
Solid State Nuclear Magnetic Resonance 94 (2018) 31–53
Contents lists available at ScienceDirect

Solid State Nuclear Magnetic Resonance

journal homepage: www.elsevier.com/locate/ssnmr
Broadband adiabatic inversion cross-polarization phenomena in the NMR of
rotating solids

Sungsool Wi a,*, Robert W. Schurko b, Lucio Frydman a,c,**

a National High Magnetic Field Laboratory, Tallahassee, FL, 32304, USA
b Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, NPB 3P4, Canada
c Department of Chemical and Biological Physics, Weizmann Institute of Sciences, Rehovot, 76100, Israel
A B S T R A C T

We explore the use of cross-polarization magic-angle spinning (CPMAS) methods incorporating an adiabatic frequency sweep in a standard Hartman-Hahn CPMAS
pulse scheme, to achieve signal enhancements in solid-state NMR spectra of rare spins under fast MAS spinning rates, including spin-1/2, integer spin, and half-integer
spin nuclides. These experiments, dubbed Broadband Adiabatic INversion Cross-Polarization Magic-Angle Spinning (BRAIN-CPMAS) experiments, involve an adiabatic
inversion pulse on the S-channel of a rare spin nuclide while simultaneously applying a conventional spin-locking pulse on the I-channel (1H). The signal enhancement
imparted by this CP scheme on the S-spin is broadbanded, while employing low RF field strengths on both I- and S-channels. A feature demanded by these BRAIN-
CPMAS methods is to impose a selective adiabatic frequency sweep over a single MAS spinning centerband or sideband, to avoid interference between the MAS
modulation and sweeps over multiple sidebands. Upon implementing this swept-CP method, a number of MAS-driven processes happen, including broadband zero-
and double-quantum CP transfers, and MAS-driven rotary-resonance phenomena. When this CP method is applied to integer and half-integer quadrupolar nuclei at
very fast MAS spinning rates, a favorable double-quantum CP condition is found that can be easily achieved, and avoids the level-crossings among various ms energy
levels that complicate quadrupolar CPMAS NMR experiments along lines first shown by Alex Vega. An additional CP mechanism was found in the 1H-2H case,
involving static-like zero-quantum CP modes driven by a quadrupole-modulated RF-dipolar zero-order recoupling under MAS. All these phenomena were examined
using average Hamiltonian theory, numerical simulations, and experiments on model compounds. Sensitivity-enhanced, distortion-free CP over wide bandwidths were
predicted and observed for S¼ 1/2 and for S¼ 1 (2H) under fast MAS rates. BRAIN-CPMAS also delivered undistorted central transition NMR spectra of half-integer
quadrupolar nuclei, while utilizing low RF field strengths that avoid complex level-crossing effects under high MAS rates.
1. Introduction

Solid-state nuclear magnetic resonance (SSNMR) is a powerful tool
for characterizing the structures and dynamics of molecules [1–11]. The
power of SSNMR stems in part from the development and utilization of
cross-polarization magic-angle spinning (CPMAS) methods [12,13] for
increasing the signal of the dilute and/or low-gamma nuclei. Under
typical spinning speeds and rf fields, conventional CPMAS utilizing
rectangular [12,13] or ramped [14] pulses affords spectra from spin-1/2
(13C, 15N, 31P) nuclei with significant sensitivity enhancements [15–18].
However, CPMAS requires stringent radiofrequency (rf) field conditions
to satisfy the Hartmann-Hahn (HH) matching conditions [19,20],
particularly at high B0 fields, where fast spinning rates may be needed to
average the large chemical shift anisotropies (CSAs). CPMAS also re-
quires high RF powers to provide efficient polarization transfer over large
frequency bandwidths (e.g., to cover large distributions of chemical
shifts), which may not be suitable for conducting experiments on
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biological samples due to associated heating effects. And while
low-power matching conditions can arise in fast-spinning cases, these
may fail to allow for polarization transfer over the wide bandwidths
necessary for obtaining spectra of rare spin nuclides at high magnetic
field strengths, especially those with large chemical shift distributions or
broad powder patterns arising from CSA [21,22]. This has stimulated the
development of new CPMAS strategies compatible with large spectral
bandwidths, fast MAS rates, and moderate RF power levels [23–35]. The
search for CPMAS strategies for quadrupolar nuclides is even more
challenging, since when dealing with quadrupolar nuclei there are
level-crossing effects that lead to periodic, orientation-dependent losses
of polarization during its transfer from the high-γ to low-γ nuclei, as first
shown by Vega's pioneering work [36].

Frequency-swept RF pulses have long been used in NMR and MRI for
achieving inversion of spin polarization, increasing the efficiency of
heteronuclear decoupling, or obtaining broadband excitation profiles – in
all cases, while allowing for substantial reductions in the magnitude of
, 32304, USA.
.il (L. Frydman).
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the rf powers [37–57]. Additionally, swept pulses are normally very
useful in experiments where there is a sensitivity to B1-inhomogeneity.
The frequency sweep in these pulses is usually implemented in an
“adiabatic” mode, where the angle between the spin magnetization and
the effective field remains constant [49]. Adiabatic pulse schemes have
proven useful for obtaining ultra-wideline NMR spectra of both spin-1/2
and quadrupolar nuclei [58–64]. A broadband cross-polarization (CP)
technique, know as broadband-adiabatic inversion-CP (BRAIN-CP) [59]
has been developed to cover a broad range of HH matching conditions
[19,20], and deliver superior ultra-wideline NMR spectra of rare nuclei
under static conditions. Lying at the core of the BRAIN-CP is an adiabatic
inversion pulse, which replaces the monochromatic spin-lock pulse on
the rare-spin S-channel in conventional CP. This leads to a sequential
fulfillment of the HH matching conditions, as the effective strengths of
the swept RF pulse on S-nuclei in different crystallite orientations, pro-
gressively matches the spin-locking field of the abundant I-nuclei.
BRAIN-CP can also be combined with Wideband Uniform-Rate
Smooth-Truncation (WURST) based CPMG schemes for further
improving the signal-to-noise ratio (SNR) in static NMR spectra,
including ultra-wideline applications to 119Sn, 195Pt, 199Hg, 39K, 14N and
35Cl NMR [59,65–67].

While BRAIN-CP was initially developed for obtaining wideline static
spectra, it has been recently extended to MAS NMR studies of spin-1/2, 1,
and 3/2 nuclides [68–70]. Describing the resulting BRAIN-CPMAS
variant, particularly under the νr � 50 kHz spinning rates that are
rapidly becoming routine in SSNMR experiments at high fields, is the aim
of the present review. We start by briefly summarizing the behavior of
isolated spin S� 1/2 nuclei ensembles subject to adiabatic inversion
pulses in rotating solids. This background material is then used to
examine the I→S polarization transfer dynamics in spin pairs, upon
applying the BRAIN-CPMAS sequence. During these frequency sweeps
multiple HH matching conditions arise, including spinning-modulated
zero-quantum (ZQ) and double-quantum (DQ) CP modes that may
repeatedly occur for a given spin pair over the course of a sufficiently
wide frequency sweep. Also observed were novel static-like ZQ matching
conditions arising from quadrupolar-driven RF-dipolar recoupling under
MAS, as well as hitherto unreported interferences between spin-locking
and rotary resonance (RR) phenomena arising from the modulation of
even small S-spin shift anisotropies and/or first-order quadrupolar in-
teractions [68,69]. An average Hamiltonian theory was developed to
understand these phenomena, and was corroborated by both exact nu-
merical simulations and NMR experiments on model amino acids and on
23Na- and 11B-containing inorganic compounds. Overall, we find that this
new CPMAS scheme can deliver polarization from protons to spin-1/2
and to 2H over a broad range of offsets, under fast MAS rates and using
low RF field strengths. BRAIN-CPMAS was also implemented on the
central transition (CT) NMR powder patterns of half-integer quadrupolar
nuclei [70]; while enhancements were not optimal, the approach lead to
fewer powder lineshape distortions than afforded by conventional CP
techniques while imposing low RF strength requirements.

2. Inversion properties of swept RF pulses: considerations for
spin-1/2, 1, and 3/2 ensembles in spinning powders

Before addressing the use of adiabatic inversion pulses in CPMAS
pulse sequences, we review the properties of these pulses as applied on
isolated S-spin ensembles. In the phase-modulated (PM) frame that cor-
responds to the usual rotating frame, the Hamiltonian describing this
pulse is given by Ref. [37].

Hs
rf ðtÞ ¼ �ω1s ⋅ AðtÞ ⋅

�
Sx cos ψ ½t� þ Sy sin ψ ½t��: (1)

Here ω1s ¼ 2πν1s ¼ �γsB1s is the maximum field amplitude of the RF
field, A(t) is the RF's amplitude envelope, Sx and Sy are the transverse spin
angular momentum operators, and ψðtÞ is a time-dependent modulation
profile. For simplicity we assume that this involves a linear frequency
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sweep; i.e.,

ψðtÞ ¼ Δω
2tp

t2 � Δω
2

t þ ψ0; (2)

where ψ0,Δω¼ 2πΔν, and tp are an arbitrary initial phase, the bandwidth
of the frequency sweep, and the duration of the pulse, respectively. We
also assume a WURST pulse profile where A(t)¼ ð1� cos40½πt=tp�Þ, even
if other amplitude modulation forms could also be considered [37,40,
44]. In addition to this interaction, the behavior of the nuclear spins will
be influenced by isotropic and anisotropic interactions that depend on
their spin number; we consider these as follows.

