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We study the quantum phases driven by interaction in a semimetal with a quadratic band touching at the
Fermi level. By combining the density matrix renormalization group (DMRG), analytical power expanded
Gibbs potential method, and the weak coupling renormalization group, we study a spinless fermion system
on a checkerboard lattice at half-filling, which has a quadratic band touching in the absence of interaction. In the
presence of strong nearest-neighbor (V1) and next-nearest-neighbor (V2) interactions, we identify a site nematic
insulator phase, a stripe insulator phase, and a phase separation region, in agreement with the phase diagram
obtained analytically in the strong coupling limit (i.e., in the absence of fermion hopping). In the intermediate
interaction regime we establish a quantum anomalous Hall phase in the DMRG as evidenced by the spontaneous
time-reversal symmetry breaking and the appearance of a quantized Chern number C = 1. For weak interaction
we utilize the power expanded Gibbs potential method that treats V1 and V2 on equal footing, as well as the
weak coupling renormalization group. Our analytical results reveal that not only the repulsive V1 interaction,
but also the V2 interaction (both repulsive and attractive), can drive the quantum anomalous Hall phase. We also
determine the phase boundary in the V1-V2 plane that separates the semimetal from the quantum anomalous
Hall state. Finally, we show that the nematic semimetal, which was proposed for |V2| � V1 at weak coupling in
a previous study, is absent, and the quantum anomalous Hall state is the only weak coupling instability of the
spinless quadratic band touching semimetal.
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I. INTRODUCTION

The integer quantum Hall state is a paradigmatic example
of a topologically nontrivial phase of matter that is realized
in the absence of time-reversal symmetry [1]. In conven-
tional integer quantum Hall systems time-reversal symmetry
is explicitly broken by an externally applied magnetic field,
and its topological origin is revealed by the quantized Hall
conductivity which is a physical consequence of the non-
trivial Chern number that characterizes integer quantum Hall
states [2]. In the integer quantum Hall state the single-particle
spectrum is gapped in the bulk, while it remains gapless at
the edges due to topological protection. An externally applied
magnetic field, however, is not necessary for the existence of
an integer quantum Hall state as demonstrated theoretically by
Haldane [3], and simulated in ultracold atom experiments [4].
This new type of integer quantum Hall state realized in the
absence of a magnetic field is called a quantum anomalous
Hall (QAH) state. In the QAH phase the Chern number is
nontrivial and leads to topologically protected gapless edge
states.

QAH states resulting from breaking time-reversal sym-
metry through magnetic doping [5] or intrinsic ferromag-
netism [6] has been discussed extensively, and realized ex-
perimentally [7–9]. An alternative route for realizing a QAH
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state is through interaction driven spontaneous time-reversal
symmetry breaking. Such QAH orderings have been argued
to exist in two-dimensional semimetals with vanishing [10]
as well as finite [11–13] density of states at the Fermi
level. While some mean-field based analyses propose the
presence of a QAH state at finite interaction strength in
Dirac semimetals [10,14–16], other analytical and numeri-
cal studies find charge ordered phases instead [17–23]. Al-
though the QAH phase appears to be absent for linearly
dispersing fermions on the honeycomb lattice, other routes
for stabilizing a QAH state have been explored [24–31]. One
such route utilizes the finite density of states at the Fermi
level in two-dimensional semimetals with a quadratic band
touching point (QBT) [11,12]. Due to a finite density of
states, nearest-neighbor repulsive interaction V1 is marginally
relevant and can drive weak coupling instabilities in the
semimetal [12,32,33]. The instability is accompanied by a
spontaneous breaking of one of the symmetries that protect
the QBT. Although the runaway flow can potentially lead
to distinct symmetry broken states, energetics imply that the
QAH state is the dominant instability in a spinless fermion
system [11,34,35]. We note that for attractive interactions,
due to an absence of a Fermi surface, the pairing channel
mixes with various particle-hole scattering channels which
suppresses superconductivity [36,37].

Notwithstanding the promise of the analytic results, they
cannot rigorously establish the presence of the QAH state
because on the one hand a runaway renormalization group
(RG) flow leads to a loss of analytic control over RG based
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predictions, and on the other hand mean-field based results
are reliable only in the presence of weak quantum fluctuations
which are excluded a priori from such analysis. Therefore,
numerical analyses become essential for unambiguously es-
tablishing the presence of the QAH phase. Owing to its
origin in a marginally relevant operator, the putative QAH
gap has the BCS form [11], and grows exponentially slowly
such that at weak coupling the gap is usually too small for
numerical detection on finite-size systems. At strong interac-
tion, however, classical charge ordered states are stabilized
[38,39]. This leaves a small window along the interaction
axis for a numerical detection of the QAH gap. While ex-
act diagonalization calculations find evidence supporting the
presence of a QAH phase in the checkerboard lattice model
[40], fully establishing the nature of the phase within this
window remains a challenge due to limitations on the system
size. Thus the identification of the QAH phase driven by V1

interaction remains an open question.
Recently, by considering not only V1 but also further-

neighbor repulsive interactions such as second- and third-
neighbor interactions, numerical calculations have estab-
lished a QAH phase in various lattice models of spinless
fermions [41–43]. The QBT realized in the kagome-lattice
and decorated-honeycomb-lattice models, however, host a flat
valence band which leads to a lack of particle-hole symmetry,
generally requires fine tuning to maintain the flatness, and
nongenerically enhances the effects of interactions. Moreover,
due to the correlation length exceeding the system size near
a continuous phase transition, numerical simulations suffer
from finite-size effects at weaker couplings. Thus the fate of
systems with further-neighbor interactions is unclear closer
to the noninteracting point on the phase diagram. In par-
ticular, it is not obvious that the QAH state predicted from
weak-coupling RG analysis of the V1 interaction is identical
to the one obtained numerically at intermediate coupling in
the presence of further-neighbor interactions. Furthermore,
there is always a possibility for some other symmetry broken
state to exist at intermediate couplings in a multidimensional
coupling space. Since in models of spinless fermions further-
neighbor interactions result in derivative coupling in the low-
energy effective theory, an asymptotic analysis is difficult in
the presence of such operators which introduce sensitivity to
lattice physics. Moreover, a mean-field description is hindered
by a lack of direct decomposition of the further-neighbor
interactions into local order parameters defined on the nearest-
neighbor sites.

In this paper we will address the above issues by a combi-
nation of analytical and numerical methods. For concreteness
we consider an interacting spinless fermion model on the
checkerboard lattice which is governed by the Hamiltonian

H = −
∑
ij

(tij c
†
i cj + H.c.) + V1

∑
〈ij〉

ninj + V2

∑
〈〈ij〉〉

ninj ,

(1)

where t is the nearest-neighbor hopping, t ′ and t ′′ are the next-
nearest-neighbor hoppings along two lattice spacing direc-
tions [see Fig. 1(a)], and V1 (V2) is the nearest-neighbor (next-
nearest-neighbor) interaction. We use t to set the energy scale,
and fix t = 1. The Hamiltonian is invariant under discrete

(a)

(b)

FIG. 1. Model Hamiltonian and “classical” phase diagram of
the spinless fermion model, Eq. (1), on the checkerboard lattice.
(a) Schematic figure of the model on the Ly = 4, Lx = 4 checker-
board lattice. The blue and red dots denote the two sublattices.
The (green) solid lines are the nearest-neighbor hopping t between
the sites of different sublattices. The (red) dashed lines and the
(blue) dashed-dot lines represent the next-nearest-neighbor hoppings
t ′ > 0 and t ′′ < 0 between the sites in the same sublattice. While
the blue sublattice has t ′ (t ′′) along the x (y) direction, the red
sublattice has the opposite choice. We consider the nearest-neighbor
(V1) and the next-nearest-neighbor (V2) density-density interactions.
(b) Classical phase diagram of the checkerboard-lattice model at
half-filling. Here classical implies an absence of the hopping terms.
With changing interactions, the model has three insulating phases
including the site nematic insulator, the stripe insulator, and the phase
separation, whose schematic figures are shown in the inset with the
solid (hollow) circles denoting the fully occupied (empty) sites. The
dashed lines denote the phase boundaries between these insulating
phases. They are obtained by comparing the energy of each state,
viz. Enematic = V2, Estripe = V1/2, Ephase separation = V1 + V2.

translation, time-reversal, and fourfold (C4) rotation. By set-
ting t ′ = −t ′′ it acquires a particle hole symmetry as well. For
convenience we choose t ′ = 0.5. Without interaction a QBT
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FIG. 2. Quantum phase diagram of the spinless fermion model,
Eq. (1), on the checkerboard lattice with half-filling. In this phase
diagram we set t ′/t = 0.5, t ′′/t = −0.5. By tuning V1 and V2 we
identify the classical insulating phases at strong interaction, which
are consistent with the classical phase diagram Fig. 1(b). In the
central triangular region enclosed by the classical phases we do not
find any charge ordered order. In the shaded region between the
site nematic insulator and the stripe insulator phase, we identify a
QAH phase in DMRG calculation as discussed in Sec. II. The QAH
state spontaneously breaks time-reversal symmetry and possesses a
quantized topological Chern number C = 1. Since the system size
in the ŷ direction is limited in DMRG calculation, we are unable to
distinguish between the QBT semimetal and a weak QAH phase.
Using the PEGP method (see Sec. III) we find that besides the
repulsive V1 interaction, V2 interaction (both repulsive and attractive)
can also stabilize a QAH phase. We obtain the dashed line V1 ∼ −V 2

2

separating the QAH phase from the semimetal from the low-energy
effective theory. As shown in Sec. IV, nematic semimetal states that
compete with the QAH state remain subdominant and do not appear
in the weak coupling region of the phase diagram.

is realized at half-filling. The nearest-neighbor interaction V1

directly leads to a marginal operator in the low energy effec-
tive theory, and destabilizes the semimetal when it is repul-
sive [11,36]. At strong coupling, however, V1 leads to a local-
ized state—the site nematic insulator—which spontaneously
breaks the C4 symmetry. The presence of a distinct symmetry
broken state at stronger coupling complicates the numeri-
cal determination of the QAH state in finite-size systems.
Since a strong repulsive next-nearest-neighbor interaction V2

stabilizes a different localized state—the stripe insulator—
as shown in Fig. 1(b), in the presence of both V1 > 0 and
V2 > 0, quantum fluctuations are enhanced through a mutual
frustration of the respective localized states. This may broaden
the window for the realization of a quantum liquid state. In-
deed with a large-scale density matrix renormalization group
(DMRG) calculation we report an unambiguous detection of
the QAH state on the checkerboard-lattice model as shown in
Fig. 2. We provide details of the numerical calculation and
results in Sec. II. This is one of the main results of the paper.

