic-angle spinning samples

For rotating solids, MAS probes are usually used for
14NOT NMR to cancel the CSA and dipolar interactions, and
both the spinning and coil axes are co-linear and at the magic-
angle with respect to the magnetic field B0, i.e., θC = θM

= 54.74◦. From Eq. (62), we obtain the following numeri-
cal values for the amplitude of the five overtone components
under MAS:

χk(θM ) = (0.11, 0.27, 0.23,−0.25,−0.88)(k = 2, 1, 0,−1,−2).

(67)

In the short pulse limit, the overtone peak intensities of the
five resonances are proportional to the square of the overtone
parameter,

ssbK ∝ ��ξk
��2. (68)

Thus, the relative amplitudes of the five 14NOT “spinning
sidebands” (ssbs) are given by

ssbK (θM ) = (0.02, 0.09, 0.07, 0.09, 1.00)(k = 2, 1, 0,−1,−2).

(69)

The term “spinning sidebands” is retained as these peaks also
shift with the spinning frequency. However, there are funda-
mental differences in the physical origin and behavior of the
14NOT ssbs as compared to spinning sidebands observed in
conventional MAS experiments. For conventional NMR, the
center-band is usually the dominant peak under fast spinning,
whereas for overtone NMR, it is the k =−2 sideband. The other
overtone ssbs are at least an order of magnitude smaller, which
makes the most prominent overtone signal appear to shift by
twice the spinning frequency. Furthermore, the relative inten-
sity of the ssbs in overtone spectra are mostly independent of
spinning frequency.

It should be noted that if the spinning axis is inverted
with respect to B0, i.e., θM → 180◦ − θM or equivalently ωr

→ −ωr , the relative amplitudes of the overtone ssbs, which
are proportional to |ξk |2 in the short pulse regime [Eq. (66)],
reverse in order [Eq. (62)],

ssbK (π − θM ) = (1.00, 0.09, 0.07, 0.09, 0.02)

× (k = 2, 1, 0,−1,−2). (70)

The k = 2 sideband becomes dominant and the main signal
shifts by twice the spinning frequency in the opposite direction.
14NOT NMR is a rare case where the spectra are sensitive to
the sense of spinning with respect to the magnetic field.

Figure 3 shows simulations of the 14NOT NMR line shape
and relative sideband intensities in the short pulse regime [see
Eq. (70)] versus the spinning/coil axis angle θC . As stated pre-
viously, the order of the sidebands is reversed (k ↔ −k) for
θC and 180◦ − θC , as observed when θC = 54.7◦ and 125.3◦,
while the line shape remains the same for the individual side-
bands. When the axis is parallel (or anti-parallel) to B0, only
the sideband at −2ωr (or +2ωr) exists. As θC increases up to
the magic-angle, the k = −2 14NOT sideband remains domi-
nant. The other sidebands increase rapidly in intensity as θC

approaches 90◦. When the rotor axis is perpendicular to B0 (θC

= 90◦), the sideband intensities are symmetric as expected from
symmetry considerations and reversing the spinning direction
does not affect the spectrum.

The time modulation of the overtone excitation and detec-
tion can be expressed by combining Eqs. (58) and (60) and it
introduces two intriguing questions,

ξrot(t, θM ) = ε
∑2

k=−2
χk(θM )

∑2

m=−2
AQ,P

2,m d2
m,k(βPR)

× exp(−i[mαPR + k(ωr t + γPR)]). (71)

First, the most prominent overtone peak shifts at twice the
spinning frequency, while its energy level remains at the cen-
ter band position, i.e., at the time averaged frequency over
one rotor period. By placing the rf carrier frequency onto the
main overtone peak position, i.e., at the −2ωr sideband, is
the rf irradiation on- or off-resonance? The answer is that the
effective excitation is on-resonance. Although the rf irradia-
tion is offset by 2ωr , the modulation of the rf field by the
2ωr component in Eq. (71) effectively makes the overtone
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FIG. 3. Simulations of 14NOT short-pulse spectra under rotation at various θC
angles of the spinning/coil axis, with B0 = 11.74 T,ω0,14N/(2π) = 36.118 MHz,
ωR/(2π) = 8 kHz, and the parameters of glycine (CQ = 1.18 MHz, ηQ = 0.53,
δiso = 6 ppm). The overtone peaks were scaled by |ξk |2.

irradiation frequency match the overtone DQ transition. Sec-
ond, the five modulating k components of Eq. (71) can all
excite the overtone transition despite their frequency offsets.
How much does each of the five modulating k components
mutually contribute to other overtone ssbs? In other words,
can the dominant modulating component be used to excite
the other smaller overtone sidebands? The answer to the sec-
ond question is that only excitation from the same modulating
component contributes to the sideband being observed. The
reason lies in the effect of the rotor angle γPR on the overtone
rf field, which appears in Eq. (71) as the phase kγPR. In the
linear excitation regime, the excitations from other compo-
nents have a non-vanishing γPR angular dependence given by
exp(i[kexc − kdet]γPR), which is annihilated by powder aver-
aging; kexc and kdet are the modulating sideband orders for
the excitation and detection, respectively. Thus, only the exci-
tation from the same sideband component (i.e., kexc = kdet)
contributes to the overtone peak being observed. In the short
pulse limit, the peak intensities of the overtone sidebands are
given by the square of the relative amplitude ξk which effec-
tively amplifies the differences in relative intensity and makes
the ±2ωr peak appearing more dominant under MAS.