2.1. Spin-1/2 case

For an isolated spin-1/2 ensemble, the spin Hamiltonian HS(t) in the
PM frame will be

HSðtÞ ¼ � ðΩS þ ωCSAÞSz þ Hs
rf ðtÞ; (3)

where Ωs ¼ ω0 � ωrf is the center offset of the sweep, ωCSA is the
(eventually MAS-modulated) CSA, and Hs

rf ðtÞ is as given in Eq. (1). The
spin dynamics imposed by HS (t) can be conveniently evaluated in a
frequency-modulated (FM) frame that is rotating synchronously with the
ψðtÞ in Eq. (2) [37,40,44]. The spin Hamiltonian in this FM frame,
HFM

S ðtÞ; can be obtained by

HFM
S ðtÞ ¼ UHSðtÞU�1 þ iU

d
dt
U�1; (4)

where U¼ exp½iΨðtÞ Sz�. The result is

HFM
S ðtÞ ¼ �

�
Ωs þ ωCSA � dΨðtÞ

dt

�
Sz � ω1sAðtÞSx; (5)

where dψðtÞ=dt is the RF's instantaneous frequency offset given by

dψðtÞ
dt

¼ ωpðtÞ ¼ Δω
tp

t � Δω
2
; (6)

and, except for its isotropic component, the non-secular Coriolis term in
Eq. (5) has been ignored. Given a suitable value of ω1S, HFM

S will impose
on the S-spin a nutation around an effective axis in the x-z plane of the FM
frame. The effective frequency of this nutation will be given by

ωeSðtÞ ¼ 2πνeSðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Ω'

sðtÞ þ ωCSA

�2 þ ½ω1SAðtÞ�2
q

; (7a)

while its inclination vs the z-axis will be

θ ¼ tan�1
�½ω1SAðtÞ�

	�
Ω'

sðtÞ þ ωCSA

��
(7b)

where Ω'
SðtÞ ¼ ΩS � ωpðtÞ: Notice that in the absence of CSA, Eq. (7)

predicts that a sweep of ωp through the on-resonanceΩS frequency under
the action of a suitable amplitude of ω1S will transform a magnetization
that was initiallyþ Sz into a -Sz state; this lies at the origin of the well-
known inversion operation associated with swept adiabatic passages
[37,40,44].

We consider next the behavior of this S¼ 1/2 site under the action of
MAS at a rate ωr ¼ 2πνr . This can be accounted for by imparting the CSA
in Eq. (5) with a time dependence ωCSAðtÞ ¼

P2
k¼�2; k6¼0ake

ikωr t Sz; where
the fakðδCSA; ηÞg coefficients have the usual dependence on the Euler
angle set transforming the tensor parameters δCSA and η (defined in the
CSA's principal axis system) into the rotor frame [71]. Shown in Fig. 1 are
simulated inversion profiles for an initial stateþ Sz, arising for an
on-resonance sweep for different WURST pulse sweep widths, Δν. The
inversion behavior is unlike that observed for a static solid or liquid in
that, even for narrowbandΔν < νr sweeps, Sz inverts not only around the



Fig. 1. Sz inversion profiles calculated upon varying the span Δν of a WURST pulse for an anisotropic site under a MAS rate νr ¼ 60 kHz. An isolated ensemble of spin-
1/2 nuclei (δcsa ¼ 400 ppm, η¼ 1, ν0 ¼ 150MHz) irradiated at on-resonance by an RF field of ν1S ¼ 20 kHz, was considered. Δν was varied as 30 (A), 60 (B), 80 (C),
110 (D), 200 (E), and 300 kHz (F), always for a tp ¼ 10ms sweep pulse length. Dashed vertical lines indicate the positions of the site's centerband (CB) and spinning
sidebands. The red central double arrow (Δν, CB) refers to the actual extent of the sweeps; horizontal blue arrows are virtual replicas centered at off-resonance
positions separated by the spinning rate. Notice the differences arising when Δν is chosen to be smaller than νr; the shape and width of the inversion profile are
identical to the isotropic Sz state expectation within the center-sweep region (A,B); the maximum width of the inversion profile is achieved when Δν ¼ νr (В). When
νr > Δν > 2νr , interferences occur between the center and sideband inversion profiles, resulting in the decrease of the successfully inverted central region (C and D).
When Δν ≫ 2νr the frequency regions of interference exceed the j2νr j window, resulting in the disappearance of Sz's central inversion profile (E and F). (For inter-
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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centerband (the center of which is “touched” by the sweep), but also
around the sideband frequency positions separated by �νr , �2νr etc. The
inversion is thus split into multiple “bands”, the frequency width of
which is identical to the RF sweep bandwidth Δν –as long as the sweep
width regions of the center- and side-bands do not overlap. The
maximum inversion bandwidth is thus obtained for Δν ¼ νr (Fig. 1B). If
νr < Δν < 2νr , the inversion bandwidth of the centerband overlaps with
those from the neighboring sidebands, resulting in a narrower inversion
profile at the centerband due to destructive interferences (Fig. 1C and D).
When Δν � 2νr , sweeps at frequency bands positioned at multiple nνr
harmonics (n¼ 0,�1; �2; …) interfere with one another, and eventually
the possibility of obtaining fully inverted Sz along the centerband is lost
(Fig. 1E and F).

2.2. Spin-1 case

We focus next on the spin dynamics occurring when these waveforms
33
are applied to a spin-1 nucleus such as 2H, for which quadrupolar effects
are suitably addressed by a first perturbative term. The spin Hamiltonian
for these nuclei in the FM frame becomes

HFM
S ðtÞ ¼ ��Ω'

SðtÞ þ ωCSAðtÞ
�
Sz � ω1sAðtÞSx þ Hð1Þ

Q;SðtÞ; (8)

where the terms and parameters are as in Eq. (3), except for a first-order

quadrupolar interaction Hð1Þ
Q ðtÞ that under MAS is given by Ref. [72].

Hð1Þ
Q;SðtÞ ¼ χQωQðtÞ

�
3S2z � SðSþ 1Þ�; (9)

with χQ ¼ CQ=2Sð2S� 1Þ ¼ e2qQ=2Sð2S� 1Þℏ;

ωQðtÞ ¼ 1
8
sin2β cosð2ωr t þ 2γÞ � 1

4
ffiffiffi
2

p sin2β cosðωr t þ γÞ (10)

the usual quadrupole coupling parameters, and the asymmetry parameter
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ηQ assumed to be zero [73]. The dominant first-order quadrupolar term

Hð1Þ
Q ðtÞ can be removed by transforming Eq. (8) into a quadrupolar

interaction frame according to

eH ' ¼ UQHFM
S ðtÞU�1

Q þ i


dU�1

Q

.
dt
�
UQ; (11)

where

UQ ¼ Texp

8<:i
Z t

0
χQωQðt'Þdt'

�
3S2z � 2

�9=; (12)

with T the Dyson time-ordering operator. When Eq. (11) is integrated
over a powder, the γ-angle averaged Coriolis term, hiðdU�1

Q =dtÞUQiγ ,
Fig. 2. Inversion properties among energy levels j1 >; j0 > and j � 1 > (shown in r
without (A) and with (B) considering a quadrupolar coupling parameter CQ¼ e2qQ
simulations was δcsa ¼ 921 Hz (10 ppm at 14.1T), and both quadrupolar and shieldin
WURST pulse parameters utilized were: Δν ¼ νr ; tp ¼ 8ms, pulse power ν1S varied
between (A) and (B) when ν1S is small (<16 kHz), hinting at the optimal ν1S value tha
and (D) simulated and experimental inversion spectra obtained for d2-2,2-glycine (CQ

on-resonance under MAS spinning rate νr ¼ 40 kHz. All experiments were done on a
pulse directly before detection. The free evolution was digitized for 8.192ms (data p
magnitudes of Δν are indicated in the middle of the figure, and the breadths of the sw
tp ¼ 8ms with ν1S ¼ 8 kHz. The spectra shown on the bottom of both columns a
interpretation of the references to color in this figure legend, the reader is referred
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vanishes [74]. Since all terms in Eq. (8), with an exception of the RF

Hamiltonian, commute with Hð1Þ
Q ðtÞ at all times, only the RF Hamiltonian

is modified by transforming into this quadrupolar interaction frame.
Then, the RF Hamiltonian in this frame is given as:

fH '
rf ðtÞ ¼ �ω1S

8<:Sxcos

0@Z t

0
3χQωQ

�
t '
�
dt '

1Aþ �SySz
þ SzSy

�
sin

0@Z t

0
3χQωQ

�
t'
�
dt'

1A9=;: (13)