Although a QAH state is detected around V1 ∼ V 2
2 ∼ 4,

all the symmetry broken states within the central triangular
region of Fig. 2 may not be QAH since the noninteracting

QBT is susceptible towards nematic semimetallic states that
break the C4 rotational symmetry down to C2 and compete
with the QAH state [11]. In order to compare the symmetry
broken states obtained in the weak-coupling region of the
phase diagram to the numerically determined QAH phase,
in Sec. III we introduce an analytical method, power ex-
panded Gibbs potential (PEGP) [44] that treats V1 and V2 on
equal footing. By utilizing the PEGP we determine the phase
diagram in the neighborhood of the QBT, and identify the
phase boundary that separates the QBT semimetal from the
QAH state. In the presence of interaction the susceptibilities
of the QAH state and the two nematic states diverge along
the runaway flow. The rates of divergence of susceptibilities,
however, are distinct, and the nematic semimetals remain
subdominant to the QAH state as shown in Sec. IV. In the
same section we provide additional support to the suscepti-
bility analysis with PEGP and numerical calculations. Our
conclusion differs from Refs. [11,45] in that we do not find
a nematic semimetal state at weak coupling, and the QAH
state is the sole instability of the QBT in the presence of
further-neighbor interaction. The combined numerical and
analytic results strongly suggest that the QAH phase driven
by weak interactions extends to an intermediate interaction
region, and competing further-neighbor interactions play an
important role in stabilizing the QAH state.

II. NUMERICAL DETERMINATION
OF THE QUANTUM PHASE DIAGRAM

In this section we use the unbiased DMRG [46] method
to study the model in Eq. (1). In DMRG calculations, the nu-
merical accuracy can be controlled by the number of optimal
states retained, and the system size can be much larger than
that in exact diagonalization calculation which significantly
reduces finite-size effects. We consider a cylindrical geometry
for the system with periodic boundary conditions along the y

direction and open boundary conditions along the x direction.
We illustrate the choice in Fig. 1(a) with Ly and Lx denot-
ing the numbers of unit cells along the y and x directions,
respectively. Our system size is up to Ly = 8, while Lx is
usually taken from 48 to 64. We keep up to 4000 optimal
states and obtain very accurate results for Ly = 4 and 6, and
convergence to within truncation errors less than 5 × 10−5 for
Ly = 8.

We determine the quantum phase diagram in Fig. 2 in
the presence of the hopping terms. Our DMRG calculations
identify the insulating charge ordered phases in the strong
(V1, V2) region, which are separated by the solid-line phase
boundaries (for computational details see Appendix A). At
large interactions quantum fluctuations due to the hoppings
are suppressed, and the quantum phase boundaries approach
the classical ones in Fig. 1. It is in principle possible to realize
a region of coexistence of the QAH and a nematic semimetal
in the neighborhood of the nonclassical phase boundaries [11].
In this work we do not study this possible coexistence region
in detail.

Within the central triangular region abutting the charge
ordered phases our DMRG calculations unambiguously iden-
tify a QAH phase with spontaneous time-reversal symmetry
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FIG. 3. Interaction dependence of the QAH structure factor. The
structure factor JQAH is calculated by the summation of the QAH
current correlations 〈�ij�i0j0 〉 in the bulk of the cylinder as defined
in Eq. (2). The data are obtained from the middle 4 × 4 unit cells on
the Ly = 4 cylinder. The inset shows the sign convention for εij in
Eq. (2). For the reference bond (i0, j0) with i0 → j0 following the
arrow direction, the bonds (i, j ) with the direction i → j following
the arrow direction have εij = 1; otherwise if i → j follows the
opposite direction, εij = −1.

breaking and quantized Chern number C = 1 in the region
where V1 ∼ V 2

2 . In the rest of this section we provide numer-
ical evidences for establishing the QAH phase.

A. Spontaneous time-reversal symmetry breaking

On the checkerboard lattice we define the QAH order
parameter as �ij ≡ 4i〈�|c†i cj − c

†
j ci |�〉, where |�〉 is the

ground-state wave function and i, j denote the sites connected
by the nearest-neighbor bond. A nonzero �ij implies a spon-
taneously broken time-reversal symmetry. To obtain a global
picture of the interaction dependence of the QAH order, we
first calculate the QAH structure factor JQAH which is defined
as a staggered sum of the current correlations 〈�ij�i0j0〉,

JQAH = 1

Ns

∑
〈ij〉

εij

〈
�ij�i0j0

〉
, (2)

where the sum runs over the nearest-neighbor bonds in the
bulk of the cylinder (here we choose the middle Ly × Ly unit
cells). Ns is the total number of the summed bonds, and εij =
±1 corresponds to the expected QAH current orientation of
bond (i, j ) with respect to the reference bond (i0, j0). We
show the current orientation of the QAH state in the inset of
Fig. 3, where �ij is positive along the direction of the arrows.
In order for JQAH to be nontrivial, we take a reference bond
(i0, j0) in the bulk of the cylinder with i0 → j0 following the
arrow direction. Then if i → j follows the arrow direction
we set εij = +1; otherwise εij = −1. We show the structure
factor on the Ly = 4 cylinder in Fig. 3. In the region near
V1 ∼ V 2

2 , JQAH grows rapidly, which suggests a time-reversal
symmetry breaking.

Next, we directly calculate the QAH order parameter �ij .
We use complex number wave function in DMRG simula-

(a)

(b)

FIG. 4. Spontaneous time-reversal symmetry breaking in the
QAH state. (a) Nonzero QAH order parameter �ij for V1/t = 4,
V2/t = 2 on the Ly = 6 cylinder. The arrow indicates that if the
sites i, j follow the arrow direction �ij is positive. In the bulk of the
cylinder, �ij has a uniform value, 0.54. The green circle denotes the
clockwise and counterclockwise directions in which the loop current
circulates in each plaquette. The circulating loops have the opposite
directions for the neighbor plaquettes, resulting in zero total flux.
(b) V1 dependence of the QAH order parameter � for V1 = 2V2 on
the Ly = 4, 6, 8 cylinders. For V1/t � 2, DMRG calculation with
Ly = 8 finds a nonzero QAH order.

tion, which allows for a spontaneous time-reversal symmetry
breaking leading to a nonzero �ij . This method has been
widely used to identify time-reversal symmetry broken states
such as QAH state [41] and chiral spin liquid [47] in DMRG
simulation. In Fig. 4(a) we show the obtained �ij for V1/t =
4, V2/t = 2 on the Ly = 6 cylinder. We find a finite �ij

with a uniform magnitude in the bulk of the cylinder, which
implies a spontaneously broken time-reversal symmetry. The
local ordering pattern results in a loop current circulating in
each plaquette. The neighboring plaquettes have an opposite
circulation direction, which leads to a vanishing net flux and,
thus, precisely agrees with the expectation of the QAH ef-
fect [3]. By using the complex number wave function, we find
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one of the two degenerate time-reversal symmetry breaking
ground states with either “left-hand” or “right-hand” chirality
is spontaneously chosen. The two states have the same energy
but opposite QAH order.

To find the region in the phase diagram where the ground
state explicitly breaks time-reversal symmetry, we measure
the QAH order in the central triangular region in Fig. 2. As the
magnitude of the QAH order |�ij | is uniform in the bulk of the
cylinder, we simply denote it as �. Here we show the results
along the line with V1/t = 2V2/t in Fig. 4(b) as a demon-
strative example. On the Ly = 4 cylinder, � is vanishingly
small for weak V1, but obtains a finite value in the neigh-
borhood of V1/t = 4, V2/t = 2. For Ly = 6, � at V1/t =
3.5–4 enhances dramatically (considered as a function of Ly).
The trend continues for Ly = 8, and � around V1/t = 4
strengthens with increasing Ly which indicates the presence
of a robust time-reversal symmetry breaking. The small �

around V1/t = 3 on the Ly = 6 cylinder increases rapidly,
showing that the larger system size overcomes the finite-
size effects. Based on the results on the Ly = 8 cylinder,
we find nonzero QAH order in the shaded region shown
in Fig. 2.

B. Quantized Hall conductance

In order to reveal the topological nature of the QAH phase,
we simulate the flux response in a cylindrical system to mea-
sure the Hall conductance σH [48,49]. Following the thought
experiment proposed by Laughlin for the integer quantum
Hall state [50,51], an integer quantized charge is expected
to be pumped from one edge of the cylinder to the other by
inserting a period of U (1) charge flux θ along the axis direc-
tion of the cylinder as shown in Fig. 5(a). Over a period of
flux θ = 0 increases to θ = 2π , the Hall conductance can be
calculated from the pumped charge number δQ with the help
of σH = e2

h
δQ [48,49]. In DMRG simulation we introduce the

charge flux by using the twisted boundary condition in the y

direction, c
†
i cj + H.c. → c

†
i cj e

iθ + H.c., for all the hopping
terms that cross the y boundary. With growing flux θ we
use the adiabatic DMRG simulation by taking the converged
ground state with a given flux θ ′ as the initial ground state for
the next step sweeping with the increased flux θ ′ + δθ [48].

By adiabatically inserting flux θ in DMRG simulation, we
calculate the distribution of the charge density 〈ni〉 on the
cylinder. In the charge ordered phases, the charge density has
no response to flux as shown in Fig. 5(b). In the parameter
region with spontaneous time-reversal symmetry breaking, we
find that the charge is pumped from one edge of the cylinder
to the other without accumulation or depletion of the net
charge in the bulk of the cylinder, i.e., the charge density
of the sites in the bulk of the cylinder is always 1/2 during
the whole pumping process. In a period of flux θ = 0 → 2π ,
the pumped net charge δQ = 1.0, which characterizes the
quantized Hall conductance and identifies the QAH phase as
a Chern number C = 1 integer quantum Hall phase.