Figure 4 shows the experimental 14NOT MAS spectra of
glycine at νr = 10 kHz, with the rf carrier frequency set on
each of the five observed sidebands. The 14NOT peak intensi-
ties agree with the simulated results for the relative sideband
intensities in Fig. 3. In order to confirm the dependence of the
spinning induced 14NOT MAS shift on the sense of spinning
relative to the magnetic field, we have searched all possible
magnet and probe combinations available to us and found
that all vertical-bore superconducting NMR magnets we have
access to have their magnetic fields pointing upwards. Most of
the MAS probes are equipped with spinning modules from
Bruker and Revolution NMR which (coincidentally?) spin
samples in the same direction (counterclockwise when looking

FIG. 4. Experimental 14NOT MAS spectra of glycine recorded at 19.6 T, with
ωR/(2π) = 10 and 3.5 kHz using 4 mm Bruker and 5 mm Doty MAS probes
with approximately 70 and 110µl sample volumes, respectively. The rf ampli-
tude ω1/(2π) was calibrated using a D2O sample and was approximately 60
and 20 kHz for the Bruker and Doty probe, respectively. The deuterium Lar-
mor frequency is within 6% of the 14N overtone frequency. 100 and 50 µs long
excitation pulses were used for the Bruker and Doty probes with frequency
offsets set on resonance with respect to the overtone peaks indicated by the
arrows. The recycle delay was 0.5 s and the number of scans was 1024 for
measuring the main −2 sideband, 32 768 for the other sidebands of the Bruker
4 mm experiment and 102 400 for the Doty 5 mm experiment. The two probes
spin the samples in opposite directions/senses with respect to B0. The spec-
tra recorded with the Bruker probe were acquired using five different carrier
frequencies denoted by the arrows. Only one spectrum with the frequency
set at the expected main overtone peak position was acquired using the Doty
probe due to the weak signal caused by the low rf field. The results confirm
the second spinning sideband as the main overtone peak, which is shifted by
twice the spinning frequency in a direction determined by the spinning axis
relative to the magnetic field.

down the coil/stator axis). Only one of our decommissioned
Doty probes spins the samples in the opposite direction which
allowed us to confirm experimentally that the spinning induced
shift of the main overtone peak is reversed in the “opposite”
spinning direction. Agreement has also been observed from
14NOT MAS NMR spectra acquired later using JEOL probes
which also spin in the clockwise direction (not shown). Exper-
imentally, long rf pulses are usually used in order to observe
sufficient signal intensity. The narrow excitation bandwidth
of long pulses makes the simultaneous observation of all five
sidebands difficult. The five sidebands in Fig. 4 were acquired
individually by placing the overtone rf frequency on each of
the marked peak positions in Fig. 4.

The National High Magnetic Field Laboratory has
recently commissioned a 36 T series-connected-hybrid (SCH)
magnet with field homogeneity and stability suitable for high-
resolution solid-state NMR experiments.10 The powered mag-
net can be ramped to the full field strength in either direction in
approximately 30 min. Thus, 14NOT MAS NMR spectra can be
acquired back-to-back spinning in the same direction but with
opposite field orientations in about an hour. Figure 5 shows
the 14NOT MAS NMR spectra of glycine with the magnetic
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FIG. 5. Experimental 14NOT MAS NMR spectra of glycine recorded at 35.2
T using the series-connected-hybrid (SCH) magnet at the National High Mag-
netic Field Laboratory. A 3.2 mm home-built MAS probe with 36 µl sample
volume was used for the measurement. A 400 µs pulse with an approximately
100 kHz rf field was used for the overtone excitation. The frequency offset
was placed at the main overtone peaks. 8192 scans with 0.1 s recycle delay
were acquired for each spectrum. Two sets of spectra were acquired back-
to-back by reversing the direction of the magnetic field for ωR/(2π) = 5 and
10 kHz spinning frequencies.

field in opposite directions. In addition, 14NOT MAS spectra
were acquired at two spinning frequencies to show the spin-
ning induced shift of the 2ωr overtone sideband. The lower
peak intensities at ωR/2π = 5 kHz are due to the fact that the
single-channel probe used relies solely on MAS to average the
dipolar coupling to the protons. Low spinning causes less effi-
cient decoupling, contributing to broader overtone lines and
lower intensities. The results confirm again the opposite spin-
ning induced shift of 14N overtone peaks with respect to the
magnetic field direction.

V. CONCLUSIONS

We have shown that overtone NMR of 14N nuclei, or more
generally of any spin S = 1 nucleus, can be described by an
overtone parameter in the case of static or rotating samples.
This parameter, which scales down both the effective rf field
and the detected signal, depends on the quadrupolar coupling
interaction and the crystallite orientation and is inversely pro-
portional to the magnetic field. The spin dynamics of overtone
excitation can be treated as a fictitious spin S = 1/2 nucleus
represented by a two-level overtone transition and a rf field
scaled down by the overtone parameter. For rotating samples,
the overtone parameter is modulated by the spinning, which
gives rise to five components or spinning sidebands. The rela-
tive amplitudes of the five sidebands are only determined by the
orientation of the rf coil and the spinning axis with respect to
the magnetic field. For a solenoid coil and spinning axis along
the magic angle, the relative signal amplitudes are 0.02, 0.09,
0.07, 0.09, and 1.00. Thus, the 2ωr sideband dominates and
the main observable overtone peak appears shifted, at twice the
spinning frequency. Reversing the spinning (or magnetic field)
direction makes the peak shift in the opposite direction. The
presented theory gives a physical explanation for the intrigu-
ing features observed in the overtone NMR spectra of rotating
samples and a simple formalism for the spin dynamics therein
for the exploitation of the highly abundant nitrogen isotope.
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