The spin-locking behavior of the S-spin polarization is dramatically
changed by these time dependencies vis-�a-vis its spin-1/2 counterpart, as
first described in A. Vega's pioneering work [75]. As he taught us, the fate
ed, black and blue respectively) of a spin-1 powder under a WURST-40 sweep
=ℏ ¼ 168 kHz and a MAS spinning rate νr ¼ 60 kHz. The CSA assumed in all
g tensors were assumed to be collinear and have null asymmetries (η ¼ 0). The
from 4 kHz to 80 kHz as indicated in the figure. No significant differences arise
t can be used for performing a nearly ideal 2H adiabatic inversion. Shown in (C)
¼ 168 kHz; ν0¼ 92.1MHz) upon variation of the Δν of the WURST pulse applied
methylene-deuterated glycine sample at 14.1 T and used a strong 90-degree read
oints: 4096; dwell time: 2 μs) and Fourier transformed to yield the spectra. The
eeps are illustrated by red, horizontal, arrowed lines. All pulses were swept for

re simulated and experimental MAS spectra obtained without inversion. (For
to the Web version of this article.)
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of a spin-locked magnetization can be evaluated by inspecting the adia-

baticity parameter α ¼ ω2
1S

χQωr
, which specifies the nature of the

level-crossings induced by the RF describing whether the passage is
sufficiently fast to be sudden, sufficiently slow to be adiabatic, or inter-

mediate [75]. When α ¼ ω2
1S

χQωr
≪ 1 the system is said to be in the sudden

passage regime; under these conditions, the RF does not cause population
redistributions among different levels because the j1 >; j0 >, and j � 1 >

levels are maintained as eigenstates during the course of the spin-locking
period. For prototypical 2H sites (e.g., CQ¼ 168 kHz) and the fast
(νr� 40 kHz) spinning rates conditions here considered, easily achiev-
able ν1S rf fields fulfill this sudden-passage regime (Fig. 2). In this regime,
only the term

fH '
rf ðtÞ � �ω1SAðtÞSxcos

0@Z t

0
3χQωQ

�
t '
�
dt'

1A (14)

needs then to be considered. Employing a matrix representation, Eq. (8)
can then be explicitly written as

~H
FM
S ðtÞ ¼
2666666666666664

�Ω'
SðtÞ � ωCSAðtÞ �ω1Sffiffiffi

2
p AðtÞSxcos

0@Z t

0

3χQωQ

�
t '
�
dt'

1A 0

�ω1Sffiffiffi
2

p AðtÞSxcos
0@Z t

0

3χQωQ

�
t'
�
dt'

1A 0 �ω1Sffiffiffi
2

p AðtÞSxcos
0@Z t

0

3χQωQ

�
t '
�
dt'

1A
0 �ω1Sffiffiffi

2
p AðtÞSxcos

0@Z t

0

3χQωQ

�
t '
�
dt'

1A Ω'
SðtÞ þ ωCSAðtÞ

3777777777777775
: (15)
This matrix can be separated into two terms related solely to the j1 >

↔ j0 > and j0 > ↔ j � 1 > single-quantum transition subspaces:
~H
FM
S ðtÞ ¼

266666666664

�Ω'
SðtÞ � ωCSAðtÞ �ω1Sffiffiffi

2
p AðtÞSxcos

0@Z t

0

3χQωQ

�
t '
�
dt'

1A 0

�ω1Sffiffiffi
2

p AðtÞSxcos
0@Z t

0

3χQωQ

�
t'
�
dt'

1A Ω'
S þ ωCSAðtÞ 0

0 0 0

377777777775

þ

266666666664

0 0 0

0 �Ω'
S � ωCSAðtÞ �ω1Sffiffiffi

2
p AðtÞSxcos

0@Z t

0

3χQωQ

�
t'
�
dt '

1A
0 �ω1Sffiffiffi

2
p AðtÞSxcos

0@Z t

0

3χQωQ

�
t'
�
dt '

1A Ω'
SðtÞ þ ωCSAðtÞ

377777777775
: (16)
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These identical expressions for the j1 > ↔ j0 > and j0 > ↔ j � 1 >

subspaces can be expressed using a basis of spin-½ operators:

~H
FM
S ðtÞ ¼ �2

�
Ω'

SðtÞ þ ωCSAðtÞ
�
S1=2z �

ffiffiffi
2

p
ω1SAðtÞS1=2x cos

0@Z t

0
3χQωQ

�
t'
�
dt'

1A:

(17)

Defining Sz ¼ 2S1=2z and Sx ¼
ffiffiffi
2

p
S1=2x as fictitious spin-½ operators

possessing the same coefficients as the original spin-1 angular mo-
mentum operators, Eq. (17) becomes

~H
FM
S ðtÞ ¼ ��Ω'

SðtÞ þ ωCSAðtÞ
�
Sz � ω1SAðtÞSxcos

0@Z t

0
3χQωQ

�
t'
�
dt '

1A: (18)

This is a similar expression as that given for a spin-1/2 nucleus, but
for an RF-field that is now modulated by an additional quadrupolar
oscillation. It follows from Eq. (18) that a suitable value of ω1S can lead to
the inversion of an initial þSz state, via a þSz → þSx → -Sz FM-frame
trajectory similar to that of the spin-1/2 case. The effective nutation
frequency of this process is
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ' �2 24 0@Z t � '� '

1A352
vuuu
ωeS ¼ 2πνeS ¼ ΩSðtÞ þ ωCSAðtÞ þ ω1SAðtÞcos
0
3χQωQ t dtt :

(19)

Fig. 2A and B displays the inversion properties of a spin-1 manifold
during the course of these adiabatic sweeps for different maximum RF
amplitudes, with and without a quadrupolar interaction. For a WURST
pulse centered on-resonance and spanning a frequency range Δν (usually
Δν � νr), j1 > and j � 1 > populations are inverted at the completion of
the sweep for all of the ν1s values considered – provided that CQ¼ 0 kHz.
However, when CQ is assigned a typical value associated with an organic
C-2H bond (i.e., CQ¼ 168 kHz; ηQ ¼ 0), smooth inversions without level
crossings are only observed for low (� νr/2) RF-pulse amplitudes. By
contrast, larger ν1s values introduce fast oscillations among the pop-
ulations in the j1 >; j0 >; and j � 1 > eigenstates,1 leading to CQ- and
MAS-driven non-adiabatic transfers among them [75,76]. Inclusion of
moderate CSAs (e.g., 10 ppm at 14 T) have no discernible influence on
the behavior of Sz for any of the pure Zeeman states, while the effect of
MAS on a CSA-only spin-1 is as described for a CSA-bearing spin-1/2
case.

This behavior was investigated by comparing simulated (Fig. 2C) and
experimental (Fig. 2D) 2H MAS spectra [77–80]; the latter acquired by
first applying a WURST inversion pulse with varying Δν, followed by a
strong π/2 “read” pulse for detection. Also shown at the bottom of each
column are the MAS lineshapes obtained/expected at νr ¼ 40 kHz. When
the swept pulse bandwidthΔν < 2νr , simulated and experimental spectra
are similar: they are distortion-free, and completely inverted. However,
whenΔν > 2νr , the simulated and experimental spectra differ: lineshapes
are distorted and there are decreased relative intensities among the
spinning sidebands. Finally, if Δν > 3νr , severely phase-distorted MAS
spectra result from multiple interferences between the centerband and
the sidebands as the adiabatic sweep proceeds. This is akin to what has
been reported for S¼½ cases [68,77–80], and to what is shown in Fig. 1.
This behavior suggests limits for the sweep widths that can be applied in
BRAIN-CPMAS experiments on quadrupolar nuclides.

2.3. Spin-3/2 case

The application of swept adiabatic inversion pulses on half-integer
quadrupolar spins, has been previously considered [81–84]. We revisit
this problem by considering the FM-frame Hamiltonian of an ensemble of
isolated half-integer (S � 3=2Þ nuclei undergoing MAS, on which a
frequency-swept pulse is applied

HFM
S ðtÞ ¼ Ω'

SðtÞSz þ Hð1Þ
Q;SðtÞ þ Hð2Þ

Q;SðtÞ � ω1SAðtÞSx: (20)

Here, Hð1Þ
Q;SðtÞ is the first-order quadrupolar interaction defined as in

Eq. (9) and Hð2Þ
Q ðtÞ represents the second-order quadrupolar interaction

defined by

Hð2Þ
Q;SðtÞ ¼

3χ2Q
ω0;S

�
RQ
2;�1ðtÞRQ

2;1ðtÞSz
�
4SðSþ 1Þ � 8S2z � 1


þRQ

2;�2ðtÞRQ
2;2ðtÞSz

�
2SðSþ 1Þ � 2S2z � 1

�
(21)

The explicit expressions for RQ
2;mðtÞ ðm ¼ 0; �1; �2Þ under MAS are

obtained by the usual transformation of the electric-field gradient (EFG)
tensor from its principal axis system (PAS) to the rotor frame as given by
αQ; βQ, and γQ Euler angles [85]. Eq. (20) can be rewritten utilizing
fictitious spin-1/2 operators [86,87] as
1 For adequately describing this level-crossing effect an assumption made for
the sudden passage regime does not apply, and Eq. (13) must be utilized without
any approximation.
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HFM
S ðtÞ ¼ HΩ' ðtÞ þ Hð1Þ

Q;SðtÞ þ HFM
rf ðtÞ (22)
whereHΩ' ðtÞ is a shift-like Hamiltonian that consists of the chemical shift,
the instantaneous offset frequency ωpðtÞ; and the second-order quad-
rupolar interaction. This can be written as