C. Decay length of the QAH order parameter

In the parameter regime where the interaction is repulsive
and our DMRG simulation does not find an unambiguous

(a)

(b)

FIG. 5. Charge pumping with inserting U (1) flux in DMRG
simulation. (a) Schematic figure of the flux insertion simulation in
DMRG. The charge flux θ is introduced in the cylinder by using
twisted boundary conditions for the hopping terms along the closed y

direction, i.e., for the hopping terms crossing the boundary line in the
y direction we set c

†
i cj e

iθ + H.c. For an integer quantum Hall state,
the charge will be pumped from one open edge of the cylinder to
the other edge by adiabatically increasing flux θ . In a period of flux
θ = 0 → 2π , a quantized charge δQ will be transferred. (b) Flux
(θ ) dependence of the pumped charge number δQ in the DMRG
simulation. We set the flux increase in units of π/4. In the CDW
phases, the charge density 〈ni〉 has no response to flux. In the QAH
phase, the charge is pumped by inserting flux. Over a period of θ

a quantized net charge δQ = 1 is transferred, which characterizes
the QAH phase as a Chern number C = 1 integer quantum Hall
state.

evidence for a QAH phase, we measure the decay length of the
QAH order parameter by adding a pinning field in the bulk of
the cylinder. We introduce a pinning field in a single column of
bonds in the middle of the cylinder by modifying the nearest-
neighbor hopping from tc

†
i cj + H.c. to (t + ih)c†i cj + H.c.,

where h is the pinning field which follows the direction shown
in Fig. 6(a). Since a finite h breaks time-reversal symmetry,
� obtains a finite value on the pinning bonds. The nonzero
QAH order exponentially decays along the x direction as
� ∼ e−d/ξ , where d is the distance of the measured bond from
the pinning column, and ξ is the decay length. For a system
that is too small for an unambiguous detection of the QAH
order with the methods discussed in Secs. II A and II B, we
may still identify the QAH order by measuring how the decay
length ξ scales with increasing Ly . If ξ diverges with Ly , then
QAH is realized in a sufficiently large system. In contrast,
if ξ approaches a finite value in the large Ly limit, then
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(a)

(b)

FIG. 6. Decay length of the QAH order parameter which is
driven by a pinning field. (a) Schematic figure of the QAH pinning
field. In the middle column of the long cylinder the hoppings of
the nearest-neighbor bonds with the red arrows are changed from
tc

†
i cj + H.c. to (t + ih)c†i cj + H.c., where i → j follows the direc-

tion of the arrow. h is the pinning field, which breaks time-reversal
symmetry and leads to a nonzero QAH order � that decays from
the pinning column to the edge. (b) Log-linear plot of the QAH
order driven by the pinning field versus the distance of the measured
bond to the pinning column. The system has V1/t = 1.0, V2/t = 0.0.
The even Ly cylinder with periodic boundary condition and the odd
Ly cylinder with the antiperiodic boundary condition are studied.
The QAH order � decays exponentially from the middle column
to the edge, giving a decay length ξ from � ∼ e−d/ξ . The inset
shows the Ly dependence of ξ , where ξ grows almost linearly with
increasing Ly .

the QAH order is absent. This method has been successfully
used to detect the weak valence bond order in quantum spin
systems [47,52–54].

We first test the system with V1/t = 1.0, V2/t = 0.0 on an
even Ly cylinder with the periodic boundary condition, and
an odd Ly cylinder with the antiperiodic boundary condition
[55]. In Fig. 6(b) we show the log-linear plot of the QAH order
� versus d. As anticipated, � decays exponentially, and the
decay length ξ is shown in the inset. In our simulation we
find that although � depends on the pinning field strength, the

FIG. 7. The checkerboard lattice is considered as a decorated
square lattice. The a sites (red) occupy the lattice points of the
square lattice, while the b sites (blue) are displaced by (x̂ + ŷ)/2
with respect to the a site of the same unit cell. The dashed square
represents the unit cell at r .

decay length is almost independent of h, which has also been
found in the dimer pinning [47]. On the V1 axis ξ grows with
Ly and does not show any saturation. A similar behavior is
also found away from the V1 axis in the presence of a repulsive
V2. In the inset of Fig. 6(b) we demonstrate this behavior at
two sample points in the phase diagram. The fast increase
of decay length with Ly is consistent with the presence of a
QAH phase. Therefore, our DMRG simulation fully estab-
lishes a QAH phase over a large region in the V1-V2 phase
diagram.

III. POWER EXPANDED GIBBS POTENTIAL ANALYSIS

In this section we utilize the power expanded Gibbs poten-
tial method (PEGP) for calculating the QAH order as a func-
tion of the couplings V1 and V2. The PEGP was introduced
in the study of spin glass order in the infinite-ranged Ising
model below the critical temperature [44]. Here we adopt
this method for the analysis of the zero-temperature phase
diagram. The main advantage of PEGP over conventional
mean-field theory is its ability to track orderings that result
entirely through quantum fluctuations, including those that
cannot be obtained by a mean-field decomposition of the
terms in the classical theory. In the present model, under
coarse-graining, the next-nearest-neighbor interaction gener-
ates an effective nearest-neighbor interaction which in turn
drives the weak-coupling instability of the QBT semimetal.
The PEGP precisely captures this process, and yields the
dependence of the QAH order on V1 and V2. Although our
analytical computation focuses on the weak-coupling region,
in principle, the method can be used to explore the phase
diagram beyond strict weak coupling regime.

We consider the checkerboard lattice as a decorated square
lattice with two sites a and b per unit cell as illustrated in
Fig. 7. This leads to both interunit cell and intraunit cell
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hoppings and repulsive interactions,

H =
∑

r

[a†rbr + a†rbr−x̂ + a†rbr−ŷ + a†rbr−x̂−ŷ + H.c.] + 1

2

∑
r

[a†rar−ŷ + b
†
r−x̂br + H.c.] − 1

2

∑
r

[a†rar−x̂ + b
†
r−ŷbr + H.c.]

+ V1

∑
r

a†rar(b†rbr + b
†
r−x̂br−x̂ + b

†
r−ŷbr−ŷ + b

†
r−x̂−ŷbr−x̂−ŷ )

+ V2

∑
r

[a†rar(a†r+x̂ar+x̂ + a
†
r+ŷar+ŷ + a

†
r−x̂ar−x̂ + a

†
r−ŷar−ŷ ) + (a ↔ b)], (3)

where r denotes the position of a unit cell. We set the lattice spacing to unity and consider an infinite system to define the Fourier
components,

{ar, br} =
∫

dkeir·k {a(k), e(i/2)(x̂+ŷ )·kb(k)}, (4)

where k lies within the first Brillouin zone, and dk ≡ dkxdky

(2π )2 . Therefore, the action in momentum space representation takes the
form

S =
∫

dkψ†(k)[−ik0σ0 + d1(k)σ1 + d3(k)σ3]ψ (k)

+
∫

dkdk′dq

[
4V1 cos

qx

2
cos

qy

2
ψ†(k + q )

σ0 + σ3

2
ψ (k)ψ†(k′)

σ0 − σ3

2
ψ (k′ + q )

+ 2V2(cos qx + cos qy − 2)
∑
s=±

ψ†(k + q )
σ0 + sσ3

2
ψ (k)ψ†(k′)

σ0 + sσ3

2
ψ (k′ + q )

]
, (5)

where dk ≡ ∫ ∞
−∞

dk0
2π

∫
dk, ψ (k) = [a(k), b(k)]ᵀ is a two-

component Grassman spinor, d1(k) = 4 cos kx

2 cos ky

2 , d2(k) =
4 sin kx

2 sin ky

2 , and d3(k) = cos kx − cos ky , σ0 is the 2 × 2
identity matrix, and σi are the Pauli matrices.

We express the local QAH order parameter as (see Fig. 7)

�(r ) ≡ γ (r; 0) − γ (r; x̂) − γ (r; ŷ) + γ (r; x̂ + ŷ), (6)

where

γ (r; w) = i[a†
rbr−w − b

†
r−war ]. (7)

In Ref. [11] the authors have studied the model, Eq. (5), in the
absence of the V2 term, and established a mean-field phase
diagram where the QAH order parameter �(r ) ∼ �2

0e
−1/V1 ,

with �0 being an effective momentum scale. While the QAH
phase is stabilized over a larger region of the phase diagram in
the presence of the V2 term as established by our DMRG cal-
culation, it is not possible to show this within a conventional
mean-field theoretic framework. The main obstruction results
from �(r ) not being obtainable by a mean-field decomposi-
tion of the V2 vertex [56]. Moreover, the V2 term is irrelevant
in RG sense because it scales as |q|2 close to the M = (π, π )
point, and nominally cannot drive a phase transition at weak
coupling. It is, however, a dangerously irrelevant operator,
since its quantum fluctuation generates the marginally relevant
operator that destabilizes the QBT semimetal. Thus, in order
to study the QAH phase on the V1-V2 plane we utilize the
PEGP which does not rely on explicit mean-field decoupling
of the interaction vertices. In the following subsections we
outline the general principles of PEGP, and then use it to
deduce the phase diagram.

A. General formalism

Here we briefly review the PEGP formalism for a system
of finite size and at finite temperature [44]. We extend the
Hamiltonian in Eq. (3) by introducing an artificial parameter
α and a source J for the order parameter of interest O and
schematically express it as

H [α, J ] = H0 + αHint + JO, (8)

where H0 is the noninteracting Hamiltonian, and Hint is the
interaction term. We note that α = 1 corresponds to Eq. (3)
in the presence of the source term. The Gibbs potential is
given by

G(α, β,�) = − 1

β
ln[Tr(e−β(H0+αHint+JO ) )] − L2J�, (9)

where L is the system size and � = 〈O〉α/L2. For the QAH
order, � is given by Eq. (6). Here 〈· · · 〉α denotes the expecta-
tion value with respect to H [α, J ]. We note that in the Gibbs
potential the order parameter � is an independent variable,
and J is a function of α, β, and � which, in principal, can be
obtained by inverting the relation L2� = 〈O〉α .

The Gibbs potential is computed perturbatively by expand-
ing it in powers of α around α = 0,

G(α, β,�) = G(0, β,�) +
{

∂G(α, β,�)

∂α

∣∣∣∣
α=0

}
α

+ 1

2

{
∂2G(α, β,�)

∂2α

∣∣∣∣
α=0

}
α2 + O(α3). (10)

125144-7



SHOUVIK SUR, SHOU-SHU GONG, KUN YANG, AND OSKAR VAFEK PHYSICAL REVIEW B 98, 125144 (2018)

In the weak coupling limit we can truncate the expansion at
quadratic order, and take α → 1 to obtain

G(1, β,�) � G(0, β,�) + 〈Hint〉0

+ β

2

(
〈Hint〉2

0 − 〈
H 2

int

〉
0 + ∂J

∂α
〈O〉0〈Hint〉0

− ∂J

∂α
〈HintO〉0

)
, (11)

where we have used the relations

∂G(α, β,�)

∂α
= 〈Hint〉α, (12)

∂2G(α, β,�)

∂2α
= β〈Hint〉2

α + β
∂J

∂α
〈O〉α〈Hint〉α

− β
〈
H 2

int

〉
α

− β
∂J

∂α
〈HintO〉α, (13)

and the thermodynamic relation ∂G/∂� = −L2J . From the
roots of the equation ∂G/∂� = 0 we determine the depen-
dence of J on the couplings with the help of the chain rule
∂G/∂� = (∂G/∂J )(∂J/∂�). Here ∂G/∂J is obtained from
Eq. (11), while ∂J/∂� is calculated by inverting the relation
L2� = 〈O〉. The expression of the order parameter � that
minimizes G is in turn obtained by using the relationship
between J and �. In the following subsection we demonstrate
the method for an effective continuum model that follows
from Eq. (5).

B. PEGP analysis of the effective low energy theory

In this section we use the PEGP formalism to obtain an
expression of the QAH order from a low energy effective
theory in the thermodynamic limit with T = 0. Since the log-
arithms that lead to QAH instabilities result from the infrared
(IR) sector, the low energy effective theory is expected to be
sufficient for obtaining qualitatively correct results.