HΩ' ðtÞ ¼
n
Ω'

SðtÞ þΩ2�3
Q;S ðtÞ

o
S2�3
z þ

n
3Ω'

SðtÞ þΩ1�4
Q;S ðtÞ

o
S1�4
z ; (23)

where S2�3
z and S1�4

z are operators associated with the central (CT) and
the triple-quantum (TQ) transitions respectively, and Ω2�3

Q;S ðtÞ and

Ω1�4
Q;S ðtÞ represent the second-order quadrupolar interactions for these

transitions. The Hamiltonians for the first-order quadrupolar interaction
and the RF in Eq. (22) can also be expressed by this fictitious spin-1/2
formalism as

Hð1Þ
Q;SðtÞ ¼ ωQðtÞ

�
S1�2
z � S3�4

z


(24)

and

HFM
rf ðtÞ ¼ ω1SAðtÞ

n
2S2�3

x þ
ffiffiffi
3

p �
S1�2
x þ S3�4

x

�o
: (25)

The explicit expressions for ωQðtÞ and Ωm�n
Q;S ðtÞ (m-n¼ 2-3 and 1–4)

appearing in Eqs. (23) and (24) can be found in our previous publication
[70]. Notice that multiple operators are associated with the RF Hamil-
tonian in Eq. (25): S2�3

x for the CT, and S1�2
x and S3�4

x for the two satellite
transitions (STs) –the latter enabling interconversions between CT co-
herences (CTCs) and triple-quantum coherences (TQCs). To better
describe these CTC-TQC conversions we consider Eqs. (24) and (25) in a
tilted frame that is rotated by an angle θ defined by Ref. [86].

θ ¼ tan�1
h ffiffiffi

3
p

ω1S=ωQðtÞ
i
: (26)

This tilted frame is characterized by an effective RF field, ωeðtÞ;
described byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

QðtÞ þ 3ω2
1SAðtÞ2

q
¼ ωeðtÞ: (27)

Then, it is possible to transform Eqs. (23)–(25) into this tilted frame
by applying a unitary transformation specified by e�iθS1�2

y and eiθS
3�4
y op-

erators, resulting in:

HT ¼ωe

�
S1�2
z �S3�4

z

�þnΩ'ðtÞþΩ2�3
Q;S ðtÞ

o�
cos2

θ

2
S2�3
z þ2sinθS1�2

y �sin
θ

2
S3�4
y

�
þ
n
3Ω'ðtÞþΩ1�4

Q;S ðtÞ
o�

cos2
θ

2
S1�4
z þ2sinθS1�2

y �sin
θ

2
S3�4
y

�
þ2ω1SAðtÞ

�
cos2

θ

2
S2�3
x �sin2

θ

2
S1�4
x þ2sinθS1�3

x �2sinθS2�4
x

�
:

(28)

The RF term in Eq. (28) now contains the S2�3
x and S1�4

x operators that
can excite the CTC and TQC, respectively, as well as S1�3

x and S2�4
x op-

erators that excite double-quantum coherences (DQCs). The magnitude
of θ; and thus the magnitude of the applied ω1S under a given ωQðtÞ;must
be large in order to excite these DQCs and TQC to an appreciable degree.
Notice that all of the S2�3

x ; S1�4
x ; S1�3

x , and S2�4
x terms in Eq. (28) are

modulated by MAS-driven quadrupolar oscillations; therefore, numerical
evaluations are generally required for their explicit analysis.

As in the case of spin-1, the evolution imparted by the dominant first-
order quadrupolar term, the leading term in this expression, can be
removed from Eq. (28) by transforming into a quadrupolar interaction
frame defined by

fHT ¼ UQHU�1
Q þ iUQ

d
dt
U�1

Q ; (29)



Fig. 3. (A) Inversion and spin-locking properties exhibited by the Sz-states of a spin-3/2 powdered ensemble under the action of a WURST frequency-swept pulse.
Simulations are presented for different quadrupolar couplings (e2qQ=ℏ ¼ 0, 1, 3, and 4.5MHz) with ηQ ¼ 0, ν0 ¼ 160.4MHz, and different WURST pulse powers (ν1S
¼ 3, 12, 40 and 80 kHz); but for all cases Δν ¼ 10 kHz and tp ¼ 5ms. The MAS spinning rate νr is 40 kHz, and CSA parameters are set to zero for simplicity. (B) Powder
simulations for a quadrupolar S¼ 3/2 site (CQ¼ 3 kHz and ηQ ¼ 0; δiso ¼ δCSA ¼ 0; ν0 ¼ 160.4 MHz) under MAS conditions (νr ¼ 40 kHz), upon varying the sweep
range Δν and maximum field ν1S of a tp ¼ 8ms WURST adiabatic inversion pulse. For all simulations, an ideal 90� pulse was applied after the adiabatic sweep, followed
by a free evolution digitization over 8.192ms (4096 data points; 2 μs dwell time) and Fourier transform to yield the spectra. The bottom row shows the ideal non-
inverted MAS spectrum, denoting the single-quantum central transition (CT) without sidebands, as well as the single-quantum satellite transitions (STs) with visible
spinning sidebands. A nearly ideal inversion spectrum of CT and ST (highlighted in red) is obtained only when a narrow Δν (5 kHz), which does not overlap with any
ST sideband(s), is applied with a low ν1S value (8 kHz). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of
this article.)
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where UQ ¼ Texpfi
Z t

0
dt 'ωeðt 'Þ½S1�2

z � S3�4
z �g and UQ

d
dtU

�1
Q ¼ 0. Since the

S2�3
z and S1�4

z operators in the shift-like Hamiltonians and the S2�3
x ; S1�4

x ,
S1�3
x , and S2�4

x operators in the RF Hamiltonians commute with S1�2
z and

S3�4
z in Hð1Þ

Q ðtÞ, this quadrupolar-interaction frame Hamiltonian can be
rewritten as

fHT ¼
n
Ω'ðtÞþΩ2�3

Q;S ðtÞ
o24cos2θ

2
S2�3
z þ

8<:2sinθS1�2
y �sin

θ

2
S3�4
y

9=;cos
Z t

0
ωe

�
t'
�
dt'

�
�
2sinθS1�2

x � sin
θ

2
S3�4
x

�
sin
Z t

0
ωe

�
t'
�
dt'

35þ
n
3Ω'ðtÞ

þΩ1�4
Q;S ðtÞ

o�
cos2

θ

2
S1�4
z þ

�
2sinθS1�2

y � sin
θ

2
S3�4
y

�
cos
Z t

0
ωe

�
t'
�
dt'

�
�
2sinθS1�2

x � sin
θ

2
S3�4
x

�
sin
Z t

0
ωe

�
t'
�
dt'

35þ

2ω1SAðtÞ
�
cos2

θ

2
S2�3
x � sin2

θ

2
S1�4
x þ 2sinθS1�3

x � 2sinθS2�4
x

�
: (30)

Under the condition ωQ ≫ ω1S; we can approximate θ � 0 and
ωe � ωQ. Then, by considering only the CTC, Eq. (30) reduces to

fHT ¼
n
Ω'ðtÞ þ Ω2�3

Q;S ðtÞ
o
S2�3
z þ 2ω1SAðtÞS2�3

x : (31)

Eq. (31) reveals that the RF term for the excitation of the CTC is free
from the quadrupolar-induced evolution if ωQ ≫ ω1S.
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Fig. 3A shows the behavior of Sz¼ jþ3=2 >; j þ 1=2 >; j�1=2 > and
j�3=2 > populations when subjected to a WURST-40 pulse as the RF
maximum amplitude ν1s ¼ ω1S/2π and the magnitude of CQ are varied
(again, CSA is ignored for simplicity). For all of the ν1s values considered,
jþ3=2 >; jþ1=2 >; j � 1=2 > and j � 3=2 > populations are inverted at
the completion of the sweep when CQ¼ 0. However, when CQ 6¼ 0, level
crossings occur during the pulse between the Zeeman eigenstates that are
being modulated by MAS-driven quadrupolar oscillations. In accordance
to Vega's explanation [75,76], this leads to a rapid dissipation of the
spin-locked states, particularly when larger ν1s values are used. Smooth
inversions of the CT spectra are achieved only for weak (<10 kHz) RF
amplitudes, for which population inversions occur only between the
central jþ1=2 > and j � 1=2 > eigenstates in accordance with Eq. (31),
while changes in populations of the outer j3=2 > and j � 3=2 > energy
eigenstates populations are minimal. This suggests that these are the only
RF amplitudes suitable for an efficient I(1H)→S(CT; S¼ 3/2)
BRAIN-CPMAS signal transfer (vide infra).