We focus on a small neighborhood of radius �0 centered
at the QBT at M = (π, π ), with �0 � 1 in units of inverse
lattice spacing. In order to obtain the effective action we
expand the dispersion and the coupling functions around M.
Although the V2 vertex is suppressed by a factor of |q|2 in
the low energy limit, it renormalizes the V1 vertex through
quantum fluctuations. Therefore, the bare strength of the
marginal interaction in the effective theory is controlled by
both V1 and V2. In order to obtain an expression for the bare
value of this effective coupling, we integrate out modes that lie
in the shaded region in Fig. 8. We assume V1 to be sufficiently
weak such that modes above �0 coupled through V1 do not
lead to significant renormalizations. The effective action takes
the form

S =
∫

�0

dk �†(k)[ik0σ0 + E0(k)]�(k)

+ g(�0)
∫

�0

(
4∏

n=1

dkn

)
ψ†

a (k1)ψa (k2)ψ†
b (k3)ψb(k4),

(14)

where
∫
�0

implies |k| < �0, � = (ψa,ψb )ᵀ, with {ψa,ψb}
being the coarse-grained modes carrying momenta around M,

FIG. 8. Construction of the effective theory. The square repre-
sents the first Brillouin zone. The filled (blue) circles are equivalent
due to Brillouin zone periodicity and host the QBT. The modes in the
shaded region are integrated out to obtain the low energy effective
action in Eq. (14) defined with the UV cutoff �0.

E0(k) is the dispersion in the neighborhood of M,

E0(k) = 1
2 |k|2 sin 2θk σ1 + 1

2 |k|2 cos 2θk σ3 + O(|k|4),
(15)

with θk being the angular position of k, with respect to M, and

g(�0) = 4V1 + α(�0)V 2
2 (16)

is the effective coupling at the UV scale �0. The V 2
2 term

is generated by the quantum fluctuation in Fig. 9 [57]. In
order to simplify the analysis, henceforth we replace α(�0)
by the limiting value α(�0 → 0) = 1.45, such that g(�0) →
g0 = 4V1 + 1.45V 2

2 . We note that we have ignored renormal-
izations to the quadratic part of the action. The asymptotic
behavior of Eq. (14) was studied in Ref. [11]. In particular, g

was shown to be marginally relevant, and within a mean-field
analysis it was shown to drive the system into a QAH state. We
note that the microscopic model that led to the effective action
in Ref. [11] corresponds to the V2 = 0 limit of our model.

We demonstrate the PEGP method with the help of
Eq. (14), and derive an expression for the QAH order pa-
rameter which implicitly depends on V1 and V2 through
the bare effective coupling g0. We introduce a source J

for the QAH state which amounts to addition of the term
1
2J

∫
dk�†(k)(8 − |k|2) σ2�(k) to the effective action. Thus

FIG. 9. The quantum fluctuation at order V 2
2 that generates the

marginal interaction vertex in the low energy effective theory. The
solid (dashed) lines represent a (b) type fermion, and the dotted line
is the momentum dependent coupling function in Eq. (5).
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(a) (b)

FIG. 10. Vacuum diagrams at the linear order in g0. The solid
(dashed) lines represent a (b) type fermion. The mixed lines represent
the off-diagonal terms in the matrix propagator. Here the coupling
function is momentum independent (i.e., a constant g0) and repre-
sented by the filled circle.

the propagator in the presence of the source is

G(k; J )−1 = ik0σ0 + E0(k) + 1
2J (8 − |k|2) σ2. (17)

The Gibbs potential up to linear order in g0 is

G(g0,�) = G(0,�) + 〈Sint〉J . (18)

Two different processes contribute to 〈Sint〉J , as shown in
Fig. 10. While the process in Fig. 10(b) averages to 0,
Fig. 10(a) leads to a nonzero contribution,

〈Sint〉J = −g0J
2

4

(∫
�0

dk
(8 − |k|2)

k2
0 + 1

4 |k|4 + J 2

4 (8 − |k|2)2

)2

.

(19)

Therefore, retaining terms that do not vanish in the
√

J/�0 →
0 limit, we obtain

∂�G(g0,�) = −J − A0 g0 J ln
J

�0
2 , (20)

where A0 > 0 is a numerical factor, and we have used the
relationships ∂�G(0,�) = −J and �(J ) = − 1

2

∫
�0

dk(8 −
|k|2)trσ2G(k; J ). It is straightforward to deduce that
∂�G(g0,�) vanishes at

J = J ∗ ≡ �2
0 exp

{
− 1

A0g0

}
, (21)

and ∂2
�G[g0,�(J ∗)] > 0. Since � ∼ J ln J , we obtain

� ∼ − �2
0

A0g0
exp

{
− 1

A0g0

}
. (22)

Therefore, on approaching the semimetallic phase from the
ordered side � vanishes on the line 4V1 + 1.45V 2

2 = 0, which
identifies the phase boundary between the QBT semimetal and
the QAH state as shown in Fig. 2. We note that the relative
sign between the two terms in Eq. (20) is crucial for the
existence of a physical solution for the QAH order. Further-
more, a BCS-like solution is dependent on the presence of
a term proportional to J ln J , and its absence eliminates the
possibility of realizing a symmetry broken state at arbitrarily
weak coupling as we show in Sec. IV.

C. PEGP analysis of the lattice model: QAH solution

The effective action based derivation of the QAH order is
subject to the approximations inherent in the derivation of

FIG. 11. The PEGP calculation of the QAH order for the V1

model. The main figure shows the � dependence of ∂G/∂� for
V1 = 0.2, V2 = 0 in the PEGP calculation up to the first-order
expansion of V1. ∂G/∂� vanishes for some J = J∗ > 0, indicating
an extremum of the free energy. Since ∂2G/∂�2 > 0 at J∗, it is in
fact a minimum and corresponds to the QAH state. The inset shows
the V1 dependence of the QAH order parameter �.

an effective theory. These approximations prevent a direct
comparison with results obtained in numerical simulations
with the lattice Hamiltonian. In this section we work directly
with the lattice model, and obtain various properties of the
phase diagram, some of which deviate both qualitatively and
quantitatively from those obtained in Sec. III B. First we
contrast the behavior of the QAH order on the V1 and V2

axes. Next we determine the region in the two-dimensional
phase diagram where a QAH state is present, and argue for
the qualitative accuracy of the phase boundary obtained in
Sec. III B.

1. V1 > 0, V2 = 0

On the V1 axis, where V2 = 0, Sun et al. [11] obtained the
mean-field phase diagram. We start by reproducing this result
using the PEGP method up to a first-order expansion of the
free energy in V1. The details are provided in Appendix B.

For any given V1 > 0, ∂G/∂� = 0 has a solution in terms
of J > 0 which leads to a solution for the QAH order param-
eter �. It suggests that any small repulsive V1 would drive
a QAH phase. In Fig. 11 we demonstrate a representative
behavior of ∂G/∂� as a function of �. In the inset of
Fig. 11 we show the V1 dependence of � obtained from the
solutions above. At weak coupling, PEGP calculation finds
V1� ∼ exp(−1/V1), which decreases exponentially with V1,
and, thus, is very small in the weak interaction regime. Both
the PEGP and mean-field results [11] indicate that it would
be extremely hard to identify the QAH phase in the weak
interaction regime by numerical simulation because of the
very large correlation length. Only in the intermediate regime,
where the gap becomes large enough, the order would be
potentially detectable in numerical simulations.

2. V1 = 0, V2 �= 0

In this subsection we study the model in Eq. (3) with only
V2 interaction, which is new to the best of our knowledge.
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FIG. 12. The PEGP calculation of the QAH order for the V2

model. The main figure shows the V2 dependence of � obtained
from the PEGP calculation up to the second-order expansion of
V2 interaction. For comparison, we also show the V1 dependence
of � by the dashed line, which is from the inset of Fig. 11.
The inset shows the � dependence of ∂G/∂� for V1 = 0, V2 =
1.0, −0.8 in the PEGP calculation up to the second-order expansion
of V2.

In the low energy effective theory the V2 vertex leads to
derivative coupling which makes it irrelevant in an RG sense.
Therefore, it is not directly considered in the presence of
the V1 interaction vertex which leads to a marginal opera-
tor. The magnitude of V2, however, affects the energy scales
in the symmetry broken states because the bare value of
effective marginal coupling depends on both V1 and V2 as
demonstrated in Sec. III B. A crucial advantage of the PEGP
over conventional mean-field strategies is apparent in this
analysis, since the V2 term in Eq. (1) cannot be easily trans-
formed into a mean-field theory of the QAH ordered state. The
PEGP, being independent of an a priori choice of the sym-
metry broken state, can be applied in analogy to the V1-only
model.

In the context of the PEGP calculations, the key differ-
ence between the V1-only and V2-only models appears in
the absence of the J ln J term at linear order in the latter.
Owing to the absence of the J ln J term, ∂G/∂� = 0 does not
have a nontrivial solution at arbitrary V2 which is in contrast
to the presence of a solution for any V1 > 0. A nontrivial
solution, however, appears at quadratic order in V2, reflecting
the fact that quantum fluctuations of the V2 vertex generates
an effective marginally relevant vertex. Since the solution
appears at order V 2

2 , its existence is independent of the sign
of V2, albeit its precise value is sensitive to the sign of V2

through the linear-V2 term in the expression of the free energy.
The linear-V2 term produces an asymmetry of the QAH order
along the V2 axis as seen in Fig. 12, where we plot the V2

dependence of �, and show that both repulsive and attractive
V2 lead to a QAH state. This asymmetric dependence on V2

is missed by the analysis in Sec. III B. By comparing the V2

dependence of � with the V1 dependence in Fig. 11, we note
that the QAH order driven by V2 is much weaker than that
driven by V1.

FIG. 13. Contour plot of the QAH order on the V1-V2 plane. The
dashed line 4V1 + 1.45V 2

2 = 0 denotes the phase boundary between
the semimetal and the QAH phase, which is determined from the
effective low energy theory. The symbol data are obtained from the
PEGP calculation up to second order in V2.

3. V1, V2 �= 0

As shown in Sec. III B, the bare value of the effective
coupling g0 is set by the lattice interaction strengths V1 and
V2. In general, g0 can change sign depending on the sign and
magnitude of V1 and V2. Indeed, the weak-coupling expres-
sion of g0 suggests that the effective coupling is attractive
for a sufficiently attractive V1. RG analysis, however, implies
that for an attractive g0 interactions are marginally irrelevant
and the QBT semimetal is stable at weak coupling. Therefore,
we expect that in the region of the phase diagram where
V1 < 0 there exists a phase boundary separating the semimetal
from the QAH phase. An asymptotic expression of the phase
boundary was derived in Sec. III B. Here we utilize the lattice
model and argue that a phase boundary is indeed present on
the V1 < 0 half-plane, and it qualitatively resembles the one
deduced from the effective theory.

The PEGP based analyses suggest that both V1 (repulsive)
and V2 (repulsive and attractive) interactions can indepen-
dently drive the semimetal into a QAH state. We repeat the
same calculation in the presence of both V1 and V2. For
simplicity we focus on the region where |V1| ∼ |V2|2 � 1,
such that up to quadratic order in the expansion of the free
energy we ignore terms on the order of V1V2. Since the
QAH instability is driven by a marginally relevant inter-
action, the QAH gap decays exponentially on approaching
the phase boundary which makes it difficult to numerically
access the region around the boundary. Nevertheless, it is still
possible to identify qualitative features of the phase boundary
by mapping out contours of constant magnitude of � as shown
in Fig. 13. We note that as � decreases the contours approach
the asymptotic phase boundary.

IV. ABSENCE OF A NEMATIC STATE
AT WEAK COUPLING

In Ref. [11] Sun et al. showed that the runaway flow of
g in Eq. (14) due to quantum fluctuations potentially leads
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to three distinct states, site and bond nematic orders, and the
QAH. From a mean-field analysis the dominance of the QAH
state was established in the absence of V2 with V1 > 0. In
the presence of an attractive V2, however, the authors argued
that a nematic semimetallic state is dominant for sufficiently
large |V2|/V1. In this section we show that such a nematic
semimetal is in fact subdominant to the fully gapped QAH
state through (i) an explicit susceptibility analysis within the
effective field theory in Eq. (14), (ii) a PEGP based analysis
of the lattice model, and (iii) finite-size scaling behavior of
DMRG results.

A. Susceptibility analysis and PEGP calculation

In order to compare the susceptibilities of potential sym-
metry broken states, we start with the effective model where
modes carrying momenta above an emergent scale �0 have
been integrated out, and all irrelevant terms are dropped. As
shown in Appendix C the interaction strength flows as [11]

g(
) = g(0)

1 − 


c

, (23)

where 
 ≡ ln(�0/�) with �0 > � is the RG distance, and

c ≡ 2π

g(0) . A repulsive g(
) flows to strong coupling as

 approaches 
c from below. We introduce test vertices
−�j

∫
dr�†(r )σj�(r ), where j = 1, 2, 3, and obtain the

evolution of the source �j (
) under RG flow in units of �2(
),

�j (
)

�2(
)
=

(
1 − 



c

)A2−Aj �j (0)

�2(0)
, (24)

where 2A1 = 2A3 = A2 = 1. Therefore, as the system flows
to a strongly interacting theory �j /�2 with j = 1, 3 van-
ishes, indicating a dominant tendency for condensation
of the QAH order parameter �†(r )σ2�(r ) as shown in
Appendix C. An explicit computation of the evolution of the
respective susceptibilities confirms this expectation. In partic-
ular, as 
 → 
c the QAH susceptibility diverges algebraically,
χ2(
) ∼ (
c − 
)−1, while the nematic susceptibilities diverge
logarithmically, χj (
) ∼ ln(
c − 
). It is interesting that all
susceptibilities diverge, albeit with varying rates. We note
that, although our choice of the hopping parameters enhances
the symmetry of the noninteracting part of the effective action
in Eq. (14) as shown in Appendix C, the QAH state remains
the dominant instability even in the absence of the symmetry.

We arrive at the same conclusion from an explicit compu-
tation of the site nematic order from the lattice theory with
the help of the PEGP method. To simplify the analysis we
set V1 = 0 in the lattice model which realizes the extreme
limit of |V2|/V1 → ∞. We focus on the site nematic ordering
and introduce the source Jnem

∫
dk�†(k)σ3�(k) to the action

in Eq. (5). The propagator in the presence of the source is
given by

G(k; Jnem) = ik0 + d1(k)σ1 + [Jnem + d3(k)]σ3

k2
0 + d2

1 (k) + [Jnem + d3(k)]2
, (25)

and the site nematic order is

�nem(Jnem) = −
∫

dktrσ3G(k; Jnem). (26)

FIG. 14. Finite-size scaling of the site nematic order versus
1/L2

y . The cylinder system has even Ly with the periodic boundary
conditions and odd Ly with the antiperiodic boundary conditions for
Ly = 4, 5, 6, 7, 8. The model has either V1 > 0 or V2 < 0. All the
DMRG data are fitted linearly to 1/L2

y .

As derived in Appendix D, at linear order in V2 the Gibbs free
energy takes the form

G(�nem) = G0(�nem) + (2π )3δ(3)(0)V2
[
2�2

nem − I 2
x − I 2

y

]
,

(27)

where Iμ(J ) = ∫
dk cos(kμ) J+d3(k)

M (k;J ) , with M (k; J ) =√
d2

1 (k) + [J + d3(k)]2. The most singular term [proportional

to (J ln J )2] in the sum I 2
x (Jnem) + I 2

y (Jnem) exactly cancels
the singular term resulting from 2�2

nem(Jnem), which implies
an absence of a nontrivial solution of ∂�nemG(�nem) = 0 for
arbitrary V2. Therefore, the site nematic order is absent at
small V2 with V1 = 0.

While results from both methods discussed above agree,
they are most robust as long as the interactions are weak.
In the following we support the conclusion by large-scale
DMRG calculations.

B. DMRG results

In our DMRG calculation of the site nematic order, we
use the cylinder geometry as shown in Fig. 1(a). Since the
mirror symmetry between the two sublattices is broken on the
cylinder, the site nematic order �nem would be nonzero for
finite Ly . If the site nematic metal phase exists, �nem should
be finite in the thermodynamic limit; otherwise, it would scale
to zero with growing Ly . Here we numerically calculate the
site nematic order �nem on the cylinder with even Ly for the
periodic boundary conditions, and odd Ly for the antiperiodic
boundary conditions.

In the noninteracting limit �nem is expected to vanish as
Ly → ∞. We find that the DMRG data in this limit scale
as �nem ∼ 1/L2

y (shown in Fig. 14). For weak V1 > 0 or
V2 < 0, �nem also seems to scale to zero as 1/L2

y , indicating
an absence of the site nematic order which is consistent with
our analytical results. We extend the DMRG calculation to
the region near the phase boundary and consider the points

125144-11



SHOUVIK SUR, SHOU-SHU GONG, KUN YANG, AND OSKAR VAFEK PHYSICAL REVIEW B 98, 125144 (2018)

V1 = 1.0 and V2 = −0.8 on the V1 and V2 axis, respectively.
The data show small oscillations, which may be attributed to
strong fluctuations near the phase boundary. Overall, the data
seem to still follow the 1/L2

y scaling behavior and extrapolate
to zero.

Although the nematic metal phase is absent at weak cou-
pling in the present model, analogous phases may be sta-
bilized in the absence of time-reversal symmetry. Indeed in
Ref. [58] the authors show that weak interactions can drive
a QBT semimetal that breaks time-reversal symmetry but not
the rotational symmetry in to a nematic semimetal state within
a suitable range of hopping parameters.

V. CONCLUSION AND DISCUSSION

In this work we studied a system of spinless fermions on
the checkerboard lattice in the presence of competing inter-
actions. In the noninteracting limit a quadratic band touching
(QBT) semimetal is realized at half-filling. The semimetallic
state is protected by time-reversal and fourfold rotational
symmetries. Spontaneously breaking these symmetries leads
to various symmetry broken states in the presence of interac-
tions. We used a combination of numerical (density matrix
renormalization group or DMRG) and analytic (power ex-
panded Gibbs potential or PEGP, and renormalization group)
methods to obtain the quantum phase diagram of the system
at half-filling in Fig. 2. The PEGP method is expected to
serve as an alternative to mean-field theory when the latter is
unambiguously applicable, and enables a systematic account-
ing for higher order corrections to mean-field based results.
Moreover, when the formulation of a mean-field description
is ambiguous, the PEGP provides a clear way for accessing
the relevant physics as demonstrated in this work.

In DMRG calculation, we established a quantum anoma-
lous Hall (QAH) phase near the region with V1 ∼ V 2

2 ∼ 4
by compelling numerical evidence, including spontaneous
time-reversal symmetry breaking and quantized topological
Chern number C = 1. In the weak interaction region, we
utilized the PEGP method which treats V1 and V2 on equal
footing to show that V2 interaction can also drive a QAH
instability. We identified the phase boundary that separates the
QBT semimetal from the QAH state, as shown by the dashed
line with V1 ∼ −V 2

2 in Fig. 2. In the region with attractive
V2 interaction and |V2| � V1, our analytic calculation and
DMRG simulation do not find a nematic semimetal phase
at weak coupling, which differs from Ref. [11]. Our PEGP
and susceptibility analyses indicate that the QAH state is
the only instability of the quadratic band touching semimetal
in the presence of further-neighbor interaction. Under the
assumption of a single-parameter scaling of correlation func-
tions as exemplified by Eq. (23) the QAH phase obtained at
intermediate coupling and small system size must be smoothly
connected to that obtained at weaker couplings and larger
system sizes. Therefore, the ground state of the system in the
entire region to the right of the asymptotic phase boundary,
enclosed by the classical phases, is QAH.

In Ref. [11] it has been pointed out that the spinful version
of this model may also realize a spin triplet quantum spin
Hall phase depending on the strengths of the on-site Hubbard
repulsion, the nearest-neighbor repulsion, and exchange inter-

action. This quantum spin Hall phase, however, has not been
identified in large-scale numerical simulation, and deserves
further study.

Note added. While finalizing this work we became aware
of a related work [59], where the authors study the V1-only
model on the checkerboard lattice using DMRG.
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APPENDIX A: CHARGE DENSITY WAVE ORDERS
AND PHASE TRANSITIONS

We first show the charge density wave ordered phases
and the phase transitions in Fig. 2. As the open boundary
conditions of the cylinder geometry, DMRG calculation ob-
tains nonuniform distribution of the charge density in the
charge density wave phases, which are shown in the inset
of Fig. 1(b). To characterize the charge density wave phases,
we can measure three order parameters. The first order pa-
rameter is defined as the charge density difference of the
two sublattices 〈ni,A − ni,B〉/2, where 〈ni,A〉 (〈ni,B〉) denotes
the charge density of the A(B)-sublattice site in the unit
cell i. The second order parameter is the charge density
difference of the neighboring sites in the same sublattice,
i.e., 〈ni,A − ni+x̂,A〉/2 or 〈ni,B − ni+x̂,B〉/2. In the site nematic
phase, 〈ni,A − ni,B〉/2 is finite and 〈ni,A − ni+x̂,A〉/2 is zero;
in the stripe phase, both order parameters have the same
finite value. In the phase separation region, DMRG calculation
obtains the state with charges staying on either left or right
side of the lattice, leaving the other half-sites empty. We can
define the third order parameter as the average density of the
half-sites

∑
i∈half〈ni〉/N , which is either 1/2 or 0 in the phase

separation. In the site nematic and stripe insulator phase, the
phase separation order parameter is always 1/4. In Fig. 15 we
show the V2 dependence of different charge density wave or-
der parameters, which show a sharp enhancement in the phase
boundaries, characterizing the phase transitions. We also show
the phase transitions by studying the ground-state energy on
the Lx = Ly = 4 torus system. The total energy of the torus
is shown in Fig. 16, where the energy exhibits a kink at the
transition point, which suggests the first-order transitions and
are consistent with the order parameter change in Fig. 15.