The behavior of Sz for an ensemble of spin-3/2 nuclei subjected to a
WURST-40 pulse was also examined for a powdered sample under 40 kHz
MAS. Fig. 3B compares simulated spectra for a single site with
CQ¼ 3MHz, ηQ ¼ 0; and δCSA ¼ 0 ppm (11B@ 11.7 T), upon varying both
the amplitude ν1S ¼ ω1S=2π and the sweep range Δν ¼ Δω=2π of the
WURST pulse. This pulse was assumed followed by an infinitely strong
“read pulse”, and by a period of concurrent free evolution and signal
digitization. The center of the pulse's sweep range is matched to the
center of the central transition peak; i.e., to its isotropic second-order
quadrupolar shift [88,89]. Under narrow-sweep, weak-RF conditions
(Δν ¼ kHz; ν1S ¼ 8 kHz), the simulation shows a completely inverted,
nearly distortion-free, MAS-averaged, second-order quadrupolar spec-
trum (marked red in Fig. 3B). However the CT lineshape becomes
remarkably distorted if the magnitude of Δν > 5 kHz or if stronger RF
fields are applied. This is different from the inversion characteristics



Fig. 4. (A) BRAIN-CPMAS scheme including a phase-
modulated WURST pulse applied along the S-channel
together with a standard spin-lock I scheme. A 90� “read”
pulse is required after the CP mixing time to convert the Sz-
polarization obtained from the CP process into detectable
signal and I-decoupling is applied during the signal detection.
The pulse phases used in the sequence were: ϕ1 ¼ x, x, y,y, -x,
-x, -y, -y; ϕ2 ¼ y, y, -x, -x, -y, -y, x, x; ϕRX ¼ x, -x, y, -y, -x, x, -y,
y. Illustrated in (B) are the x- (blue) and y-components (red),
modulation phase [ψðtÞ�, pulse amplitude given as ω1Sð1�
cos40½πt=tp�Þ; and instantaneous frequency [dΨðtÞ=dt� of the
RF-field – all for parameters Δν ¼ 10 kHz, tp ¼ 10ms, and Ψ0

¼ 0�. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this
article.)
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reported for S¼ 1/2 or small-CQ S¼ 1 nuclides, for which ideal inversion
characteristics were observed for weak ν1S as long as the Δν � 2νr [68,
69]. In the current case, an inverted, undistorted spectrum is only ob-
tained if the Δν is narrow enough to encompass the breadth of the
anisotropic centerband of the CT transition, but does not overlap with the
neighboring spinning sidebands of the satellite transitions (STs); by
contrast, if both the CT and ST sidebands are traversed by the same RF
sweep, clear distortions emerge.

3. Analytical description of BRAIN-CPMAS NMR under a
frequency-swept S-pulse

Figs. 1–3 provide means for analyzing the capabilities and the limits
of adiabatic sweeps for obtaining broadband inversion profiles and
distortion-free lineshapes for spin-1/2, 1, and 3/2 nuclides. Similar
pulses can be utilized during the spin-lock period of a CPMAS-type
sequence, as possible routes for obtaining broadband CP under MAS
conditions. Shown in Fig. 4A is the prototypical BRAIN-CPMAS sequence
utilized in our simulations and experiments to test this: it involves a hard
π/2 pulse on the I¼ 1/2 spins, followed by a spin lock of the transverse
magnetization for a time tp. A WURST pulse is simultaneously applied on
38
the S-spins (typical phase and amplitude profiles are shown in Fig. 4B).
For the static BRAIN-CP case, any S-magnetization accumulated over the
course of the spin lock will follow the S-spin's adiabatic inversion
pathway that an adiabatic pulse creates along the Sz – Sx plane in the FM
frame. Thus, CP-generated S -magnetizations will end up aligned along
the z -axis at the completion of the contact time. A 90� “read” pulse is
required to convert the Sz magnetization into detectable transverse co-
herences. Under conditions of MAS this relatively simple process is
influenced by additional phenomena, owing in part to the various effects
discussed in Section 2. In the following subsections, we briefly describe
the features of these BRAIN-CPMAS effects, for each of the spin-1/2, spin-
1, and half-integer quadrupolar spin (�3/2) cases.
3.1. The frequency-swept CPMAS Hamiltonian for an I-S(1/2) spin pair

For clarifying the behavior of the BRAIN-CPMAS mechanism, we
consider an isolated I(1/2)-S(1/2) dipolar pair, where the I (1H) spin is
locked on resonance (i.e., ΩI¼ 0), and the S-spin has a δCSA¼ 0. For the
BRAIN-CP pulse sequence shown in Fig. 4A, the Hamiltonian of an iso-
lated I(1/2)-S(1/2) dipolar pair under MAS is first considered in the
doubly-rotating frame [19,20,90] and then further transformed into the
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S-spin's FM frame. This results in

HFM
I�SðtÞ ¼ �ω1I Ix �Ω'

SðtÞSz � ω1sSx þ 2bðtÞIzSz; (32)

where ω1Ið¼ γIB1IÞ is the RF field strength applied to I, Ω'
SðtÞ ¼ ΩS �

ωpðtÞ is the offset of the S-spin in its FM frame, including the instanta-
neous offset frequency ωpðtÞ coming from the sweep, ω1s is a square-
shaped RF chirp pulse applied on the S-spin (i.e., we assume A(t)¼ 1
for simplicity), and 2bðtÞIzSz is a heteronuclear dipolar coupling inter-
action that under MAS is modulated as [18].

bðtÞ ¼
X2

k¼�2; k 6¼0

bkeikωr t; (33)

where the {bk} coefficients have the usual Euler angle dependencies in
the I-S dipolar tensor defined in the principal axes system of the rotor
frame [18].

Eq. (32) possesses dual time modulations originating from the adia-
batic pulse and the νr-driven MAS modulations of the dipolar coupling
interaction. For a fast spinning and a slow adiabatic sweep (νr� 30 kHz,
tp� 5ms), an average Hamiltonian considered over the time scale of a
rotor period can be approximated by assuming a quasi-static offset for
each rotor period. Then, by approximating the ωpðt0Þ in Ω'

SðtÞ as con-
stant for time intervals t ¼ t0 to t ¼ t0 þ 2π=ωr ; a rotational trans-
formation into a doubly-tilted frame where all RF fields are parallel to z'

axes [18,90], leads to

HT ðtÞ ¼ �ω1I Iz' � ωeSðt0ÞSz' þ 2 sin θSðt0ÞbðtÞIxSx; (34)

where only the terms relevant for describing the CP phenomenon are
kept [68]. In Eq. (34), the effective RF field strength along the tilted
z'-axis of S is given by

ωeSðt0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

1S þ
�
Ω'

Sðt0Þ
�2q

¼ ω1S

"
1þ 1

ω2
1S

�
ΩS þ Δω

2
� Δω

tp
t0

�2
#1=2

; (35)

and the sinðθS½t0�Þ term, with a tilt angle θSðt0Þ that relates the tilted
z'-axis to the original z-axes in the FM frame, is given by

sinðθS½t0�Þ ¼ ω1S=ωeSðt0Þ ¼
"
1þ 1

ω2
1S

�
ΩS þ Δω

2
� Δω

tp
t0

�2
#�1=2

: (36)

Utilizing a single-transition operator notation, Eq. (34) can be
rewritten as [18,91]:

HT ðtÞ ¼ �ωΔðt0Þ I2;3z � ωΣðt0ÞI1;4z þ ω1S bðtÞ
ωeSðt0Þ

�
I2;3x þ I1;4x

�
(37)

where ωΔðt0Þ ¼ ω1I � ωeSðt0Þ; ωΣðt0Þ ¼ ω1I þ ωeSðt0Þ, and Is;tξ (ξ ¼ x, y, or
z; s,t¼ 2,3 or 1,4) are single-transition operators defined by:

I2;3z ¼ Iz' � Sz'
2

; I1;4z ¼ Iz 'þ Sz '
2

;

I2;3x ¼ IþS� þ I�Sþ
2

; I1;4x ¼ IþSþ þ I�S�
2

;

I2;3y ¼ IþS� � I�Sþ
2i

; I1;4y ¼ IþSþ � I�S�
2i

(38)

acting in either the fj2 >; j3 > g or fj1 >; j4 > g subspaces. Because the
single transition operators commute with each other, HT (t) in Eq. (37)
can be written as a direct sum of two separate pseudo-2	 2 matrices

H2;3
T ðtÞ ¼ �ωΔðt0Þ I2;3z þ ω1S bðtÞ

ωeSðt0Þ I2;3x (39)
39
and

H1;4
T ðtÞ ¼ �ωΣðt0ÞI1;4z þ ω1S bðtÞ

ωeSðt0Þ I1;4x : (40)

These equations determine the zero-quantum (ZQ) and double-
quantum (DQ) CP processes, respectively.

By applying an Up ¼ expðikωr tIs;tz Þ transformation onto the Hs;t
t

Hamiltonians in Eqs. (39) and (40)[18].

~H
s;t
T ðtÞ ¼ UpH

s;t
T ðtÞU�1

p � iUp
d
dt
U�1

p ; (41)

the zeroth-order average Hamiltonians over a rotor period can be
calculated by taking an integral over a time period of tr ¼ 2π

ωr
:

D
~H
s;t
T

E
av
¼ 1

tr

Z tr

0

~H
s;t
T ðtÞdt; (42)

leading toD
~H
s;t
T

E
av
¼ ½ � ðω1I � kωrÞ þ mωeSðtÞ�Is;tz þ bkω1S

2ωeSðtÞI
s;t
þ : (43)

Here, m is þ1 for the ZQ process and �1 for the DQ CP process, k ¼
�1 and �2; Is;tþ ¼ Is;tx þ iIs;ty , and t0 has been generalized for simplicity to
any time 0 � t � tp within the sweep.