APPENDIX B: PEGP CALCULATION FOR QAH ORDER

In this Appendix we collect the vacuum diagrams re-
quired for the calculation of the QAH gap within the PEGP
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FIG. 15. V2 dependence of the charge density wave order pa-
rameters. (a) and (b) V1/t = 1.0 and −2.0 on the Ly = 6 cylinder.
〈ni,A〉 and 〈ni,B〉 denote the charge density of the A- and B-sublattice
site in the unit cell i. 〈ni+x̂,A〉 is the density of the A sublattice in
the i + x̂ unit cell. The site nematic order and the stripe order can
be characterized by 〈ni,A − ni,B〉/2 and 〈ni,A − ni+x̂,A〉/2. The phase
separation (PS) order parameter is defined as

∑
i∈half〈ni〉/N , and here

we show the results of the occupied half side in the PS phase. In
the site nematic and stripe insulator phase, the PS order parameter is
always 1/4. The data in (a) and (b) have the same symbol definitions.

formalism. For the calculation it is convenient to define

d1(k) = 4 cos
kx

2
cos

ky

2
,

d2(k) = 4 sin
kx

2
sin

ky

2
,

d3(k) = cos kx − cos ky,

m(k, J ) =
√

d2
1 (k) + J 2d2

2 (k) + d2
3 (k)

=
√

(2 + cos kx + cos ky )2 +
(

4J sin
kx

2
sin

ky

2

)2

,

(B1)

and the operator

O =
∫

dkψ†(k)d2(k)σ2ψ (k), (B2)

(a) (b)

FIG. 17. Graphical representation of the V1 and V2 vertices. The
solid (dashed) line represents the a (b) type fermions, while the
dotted line represents the momentum dependent coupling functions.

where ψ (k) = [a(k), b(k)]ᵀ. The total action is

S[J ] = S0 + S1 + JO, (B3)

where

S0 =
∫

dkψ†(k)[−ik0σ0 + d1(k)σ1 + d3(k)σ3]ψ (k), (B4)

S1 =
∫

dkdk′dq

[
4V1 cos

qx

2
cos

qy

2
a†(k + q )a(k)b†(k′)

× b(k′ + q ) + 2V2(cos qx + cos qy − 2) a†(k + q )

× a(k)a†(k′)a(k′ + q ) + (a ↔ b)

]
. (B5)

In Fig. 17 we show the representation of the two interaction
vertices.

The Gibbs free energy

G[�] = − 1

β
lnZ[J ] − L2J�, (B6)

where L2 is the volume of the system and � is the ground state
expectation value of the order parameter. Since the minima of
G correspond to locally stable phases, here we are interested

(a) (b)

FIG. 16. Characterizing the quantum phase transitions to the insulator phases through ground-state energy. The total energy is obtained on
the Lx = Ly = 4 torus system. The red arrow indicates the kink of energy that characterizes the first-order quantum phase transitions to the
insulator phases as shown in Fig. 2 of the main text.
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in those minima which occur at � �= 0:

∂�G(J ) = −J + T (∂�J )

[
∂J 〈S1〉

{
1 + T

L2
[∂J (∂�J )]〈OS1〉 + T

L2
(∂�J )(∂J 〈OS1〉)

}
+ (∂�J )(∂2

J 〈S1〉)〈OS1〉 − 1

2
∂J

〈
S2

1

〉]
,

(B7)

with

〈S1〉 = −(2π )3δ(3)(0)
[
V1

{
f 2

11(J ) + J 2f 2
11(J )

} + V2
{
f 2

21(J ) + f 2
22(J ) + f23a (J )f23b(J )

}]
, (B8)〈

S2
1

〉
V1=0 = (2π )3δ(3)(0)V 2

2 [ha (J ) + hb(J ) − hc(J )], (B9)

〈OS1〉 = (2π )3δ(3)(0)J [V1�1(J ) − V2�2(J )], (B10)

where

f11(J ) =
∫

dk
d2

1 (k)

m(k, J )
, (B11)

f12(J ) =
∫

dk
d2

2 (k)

m(k, J )
, (B12)

f21(J ) =
∫

dk sin2(kx )
d3(k)

m(k, J )
, (B13)

f22(J ) = 2
∫

dk sin2

(
kx

2

)
d3(k)

m(k, J )
, (B14)

f23a (J ) = 2
∫

dk cos
kx

2
sin2(kx )

d3(k)

m(k, J )
, (B15)

f23b(J ) = 2
∫

dk cos
kx

2
cos2(kx )

d3(k)

m(k, J )
, (B16)

ha (J ) − hc(J ) = 2
∫

dkdpdq
[cos px + cos py − 2][cos px + cos py − cos (kx − qx ) − cos (ky − qy )]

m(p + q, J ) + m(q, J ) + m(p + k, J ) + m(k, J )

× 1

m(p + q, J )m(q, J )m(p + k, J )m(k, J )

× [{m(q, J )m(k, J ) − d3(q)d3(k)}{m(p + q, J )m(p + k, J ) − d3(p + q)d3(p + k)}

+ 2m(p + k, J )d3(p + q){m(q, J )d3(k) − d3(q)m(k, J )} + d1(p + q)d1(q)d1(p + k)d1(k)

+ 2J 2d1(p + q)d1(q)d2(p + k)d2(k) + J 4d2(p + q)d2(q)d2(p + k)d2(k)], (B17)

hb(J ) =
∫

dk
[

2
∫

dq(cos qx cos kx + cos qy cos ky − 2)
d3(q)

m(q, J )

]2
d2

1 (k) + J 2d2
2 (k)

m3(k, J )
, (B18)

�1(J ) = 1

8

∫
dkdp

[
d2

2 (k)d2
2 (p)

d2
1 (k) + d2

3 (k)

m(p, J )m3(k, J )
− d2

1 (k)d2
1 (p)

d2
2 (k)

m(p, J )m3(k, J )

]
, (B19)

�2(J ) = 2
∫

dkdp[cos kx cos px + cos ky cos py − 2]
d2

2 (k)d3(k)

m3(k, J )

d3(p)

m(p, J )
. (B20)
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(a)

(b)

FIG. 18. Vacuum diagram that contribute to G. (a) Diagrams contributing to 〈S1〉. (b) Diagrams proportional to V 2
2 that contribute to 〈S2

1 〉.
The non-1PI diagrams resulting only from the V2 vertex vanishes identically.

The details of the vacuum diagrams which contribute to the
Gibbs free energy are demonstrated in Fig. 18.

APPENDIX C: SUSCEPTIBILITY OF INTERACTING
QUADRATIC BAND TOUCHING: ONE VALLEY

AND SPINLESS

The susceptibilities for the QAH state and the two nematic
metallic states at the noninteracting fixed point diverge, indi-
cating a potential for realizing one or more of these states in
the presence of interactions. We compute the susceptibilities
in the presence of interaction, and track their evolution under
coarse-graining. We find that although all three susceptibili-
ties tend to diverge in a finite RG time, they do so at different
rates. In particular, the susceptibility for QAH state diverges
exponentially faster than the nematic states.

We start with the Hamiltonian for the effective low energy
theory discussed in Sec. III B,

H = H0 + Hint, (C1)

H0 =
∑

|k|<�0

�
†
k

(
τ3

k2
x − k2

y

2
+ τ1

2kxky

2

)
�k, (C2)

Hint = g

∫
d2r ψ†

a (r)ψ†
b (r)ψb(r)ψa (r)

= 1

4
g

∫
d2r �†(r)τ2�

∗(r)�T (r)τ2�(r). (C3)

We first derive the RG flow of the coupling g, whereby we
reproduce the result in Ref. [11]. Next we derive the RG flows
of the susceptibilities which are new results.
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1. Renormalization of the coupling

Here we derive the RG flow of g. The interaction term

Sint = 1

4
g

∫
dτ

∫
d2r �†(r, τ )τ2�

∗(r, τ )�T (r, τ )τ2�(r, τ ).

(C4)

The quantum correction is produced by integrating out the
high-energy modes [60],

〈e−Sint〉> ≈ e−〈Sint〉>+ 1
2 (〈S2

int〉>−〈Sint〉2
> ), (C5)

which leads to

−δSeff = 1

2

g2

16

∫
1

∫
2
〈�†(1)τ2�

∗(1)�T (1)τ2�(1)�†(2)τ2�
∗(2)�T (2)τ2�(2)〉> (C6)

= 1

2

g2

16
4

∫
1

∫
2

Tr[τ2G>(1 − 2)τ2G
T
>(1 − 2)]�†(1)τ2�

∗(1)�T (2)τ2�(2)

+ 1

2

g2

16
16

∫
1

∫
2
�†(1)τ2G

T (2 − 1)τ2�(2)�†(2)τ2G
T (1 − 2)τ2�(1) (C7)

≈ 1

2

g2

16
4

∫
dω

2π

∫ �0

�0
s

d2k
(2π )2

Tr
[
τ2Gk(iω)τ2G

T
−k (−iω)

] ∫
1
�†(1)τ2�

∗(1)�T (1)τ2�(1)

+ 1

2

g2

16
16

∫
dω

2π

∫ �0

�0
s

d2k
(2π )2

∫
1
�†(1)τ2G

T
k (iω)τ2�(1)�†(1)τ2G

T
k (iω)τ2�(1). (C8)

Here we have suppressed replaced reference to the 3-momentum kn by n for notational convenience. Because H0 is symmetric
(involves only τ1,3), we have Gk(iω) = GT

k (iω), and∫ ∞

−∞

dω

2π

∫ �0

�0
s

d2k
(2π )2

Gk(iω) ⊗ G∓k (∓iω) =
(

±1 ⊗ 1 + 1

2
τ1 ⊗ τ1 + 1

2
τ3 ⊗ τ3

)
1

4π
ln s. (C9)

Therefore, ∫
dω

2π

∫ �0

�0
s

d2k
(2π )2

Tr
[
τ2Gk(iω)τ2G

T
−k (−iω)

] = 0 (C10)

and

δSeff = −1

2
g2 1

4π
ln s

(
−

∫
1
�†(1)τ21τ2�(1)�†(1)τ21τ2�(1) + 1

2

∫
1
�†(1)τ2τ1τ2�(1)�†(1)τ2τ1τ2�(1)

+ 1

2

∫
1
�†(1)τ2τ3τ2�(1)�†(1)τ2τ3τ2�(1)

)

= −1

2
g2 1

4π
ln s (C11)

×
∫

1

(
−�†(1)�(1)�†(1)�(1) + 1

2
�†(1)τ1�(1)�†(1)τ1�(1) + 1

2
�†(1)τ3�(1)�†(1)τ3�(1)

)

=
(

g2 1

π
ln s

)
1

2

∫
1
ψ†

aψ
†
bψaψa. (C12)

For s = 1 + d
 we have

dg

d

= 1

2π
g2. (C13)

This recovers the Eq. (3) in Ref. [11] with the replacement g �→ V :

d

d


V

|tx | = 1

4π

(
V

|tx |
)2

, (C14)
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where we note that their tx is our 1/2. Solving Eq. (C13) we find

g(
) = 1
1
g0

− 1
2π



, (C15)

where g0 = g(0).

2. Renormalization of the symmetry breaking source terms

We now perturb the action by adding infinitesimal symmetry breaking terms

S → S −
3∑

j=1

�j

∫
dτ

∫
d2r�†(r, τ )τj�(r, τ ). (C16)

Then 〈
e−Sint+

∑3
j=1 �j

∫
dτ

∫
d2r�†(r,τ )τj �(r,τ )〉

>
→ e−〈Sint

∑3
j=1 �j

∫
dτ

∫
d2r�†(r,τ )τj �(r,τ )〉> . (C17)

So

−1

4
g

3∑
j=1

�j

〈 ∫
1

∫
2
�†(1)τ2�

∗(1)�T (1)τ2�(1)�†(2)τj�(2)

〉
>

= g

3∑
j=1

�j

∫
1

∫
2
�†(1)τ2G

T (2 − 1)τT
j GT (1 − 2)τ2�(1)

= g

3∑
j=1

�j

∫
dω

2π

∫ �0

�0
s

d2k
(2π )2

∫
1
�†(1)τ2G

T
k (iω)τT

j GT
k (iω)τ2�(1)

= g
m

4π
ln s

3∑
j=1

�j

∫
1

(
−�†(1)τ21τT

j 1τ2�(1) + 1

2
�†(1)τ2τ1τ

T
j τ1τ2�(1) + 1

2
�†(1)τ2τ3τ

T
j τ3τ2�(1)

)

= g
m

4π
ln s

3∑
j=1

�j

∫
1
[�†(1)τ1�(1) + 2�†(1)τ2�(1) + �†(1)τ3�(1)]. (C18)

This means that
d ln �j

d

= 2 + Aj

1

2π
g, with A1 = A3 = A2

2
= 1

2
.

(C19)

Solving the above equation gives

ln
�j (
)

�j (0)
= 2
 + Aj

1

2π

∫ 


0
d
′g(
′)

= 2
 + Aj

∫ 


0
d
′ 1

2π
g0

− 
′

= 2
 − Aj ln

(
1 − 1

2π
σ0


)
(C20)

or

�j (
) = e2
(
1 − 1

2π
g0


)Aj
�j (0). (C21)

3. Susceptibility

If we sum up the contribution to the free energy from the
integrated out high energy modes, we can find the correction
due to the source terms. To second order, this determines the

susceptibility:

χj (
)�2
j (0) = Cj

∫ 


0
d
′e−4
′

�2
j (
′)

= Cj�
2
j (0)

∫ 


0
d
′ 1(

1 − 1
2π

g0
′)2Aj
. (C22)

Clearly the critical value of 
 is 2π
g0

, in terms of which

χ1,3(
) = C1,3

∫ 


0
d
′ 1(

1 − 1
2π

g0

) = C1,3
c ln

(
1

1 − 
/
c

)
,

(C23)

χ2(
) = C2

∫ 


0
d
′ 1(

1 − 1
2π

g0

)2

= C2
c

1


c/
 − 1
∼ 1

(
c − 
)γ2
. (C24)

So the quantum anomalous Hall susceptibility diverges as
a power law when 
 → 
c from below (γ2 = 1), while the site
and bond nematic susceptibilities diverge only logarithmically
(γ1 = γ3 = 0+).
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FIG. 19. Comparison of the susceptibility exponents for the three
possible orders in the absence of C4 symmetry. Here “BN” = bond
nematic, “QAH” = quantum anomalous Hall, and “SN” = site
nematic.

4. Anisotropic case

The single particle Hamiltonian,

H0 =
∑

|k|<�0

�
†
k

(
k2
x − k2

y

2
τ3 + 2kxky

2
τ1

)
�k (C25)

is invariant under π/4 rotations on the x-y plane: (kx, ky ) �→
(k′

x + k′
y, k

′
x − k′

y )/
√

2, and �k �→ τ1+τ3√
2

�k′ . Since the inter-
actions do not possess the symmetry, quantum corrections can
in principle remove it by introducing an anisotropy between
the two terms. Here we consider the behavior of the suscepti-
bilities in the presence of such anisotropy,

H = H0 + Hint, (C26)

H0 =
∑

|k|<�0

�
†
k

(
cos η

k2
x − k2

y√
2

τ3 + sin η
2kxky√

2
τ1

)
�k,

(C27)

Hint = g

∫
d2r ψ†

a (r)ψ†
b (r)ψb(r)ψa (r)

= 1

4
g

∫
d2r �†(r)τ2�

∗(r)�T (r)τ2�(r), (C28)

where η ∈ (0, 2π ) quantifies the degree of the anisotropy [36].
Thus,∫ ∞

−∞

dω

2π

∫ �0

�0
s

d2k
(2π )2

Gk(iω) ⊗ G∓k (∓iω)

= [±a0(η)1 ⊗ 1 + a1(η)τ1 ⊗ τ1 + a3(η)τ3 ⊗ τ3]
1

4π
ln s,

(C29)

where

a0(η) =
√

2

π

K (
√

1 − cot2 η)

| sin η| , (C30)

a1(η) = a3

(
η + π

2

)

=
√

2

π

K (
√

1 − cot2 η) − E(
√

1 − cot2 η)

| sin η|(1 − cot2 η)
, (C31)

and

K (x) =
∫ π

2

0

dθ√
1 − x2 sin2 θ

, (C32)

E(x) =
∫ π

2

0
dθ

√
1 − x2 sin2 θ. (C33)

Following the same procedure, we find the susceptibility
exponents

γ2 = 1, (C34)

γ1 = −γ3 = 2
a0(η) − a1(η) + a3(η)

a0(η) + a1(η) + a3(η)
− 1

= 1

cot2 η − 1

(
1

sin2 η
− 2

E(
√

1 − cot2 η)

K (
√

1 − cot2 η)

)
. (C35)

The susceptibility exponents are plotted as a function of η

in Fig. 19. We deduce that unless the anisotropy is an extreme
one, i.e., η = 0 or π/2 in which case one of the two terms in
H0 is absent, the QAH remains a dominant instability of the
QBT semimetal.

APPENDIX D: PEGP FOR NEMATIC ORDER

In this Appendix we use the PEGP method to show the
absence of a nematic order at weak coupling. The site nematic
order parameter is

�̂nem =
∑

r

〈a†
rar − b†rbr〉, (D1)

where ar and br are fermion operators, and r labels the unit
cell. On Fourier transforming we obtain

�̂nem =
∫

dk〈ψ†(k)σ3ψ (k)〉, (D2)

where ψ (k) = [a(k), b(k)]ᵀ, and
∫

dk ≡ ∫ π

−π
dkx

2π

dky

2π
.

Adding
∫

dk0
2π

Jnem�̂nem to the action we obtain a Jnem-
dependent propagator,

G(k; Jnem) = ik0 + d1(k)σ1 + [Jnem + d3(k)]σ3

k2
0 + d2

1 (k) + [Jnem + d3(k)]2
. (D3)

Here

d1(k) = 4 cos
kx

2
cos

ky

2
, d3(k) = cos kx − cos ky. (D4)

The gap

�nem(Jnem) ≡
〈∫

dkψ†(k)σ3ψ (k)

〉

= −
∫

dktrσ3G(k; Jnem) = −
∫

dk
Jnem + d3(k)

M (k; Jnem)
,

(D5)

where
∫

dk ≡ ∫ ∞
−∞

dk0
2π

∫
dk, and

M (k; Jnem) =
√

d2
1 (k) + [Jnem + d3(k)]2. (D6)
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The total action is

S[Jnem] =
∫

dkψ†(k) G−1(k; Jnem) ψ (k) + 2V2

∫
dk1dk2dq(cos qx + cos qy )[a†(k1 + q )a(k1)a†(k2 − q )a(k2) + a → b].

(D7)

Upon antisymmetrizing the interaction vertex we obtain

S[Jnem] =
∫

dkψ†(k) G−1(k; Jnem) ψ (k) + 2V2

∫
dk1dk2dq

(
sin

k1x − k2x

2
sin

k1x − k2x + 2qx

2
+ x → y

)

× [a†(k1 + q )a(k1)a†(k2 − q )a(k2) + a → b]. (D8)

Therefore,

〈Sint〉 = 2V2

∫
dk1dk2dq

(
sin

k1x − k2x

2
sin

k1x − k2x + 2qx

2
+ x → y

)

× [〈a(k1)a†(k1 + q )〉〈a(k2)a†(k2 − q )〉 − 〈a(k1)a†(k2 − q )〉〈a(k2)a†(k1 + q )〉 + a → b]. (D9)

The first term corresponds to the Hartree diagram, while the last term corresponds to the Fock diagram. Using the relationships

〈a(k)a†(k′)〉 = (2π )3δ(3)(k − k′) G11(k), 〈b(k)b†(k′)〉 = (2π )3δ(3)(k − k′) G22(k), (D10)

we obtain (using the identity cos 2x = 1 − 2 sin2 x = 2 cos2 x − 1)

〈Sint〉 = 4V2(2π )3δ(3)(0)
∫

dk1dk2

{
sin2

(
k1x − k2x

2

)
+ sin2

(
k1y − k2y

2

)}
[G11(k1)G11(k2) + G22(k1)G22(k2)] (D11)

= V2(2π )3δ(3)(0)
[
2�2

nem(Jnem) − {
I 2
x (Jnem) + I 2

y (Jnem)
}]

, (D12)

where

Ix (Jnem) =
∫

dk cos (kx )
Jnem + d3(k)

M (k; Jnem)
, (D13)

Iy (Jnem) =
∫

dk cos (ky )
Jnem + d3(k)

M (k; Jnem)
. (D14)

Therefore, the Gibbs free energy for the interacting theory with only V2 term, up to linear order in V2, is given by

G(�nem) = G0(�nem) + (2π )3δ(3)(0)V2
[
2�2

nem(Jnem) − I 2
x (Jnem) − I 2

y (Jnem)
]
. (D15)

By exchanging kx ↔ ky we note that Ix (Jnem) = −Iy (−Jnem). Differentiating both sides of Eq. (27) with respect to �nem leads
to

G ′(�nem)

(2π )3δ(3)(0)
= −Jnem + 2V2[2�nem(Jnem) − J ′

nem(�nem){Ix (Jnem)I ′
x (Jnem) + Iy (Jnem)I ′

y (Jnem)}]. (D16)

The existence of a phase transition at weak coupling is
crucially dependent on the presence of a Jnem ln Jnem term in
Eq. (D16) arising from 〈Sint〉. Here we show that this term
is absent due to a cancellation between the Hartree and Fock
type diagrams.