3.2. The frequency-swept CPMAS Hamiltonian for an I – S(1) spin pair

These considerations can be extended to describe the Hamiltonian for
an I → S(1) CP dynamics for a system subject to a frequency swept pulse
on the S-spins under fast MAS. The CP Hamiltonian paralleling the spin-
1/2 Eq. (32) counterpart is then:

~H
FM
T ðtÞ ¼ �ω1I Ix �Ω'

SðtÞSz � ω1SSxcos

0@Z t

0
3χQωQ

�
t'
�
dt'

1A þ 2bðtÞIzSz :

(44)

Here, the definitions of the terms and conditions are the same as
previously, except for the addition of a quadrupole-modulated RF
Hamiltonian. Applying a transformation into a doubly-tilted frame where
all RF fields lie parallel to the z' axes [18,90] and considering only the
relevant terms that drive the CP process, the isolated spin-pair CP
Hamiltonian becomes [69].

~H
'
T ðtÞ ¼ �ω1I Iz' � ωeSðtÞSz' þ 2 sin θI sin θSðtÞbðtÞIxSx: (45)

The effective resonance frequencies along these tilted z'-axes are ω1I

and

ωeSðtÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi24�Ω'
SðtÞ
2 þ ω2

1Scos2

0@Z t

0
3CQωQ

�
t'
�
dt'

1A35
vuuut ; (46)

while the tilt angles θI and θS(t) that relate the z'-axes to the z-axes in the
FM frame are given by sinðθIÞ ¼ 1 and

cosðθS½t�Þ ¼
�
ΩS þ Δω

2
� Δω

tp
t
��

ωeSðtÞ; (47)

sinðθS½t� Þ ¼ ω1S cos

0@Z t

0
3CQωQ

�
t'
�
dt '

1A,ωeSðtÞ

¼ ω1S
P∞

k¼�∞A
Q
k expðikωrtÞ

ωeSðtÞ ; (48)
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where the last relation uses the fact that sinðθS½t�Þ involves a Bessel in-
tegral that can be expanded as an infinite Fourier series. With these
definitions and assumptions, Eq. (45) is rewritten as [17,18,92]:

~H
'
T ðtÞ ¼ �ω1I Iz' � ωeSðtÞSz'

þ 2ω1S
P∞

k¼�∞A
Q
k expðikωrtÞ

P2
k¼�2bk expðikωr tÞ

ωeSðtÞ IxSx: (49)

The product of the ωr t-dependent Fourier expansions arising from the
modulation of the quadrupolar and dipolar terms in Eq. (49), can be
separated into time-independent and time-dependent terms:

~H
'
T ðtÞ ¼ �ω1I Iz � ωeSðtÞSz

þ 2ω1S½Λ0 þ Λ�1e�iωr t þ Λ�2e�2iωr t þ higher � order terms�
ωeSðtÞ IxSx;

(50)

where an explicit derivation of these Λkðk ¼ 0; �1; and � 2Þ terms is
summarized in our previous publication [70].

Utilizing the single-transition operator formalism and by separating
the ZQ and DQ coherences, Eq. (50) can be separated and rewritten as:

~H
ZQ
T ðtÞ ¼ �ωΔðtÞ IZQz þ ω1S½Λ0 þ Λ�1e�iωr t þ Λ�2e�2iωr t þ…�

ωeSðtÞ IZQx (51)

and

~H
DQ
T ðtÞ ¼ �ωΣðtÞIDQz þ ω1S½Λ0 þ Λ�1e�iωr t þ Λ�2e�2iωr t þ…�

ωeSðtÞ IDQx ; (52)

where, ωΔðtÞ; ωΣðtÞ, and IZQx and IDQx are as defined in Eqs. (37) and (38).
Notice that Eqs. (51) and (52) again possess dual time dependencies, due
to the frequency-swept pulses and the MAS-driven modulation. The same
reasoning as described above can be used to remove the dual time de-
pendencies under conditions of a slow-frequency swept pulse and fast
MAS. If ωeSðtÞ is approximated as quasi-constant for time intervals t0 �
t � t0 þ 2π

ω r , the effective resonance frequency on the S channel can be
averaged for each rotor period as

ωeSðt0Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ΩS þ Δω

2
� Δω

tp
t0

�2

þ ω2
1S

s
: (53)

At a similar level of approximation, an evaluation of the argument in the

cos2
 Z 2π

ωr

0
3CQωQðt 'Þdt '

!
term contributing to ωeSðt0Þ over a rotor period

leads to a null average integral, and therefore

cos2
 Z 2π

ωr

0
3CQωQðt 'Þdt '

!
¼ 1 is satisfied. With these assumptions, average

Hamiltonians over a rotor period hHζ
Tiav ¼ 1

τr

Z τr

0
Hζ

Tðt 'Þdt '; ζ ¼ ZQ or DQ,

can be obtained from Eqs. (51) and (52) via the transformationUpHζ
TU�1

p �
iUp

d
dtU

�1
p ; whereUp ¼ expðikωr tIζz Þ and ζ ¼ DQ or ZQ refers to the zero- or

double-quantum sub-spaces. This evaluation produces

�
Hζ

T

�
av ¼ ½ � ðω1I � kωrÞ þ m ωeSðtÞ�Iζz þ

ω1SΛk

2 ωeSðtÞI
ζ
þ; (54)

where k ¼ �1 and �2; Iζþ ¼ Iζx þ iIζy (ζ ¼ ZQ or DQ), m is þ1 for the ZQ-
CP process and �1 for the DQ-CP process. In the above equations, t0 has
been generalized for simplicity to a generic time t.

While the k ¼ �1;�2 terms in Eq. (54) are the same as for CPMAS
40
experiments involving spin-1/2 nuclides, the static-like polarization
transfer process involving the Λ0 term is peculiar to CPMAS of quadru-
poles, and arises due to the interference between the periodic
quadrupole-driven modulation of the RF, and the identically periodic
MAS-driven modulation of the dipolar coupling. This recoupling effect
can be separated from Eq. (51); for a dipole-coupled I¼½ – S¼ 1 spin
pair it is given by

�
HZQ

T

�
av ¼ ½ � ω1I þ ωeSðtÞ�IZQz þ ω1SΛ0

ωeSðtÞI
ZQ
x : (55)

When ω1I ¼ ωeSðtÞ; this CP mode will transfer I-magnetization to the
S-spin. Notice that, as is the case for static solids, only a ZQ HH match is
possible; a DQ-HH process is not allowed because there is not a condition
nulling the coefficient of IDQz in Eq. (52), ωΣðtÞ; for any combination of ω1I

and ωeSðtÞ: The relevance and magnitude of Λ0 term can be evaluated by
considering an example. For instance, for a crystallite orientation ðβ ¼
45∘; γ ¼ 0∘Þ of a dipolar coupled 1H-2H pair collinear with the largest
component of an axially-symmetric EFG tensor, possessing a 1H-2H
dipolar coupling of 4 kHz and a CQ¼ 168 kHz, the magnitude of the
quadrupole-driven RF-dipolar recoupled term Λ0 is about 680 Hz [69].
The magnitude of this coefficient is significant, and can generate a
static-like, k¼ 0, ZQ0 CP mode even under very fast MAS.
3.3. The frequency-swept CPMAS Hamiltonian for an I-S(� 3=2Þ spin
pair: transfer dynamics to the central transition of a half-integer
quadrupolar nuclide

Employing Eq. (31) as a starting point, the Hamiltonian necessary for
describing I(1/2) → S(�3/2) BRAIN-CPMAS requires the inclusion of an
RF term for the I-spin as well as an I-S dipolar coupling term. Again, any
potential homonuclear I-I and S-S dipolar coupling interactions and I- and
S-spin CSAs are ignored for simplicity. The I → S(�3/2) CP process is
further separated into separate I → S(CT) and I → S(TQ) CP processes,
described by the S2�3

z and S2�3
x and S1�4

z and S1�4
x operators, respec-

tively; for simplicity, only the I → S(CT) transfer is here taken into
consideration. This simplification is justified because, although these two
dynamic processes are not decoupled from one another, the RF Hamil-
tonian that contains a S2�3

x operator can effectively spin-lock the CT
coherence when a small ν1S value is employed (see Fig. 3). As demon-
strated by A. Vega [75], when the adiabaticity parameter is small (α ¼
ν21S
χQνr

≪1), both the TQC term and the oscillating terms arising in the

quadrupolar interaction frame that connect the CTC to other coherences
can be safely ignored. Then, considering the Hamiltonians in the doubly
rotating frame, and proceeding as before with a series of transformations
taking us first into a FM frame and then into S's quadrupolar interaction
frame, the Hamiltonian for the I → S(CT; S¼ 3/2) CP polarization
transfer in the relevant S2�3

ξ ðξ ¼ x or zÞ subspace is

HCP
I�SðtÞ ¼ �ω1I Ix þ

n
Ω'

SðtÞ þΩ2�3
Q;S ðtÞ þ 2bðtÞIz

o
S2�3
z þ 2ω1SS2�3

x : (56)

This expression can be readily extended to higher half-integer quad-

rupolar nuclei (S¼ 5/2, 7/2, or 9/2), by defining Sz ¼ Sc�t
z and Sx ¼

�
Sþ

1
2

�
Sc�t
x , where c-t stands for 3–4, 4–5 and 5–6 for S¼ 5/2, 7/2 and 9/2,

respectively. Notice that unlike the spin-1 case, the RF term in Eq. (56) is
free from the modulation of quadrupolar interaction because the CTC of a
half-integer S-spin is not influenced by the first-order quadrupolar
interaction.

Using these fictitious spin-½ operators, Eq. (56) becomes

HCP
I�SðtÞ ¼ �ω1I Ix þ

n
Ω'

SðtÞ þΩc�t
Q;SðtÞ

o
Sz þ ω1SSx þ 2bðtÞIzSz: (57)

Except for the presence of an additional Ωc�t
Q;SðtÞ term representing the
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second-order quadrupolar interaction offset the central transition, Eq.
(57) is identical to the previous equation for the I→S(1/2) BRAIN-
CPMAS, Eq. (32). The expression of Ωc�t

Q;SðtÞ for an arbitrary half-integer
quadrupolar spin S is:

Ωc�t
Q;SðtÞ ¼

3
ω0

χ2Q½4SðSþ 1Þ � 3� 	
X4
m¼�4

ωm
Qðα; βÞexp½imðγ þ ωr tÞ�; (58)

where explicit expressions for ωm
Qðα; βÞ are summarized in our previous

publication [70].
Since Eq. (57) is identical in form to the simplest I→S(1/2) CP case,

the equations that define it are identical to those outlined in the pro-
cedure for the I→S(1/2) CP case. Thus, average Hamiltonians that pre-
dict the ZQ- and DQ-CP processes over a rotor period for the I → S(CT; S
� 3/2) polarization transfer involved in the BRAIN-CPMAS mixing are
written as [68,70].

�
Hζ

T

�
av
¼ ½ � ðω1I � kωrÞ þ m ωeSðtÞ�Iζz þ

ω1Sbk
2 ωeSðtÞI

ζ
þ; (59)

where

ωeSðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ΩS þΩc�t

Q;SðtÞ þ
Δω
2

� Δω
tp

t
�2

þ ω2
1S

s
; (60)

with k ¼ �1 and �2; Iζþ ¼ Iζx þ iIζy (ζ ¼ ZQ or DQ), and m is þ1 for the
ZQ-CP process or �1 for the DQ-CP process.
3.4. Fulfilling the HH matching conditions over the course of a swept pulse

Having derived the relevant Hamiltonians, the time-dependent ZQ
and DQ HHmatching conditions for the swept CPMAS experiment can be
discussed. These can be determined by inspecting the coefficients of the
longitudinal z-terms in Eqs. (43), (54), (55) and (59), for S¼ 1/2, S¼ 1
and S � 3/2 (CT) spins, respectively. A common property of these
equations is the presence of a ZQ-k HH transfer mode, that is satisfied
when the condition νeSðtÞ � ν1I þ kνr ¼ 0 (k¼�1 or �2) is fulfilled.
Likewise, a DQkHH transfer occurs at a time twhen the condition νeSðtÞ þ
ν1I � kνr ¼ 0 (k¼ 1 or 2) is met. These CP conditions are satisfied
whenever the time-dependent conditions that make the IZQz' or IDQz' co-
efficients zero –which are conditions that enable the I-spin to transfer its
polarization. Because of the time-dependent nature of the ωpðtÞ term in
ωeSðtÞ , these matching conditions will be satisfied only for a few instants
over the course of the contact time. This is illustrated in Fig. 5A and B for
I(1/2)-S(1/2) and I(1/2)-S(1) cases, respectively, which show ZQ-k and
DQk HH matching curves calculated for a variety of ΩS=2π offset fre-
quencies under fast MAS rates. Black dots indicate the times at which the
various DQk and ZQ-k matching are satisfied and CP transfer occurs.

Notice from Fig. 5A that as a result of the ωpðtÞ dependence of ωesðtÞ,
both DQ- and ZQ-CP matching conditions can be met twice, at two
different times t1 and t2, throughout the course of a swept pulse.
Depending on Ωs; these time points may or may not fall within the 0 �
t � tp period, and hence, may or may not be relevant to the CP process. If
ΩS=2π ¼ 0, these t1 and t2 points are mirror images of each other across
the center point of the symmetric frequency sweep. If an off-resonance
frequency contribution is considered, these t1 and t2 time points shift
uniformly for the DQ1 conditions to earlier times when ΩS < 0 and to
later times when ΩS > 0: Conversely, if the frequency offset is in the
range of jνr j=2 < jΩSj=2π < jνr j; only a single contact time is found in the
time period 0 � t � tp, with the other appearing at either t > tp (ΩS > 0)
or at t < 0 (ΩS < 0:). For offset-frequencies in the jΩSj=2π > jνr j range,
both CP-contact time points of DQ1 disappear from the physically
meaningful 0 � t � tp window; in their absence, other modes such as
DQ2, ZQ-1, and ZQ-2 may become more significant. Moreover, if param-
eters are optimized to produce an efficient DQ1 mode in the central ΩS �
41
0 spectral region, other modes such as DQ2, ZQ-1, and ZQ-2 will not
contribute to the CP signal transfer within the physically-meaningful 0 �
t � tp mixing interval. Similar considerations can be derived for the
remaining DQ2, ZQ�1 and ZQ�2 transfer modes. One interesting property
is that if CP transfer times are met for ΩS=2π at certain values of ti, those
for �ΩS=2π will be met at tp � ti (Fig. 5A).

Fig. 5B presents simulated results of 1H-2H BRAIN-CPMAS dy-
namics by incorporating several different offset frequencies ΩS=2π (0,
�32; and �60 kHz), and assuming null and non-null quadrupole cou-
plings (νr ¼ 60 kHz). Also illustrated are the fulfillment of DQk (k¼ 1,
2) and ZQ�k (k¼ 1 or 2) conditions, as well as the propagation of the S-
spin spin-locked (Sz) and transverse (Sx) magnetizations, arising from a
situation where these are null at the beginning of the spin-lock when
only Ix polarization exists. Apart from the scaling effects of the 2 andffiffiffi
2

p
coefficients present in the S1=2z and S1=2x operators, respectively,

these predictions are similar to those made for the S¼½ case when
CQ¼ 0. The time points at which CP transfers occur associated with the
ZQ and DQ conditions are clearly connected with I→S transfers of spin-
locked polarization, and time points during the swept pulse period
measured at any arbitrary offset frequencies satisfy the same mirror
image rules as found in the I-S(1/2) case. A major difference worth
noting between the present S ¼ 1 case and the earlier spin-½ analysis,
concerns the appearance of new ZQ0-derived HH transfers. This is as
predicted by Eq. (55): a static-like ZQ0 condition arises for a I-S(1) spin
pair even under a ultrafast spinning rate because of the occurrence of
quadrupolar-driven RF-dipolar recoupling under MAS. It is also note-
worthy that the introduction of CQ 6¼ 0 breaks the symmetry of the
aforementioned transfers of the two time points from each CP mode
(middle row in Fig. 5B). For instance, while the polarization transfers
at two symmetric time points that satisfy the DQ1 condition are clearly
visible when CQ¼ 0 for the on-resonance case, an attenuation at the
later time point is noticeable in the presence of a larger magnitude of
CQ (¼ 168 kHz). This may help to create non-zero Sz polarization at the
conclusion of the swept pulse.

As in the previous two cases, time-dependent ZQ- and DQ-HH
matching conditions can be found from the I→S(CT; S � 3=2) dynamics
over the entire contact time during the course of the frequency swept
pulse. A ZQ�k (k¼ 1 or 2) HH matching condition is satisfied when the
effective frequency, νeSðtÞ – which depends on ν1S; Ωs, ωpðtÞ, and the
orientation-dependent second-order quadrupolar frequency Ωc�t

Q;SðtÞ–
instantaneously satisfies ν1I � νeSðtÞ ¼ �kνr : In a similar manner, a DQk
(k¼ 1 or 2) HH matching condition is met when νeSðtÞ satisfies ν1I þ
νeSðtÞ ¼ kνr . A difference, however, now stems from the presence of the
second-order quadrupolar terms in the effective offset frequency νeSðtÞ;
that is instrumental in defining these HH matching conditions (Eqs. [59]
and [60]). Moreover, the non-vanishing, MAS-averaged, second-order
quadrupolar effects [89] impose powder angle dependencies of the
EFG tensor on the ZQ- and DQ-matching conditions. Fig. 6 shows nu-
merical simulations of I→ S(CT; S¼ 3/2) BRAIN-CPMAS profiles derived
from these considerations. These simulations incorporate parameters for
an isolated I-S pair that are taken from 1H-11B BRAIN-CPMAS experi-
ments on sodium tetraborate decahydrate (vide infra), assuming moder-
ately fast νr ¼ 25 kHz. Fig. 6A shows the ZQ- and DQ-HH conditions
revealed as a function of the I-spin RF strength (ν1IÞ for a fixed ν1S.
Because of the orientation-dependent quadrupolar frequency dispersion
in νeSðtÞ , numerous local maxima and minima showing positive and
negative signal enhancements of the CTC arise. Still, the ZQ-1, ZQ-2, DQ1,
and DQ2 conditions are all clearly visible in this RF field profile, with the
signal enhancements from ZQ- and DQ-HH matching conditions pos-
sessing the expected opposite signs. Illustrated in Fig. 6B and E are the
time-dependent transfer dynamics of Ix, Sx, and Sz for the (B) DQ1, (C)
DQ2, (D) ZQ-1, and (E) ZQ-2 conditions found in Fig. 6A. In these cases,
the spin-locked (Sz) and transverse (Sx) states are null at the beginning of
the swept pulse, with all polarization at Ix. As the offset of the S-spin RF
changes over the duration of the swept pulse, the magnetization of the