We note that Eq. (D14) may be written as

Ix (Jnem) =
∫

dk
(

2 cos2 kx

2
− 1

)
Jnem + d3(k)

M (k; Jnem)

= Ix;1(Jnem) + �nem(Jnem), (D17)

where

Ix;1(Jnem) = 2
∫

dk cos2 kx

2

Jnem + d3(k)

M (k; Jnem)
. (D18)

Similarly

Iy (Jnem) = Iy;1(Jnem) + �nem(Jnem) (D19)

with

Iy;1(Jnem) = 2
∫

dk cos2 ky

2

Jnem + d3(k)

M (k; Jnem)
. (D20)

Therefore, using results in Eqs. (D17) and (D19),

2�2
nem − {

I 2
x + I 2

y

} = −I 2
x;1 − I 2

y;1 − 2�nem(Ix;1 + Iy;1),

(D21)

where we have suppressed the dependence on Jnem. In order to
determine the leading order behavior of In;1 in the small Jnem
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limit, we compute ∂JnemIn;1,

∂JnemIx;1(Jnem) = 2
∫

dk cos2 kx

2

d2
1 (k)

M3/2(k; Jnem)
. (D22)

Therefore,

∂JnemIx;1(Jnem → 0)

= 2
∫

dk cos2 kx

2

d2
1 (k)

(2 + cos kx + cos ky )3
. (D23)

Near the M point the integrand

∼ k4
xk

2
y

(k2
x + k2

y )3
= cos4 θ sin2 θ, (D24)

which implies that ∂JnemIx;1(Jnem → 0) is finite, and

Ix;1(Jnem) = Iy;1(Jnem) = 0.32Jnem + O
(
J 2

nem

)
. (D25)

Thus,

2�2
nem − {I 2

x + I 2
y } = −1.28Jnem�nem − O

(
J 2

nem

)
. (D26)

Therefore, G ′ does not vanish for arbitrary (small) Jnem, which
eliminates the presence of a weak coupling instability.
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[16] T. Durić, N. Chancellor, and I. F. Herbut, Interaction-induced
anomalous quantum Hall state on the honeycomb lattice,
Phys. Rev. B 89, 165123 (2014).

[17] N. A. García-Martínez, A. G. Grushin, T. Neupert, B. Valen-
zuela, and E. V. Castro, Interaction-driven phases in the half-
filled spinless honeycomb lattice from exact diagonalization,
Phys. Rev. B 88, 245123 (2013).

[18] Y. Jia, H. Guo, Z. Chen, S.-Q. Shen, and S. Feng, Effect of
interactions on two-dimensional Dirac fermions, Phys. Rev. B
88, 075101 (2013).

[19] M. Daghofer and M. Hohenadler, Phases of correlated spinless
fermions on the honeycomb lattice, Phys. Rev. B 89, 035103
(2014).

[20] H. Guo and Y. Jia, Interaction-driven phases in a Dirac
semimetal: Exact diagonalization results, J. Phys.: Condens.
Matter 26, 475601 (2014).

[21] J. Motruk, A. G. Grushin, F. de Juan, and F. Pollmann,
Interaction-driven phases in the half-filled honeycomb lat-
tice: An infinite density matrix renormalization group study,
Phys. Rev. B 92, 085147 (2015).

[22] S. Capponi and A. M. Läuchli, Phase diagram of interacting
spinless fermions on the honeycomb lattice: A comprehensive
exact diagonalization study, Phys. Rev. B 92, 085146 (2015).

[23] D. D. Scherer, M. M. Scherer, and C. Honerkamp, Correlated
spinless fermions on the honeycomb lattice revisited, Phys. Rev.
B 92, 155137 (2015).

[24] F. Zhang, J. Jung, G. A. Fiete, Q. Niu, and A. H. MacDonald,
Spontaneous Quantum Hall States in Chirally Stacked Few-
Layer Graphene Systems, Phys. Rev. Lett. 106, 156801 (2011).

[25] A. Rüegg and G. A. Fiete, Topological insulators from com-
plex orbital order in transition-metal oxides heterostructures,
Phys. Rev. B 84, 201103 (2011).

125144-20

https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1126/science.1187485
https://doi.org/10.1126/science.1187485
https://doi.org/10.1126/science.1187485
https://doi.org/10.1126/science.1187485
https://doi.org/10.1088/1367-2630/15/6/063031
https://doi.org/10.1088/1367-2630/15/6/063031
https://doi.org/10.1088/1367-2630/15/6/063031
https://doi.org/10.1088/1367-2630/15/6/063031
https://doi.org/10.1126/science.1234414
https://doi.org/10.1126/science.1234414
https://doi.org/10.1126/science.1234414
https://doi.org/10.1126/science.1234414
https://doi.org/10.1038/nphys3053
https://doi.org/10.1038/nphys3053
https://doi.org/10.1038/nphys3053
https://doi.org/10.1038/nphys3053
https://doi.org/10.1038/nmat4204
https://doi.org/10.1038/nmat4204
https://doi.org/10.1038/nmat4204
https://doi.org/10.1038/nmat4204
https://doi.org/10.1103/PhysRevLett.100.156401
https://doi.org/10.1103/PhysRevLett.100.156401
https://doi.org/10.1103/PhysRevLett.100.156401
https://doi.org/10.1103/PhysRevLett.100.156401
https://doi.org/10.1103/PhysRevLett.103.046811
https://doi.org/10.1103/PhysRevLett.103.046811
https://doi.org/10.1103/PhysRevLett.103.046811
https://doi.org/10.1103/PhysRevLett.103.046811
https://doi.org/10.1103/PhysRevB.82.115124
https://doi.org/10.1103/PhysRevB.82.115124
https://doi.org/10.1103/PhysRevB.82.115124
https://doi.org/10.1103/PhysRevB.82.115124
https://doi.org/10.1103/PhysRevB.96.205412
https://doi.org/10.1103/PhysRevB.96.205412
https://doi.org/10.1103/PhysRevB.96.205412
https://doi.org/10.1103/PhysRevB.96.205412
https://doi.org/10.1103/PhysRevB.81.085105
https://doi.org/10.1103/PhysRevB.81.085105
https://doi.org/10.1103/PhysRevB.81.085105
https://doi.org/10.1103/PhysRevB.81.085105
https://doi.org/10.1103/PhysRevB.87.085136
https://doi.org/10.1103/PhysRevB.87.085136
https://doi.org/10.1103/PhysRevB.87.085136
https://doi.org/10.1103/PhysRevB.87.085136
https://doi.org/10.1103/PhysRevB.89.165123
https://doi.org/10.1103/PhysRevB.89.165123
https://doi.org/10.1103/PhysRevB.89.165123
https://doi.org/10.1103/PhysRevB.89.165123
https://doi.org/10.1103/PhysRevB.88.245123
https://doi.org/10.1103/PhysRevB.88.245123
https://doi.org/10.1103/PhysRevB.88.245123
https://doi.org/10.1103/PhysRevB.88.245123
https://doi.org/10.1103/PhysRevB.88.075101
https://doi.org/10.1103/PhysRevB.88.075101
https://doi.org/10.1103/PhysRevB.88.075101
https://doi.org/10.1103/PhysRevB.88.075101
https://doi.org/10.1103/PhysRevB.89.035103
https://doi.org/10.1103/PhysRevB.89.035103
https://doi.org/10.1103/PhysRevB.89.035103
https://doi.org/10.1103/PhysRevB.89.035103
https://doi.org/10.1088/0953-8984/26/47/475601
https://doi.org/10.1088/0953-8984/26/47/475601
https://doi.org/10.1088/0953-8984/26/47/475601
https://doi.org/10.1088/0953-8984/26/47/475601
https://doi.org/10.1103/PhysRevB.92.085147
https://doi.org/10.1103/PhysRevB.92.085147
https://doi.org/10.1103/PhysRevB.92.085147
https://doi.org/10.1103/PhysRevB.92.085147
https://doi.org/10.1103/PhysRevB.92.085146
https://doi.org/10.1103/PhysRevB.92.085146
https://doi.org/10.1103/PhysRevB.92.085146
https://doi.org/10.1103/PhysRevB.92.085146
https://doi.org/10.1103/PhysRevB.92.155137
https://doi.org/10.1103/PhysRevB.92.155137
https://doi.org/10.1103/PhysRevB.92.155137
https://doi.org/10.1103/PhysRevB.92.155137
https://doi.org/10.1103/PhysRevLett.106.156801
https://doi.org/10.1103/PhysRevLett.106.156801
https://doi.org/10.1103/PhysRevLett.106.156801
https://doi.org/10.1103/PhysRevLett.106.156801
https://doi.org/10.1103/PhysRevB.84.201103
https://doi.org/10.1103/PhysRevB.84.201103
https://doi.org/10.1103/PhysRevB.84.201103
https://doi.org/10.1103/PhysRevB.84.201103


QUANTUM ANOMALOUS HALL INSULATOR STABILIZED … PHYSICAL REVIEW B 98, 125144 (2018)

[26] T. Pereg-Barnea and G. Refael, Inducing topological order in a
honeycomb lattice, Phys. Rev. B 85, 075127 (2012).

[27] M. Kurita, Y. Yamaji, and M. Imada, Stabilization of topo-
logical insulator emerging from electron correlations on hon-
eycomb lattice and its possible relevance in twisted bilayer
graphene, Phys. Rev. B 94, 125131 (2016).

[28] S. Kitamura, N. Tsuji, and H. Aoki, Interaction-Driven Topo-
logical Insulator in Fermionic Cold Atoms on an Optical Lat-
tice: A Design with a Density Functional Formalism, Phys. Rev.
Lett. 115, 045304 (2015).

[29] Y. Wang, Z. Wang, Z. Fang, and X. Dai, Interaction-induced
quantum anomalous Hall phase in (111) bilayer of LaCoO3,
Phys. Rev. B 91, 125139 (2015).

[30] J. W. F. Venderbos, M. Manzardo, D. V. Efremov, J. van den
Brink, and C. Ortix, Engineering interaction-induced topolog-
ical insulators in a

√
3 × √

3 substrate-induced honeycomb
superlattice, Phys. Rev. B 93, 045428 (2016).

[31] J. W. F. Venderbos and L. Fu, Interacting Dirac fermions
under a spatially alternating pseudomagnetic field: Realization
of spontaneous quantum Hall effect, Phys. Rev. B 93, 195126
(2016).

[32] Y. D. Chong, X.-G. Wen, and M. Soljačić, Effective theory of
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