Fig. 5. CP transfer and RR inversion conditions calculated for a swept BRAIN-CPMAS for a spin pair of (A) I(1/2)-S(1/2) (νr ¼ 65 kHz; Δν ¼ 110 kHz; tp ¼ 10ms; ν1S ¼
45 kHz; ν1I ¼ 17 kHz) and (B) I(1/2)-I(1; 2H) (νr ¼ Δν ¼ 60 kHz; tp ¼ 8ms; ν1S ¼ 5 kHz; ν1I ¼ 47 kHz). Shown in the top rows in (A) and (B) are various types of DQ
(red line) and ZQ (magenta line) matching conditions shown at the specified ΩS offsets in terms of the time points (zero crossing conditions) at which CP signal
transfers occur. Also shown are curves showing the positions that satisfy the RR condition νeSðtÞ ¼ νr , occurring during the CP mixing time in the presence of an S-

spin's (A) CSA (δcsa ¼ 18 kHz, η¼ 0) and (B) Hð1Þ
Q;S (CQ¼ 168 kHz, η¼ 0; δcsa ¼ 0.92 kHz). Time propagations of an initial Ix state (blue) and of the CP-enhanced Sx

(green) and Sz (red) polarizations, recorded with (middle row) and without (bottom row) the inclusion of CSA (A) and CQ (B) effects. Notice the sign inversion of the
CP-enhanced S-components occurring at the time points at which a RR condition is satisfied – but only when CSA and/or CQ is included. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of this article.)
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spin-locked state grows gradually, via HH transfers associated with the
DQk and ZQ�k (k¼ 0, 1 or 2) conditions.

While similar mechanisms are active in BRAIN-CPMAS in the I-S(CT;
S�3/2) case as in the I-S(1/2) and I-S(1) cases, there are a number of
peculiarities in the dynamics, as shown in Fig. 7. These include: (1) RF

scaling effects coming from the coefficient 2 in front of the S1=2x oper-
ator; (2) the absence of sharp Sz or Sx buildup points associated with the
fulfillment of �νeSðtÞ � νeI 
 kνr ¼ 0 (k¼ 1 or 2) conditions throughout
the powdered sample; (3) the fact that polarization accrued by the S-
spin during the BRAIN-CP process stays mainly as a longitudinal
magnetization Sz without developing any significant transverse com-
ponents, Sx and Sy (only Sx is shown in the figure); and (4) the fact that
the CP-enhanced Sz magnetization does not oscillate back to Iz (at least
to some extent) during the CP mixing period, even though a single I-S
pair is being considered. The last three of these features can be attrib-
uted to the presence of a distribution of second-order quadrupolar
anisotropic frequencies, Ωc�t

Q;SðtÞ; in νeSðtÞ . Because of these anisotropic
42
shifts, the �νeSðtÞ � νeI 
 kνr ¼ 0 conditions are met at different times
over the course of the swept pulse for different crystal orientations,
resulting in a spread of the HH transfer processes throughout the 0-tp
time period. Consequently, one does not observe any specific time
points that are explicitly associated with ZQ or DQ conditions. This
“spreading effect” associated with Ωc�t

Q;S also “washes out” the oscillating
features of Sz magnetization transferred during the course of the BRAIN-
CPMAS process, which therefore never returns back to Iz to any
appreciable extent.
3.5. Onset of CSA- and quadrupolar-driven rotary resonance effects

An unusual aspect of BRAIN under MAS concerns the complex sign
inversion behavior of the S-spin polarization that arises at the
conclusion of the WURST pulse in BRAIN-CPMAS experiments due to
rotary resonance (RR) effects. These complexities are illustrated in
Fig. 5A and B, which show the time-dependent Ix (blue), Sx (green),



Fig. 6. CTC BRAIN-CPMAS transfer dynamics simulated for an isolated I(1/2)-S(3/2) spin pair with a dipolar coupling constant of 8 kHz. Simulations were carried out
with CQ¼ 8MHz (ηQ ¼ 0Þ, ν0I ¼ 600MHz, ν0S ¼ 160.4 MHz, and ν1S ¼ 8 kHz, while varying ν1I intensity. The WURST pulse parameters employed were Δν ¼ 10 kHz
and tp ¼ 10ms. Time propagations of the initial Ix state (blue) and of the CP-enhanced Sx (green) and spin-locked Sz (red) polarizations of the S central transition are
represented. Demonstrated are (A) the DQk and ZQ-k (k¼ 1 or 2) HH conditions found as a function of ν1I for a fixed ν1S(8 kHz), and the (B) DQ1, (C) DQ2, (D) ZQ-1, and
(E) ZQ-2 signal transfer dynamics. Simulations were carried out assuming on-resonance irradiation for I and a symmetric sweep about the S-spin CT second-order
isotropic quadrupolar shift. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 7. Experimental (A) 13C and 1H (measured on [1–13C] Gly),
(B) 2H and 1H (measured on glycine-2,2-d2), and (C) 11B and 1H
(measured on sodium tetraborate decahydrate) signal intensities
obtainedduring the optimizationof the BRAIN-CPMAS sequence
by varying S (13C, 2H, or 11B) and I (1H) RF channel intensities.
The optimal RF fields for experiments were set at: (A)
ν1S(13C)¼ 45� 4 kHz and ν1I(1H)¼ 17� 5 kHz at νr ¼ 65 kHz;
(B) ν1S(2H)¼ 8 � 4 kHz and ν1I(1H)¼ 47� 5 kHz at νr
¼ 60 kHz; (C) ν1S(11B)¼ 5 � 3 kHz kHz and ν1I(1H)¼ 55�
5 kHz at νr ¼ 31 kHz. RF fields at the local maxima for other CP
modes are also indicated, as derived from individual 90� pulse
calibrations. The WURST pulse parameters employed were: (A)
Δν ¼ 110 kHz and tp ¼ 10ms; (B) Δν ¼ 60 kHz and tp ¼ 8ms;
(C) Δν ¼ 25 kHz and tp ¼ 4ms. The maximum experimental CP
efficiency is obtained by DQ1 mode for (A) and (B), and by DQ2

mode for (C).
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and Sz (red) transients involved in the CPMAS signal transfer dynamics
in the presence of S-spin CSA (5A) and quadrupolar interaction (5B).
Examination reveals that in the presence of even a small CSA or first-
order quadrupolar interaction, a significant phenomenon begins to
affect the swept-CP MAS experiment: this is the presence of �Sz → 
Sz
inversions, introducing in turn reversals in the phases of the S-peaks
polarized over the course of this process. These changes in the peak
phases are associated to MAS-driven RR effects [93,94]. With RR as a
new mechanism capable of morphing a spin-locked magnetization
parallel to the effective S-field into an “anti-spin-locked” state (and
vice versa), one needs to consider how this factors into the signs of the
S-spin polarizations that may have formed throughout the
BRAIN-CPMAS process. Fig. 5 facilitates this, by illustrating the time
points that satisfy the νeSðtÞ ¼ νr RR condition for a series of frequency
offsets and parameters like those utilized above for calculating the
swept CPMAS matching conditions. Highlighted in Fig. 5A and B are
the RR time points that fall in the 0 � t � tp range. Notice then that if a
S-spin component has been generated by CP, it will be inverted by the
CSA (5A) or quadrupolar interaction (5B) if this creation happened
prior to a RR-driven S-spin event, but will remain spin-locked other-
wise. Notice as well that for some offsets (e.g., the fourth column in
Fig. 5A, ΩS=2π ¼ 15 kHz), RR occurs before the HH transfer events,
resulting in non-inverted signals after the CP event itself. Thus, curves
calculated with ΩS=2π ¼�15 kHz (the second column in Fig. 5A) and
with ΩS=2π ¼ 15 kHz (the fourth column in Fig. 5A) possess Sz po-
larization with opposite signs at the completion of the CP mixing; by
contrast, when the CSA interaction is not included, they have an
identical signs. For other ΩS=2π offsets (e.g., ΩS=2π ¼ � 32.5 kHz in
Fig. 5A) the RR inversion occurs after transfer events like DQ1,
resulting in an inversion of the CP signals. These features are clearly
visible from the time-dependent Sx and Sz transients in Fig. 5A.
Moreover, for the on-resonance case, two time points may satisfy the
RR condition; since two inversions are the same as no inversion, there
are no RR-driven effects on the final CP signal. These RR-driven effects
can be generalized to arbitrary offset-frequencies. It then follows that,
in general, the sign of Sz obtained upon sweeping around a particular
Ωs, will be 180� out-of-phase to that obtained from sweeping around
–Ωs. Thus, in the presence of CSA, the Sz states calculated at �Ωs are
placed on the opposite hemispheres in the FM frame. This RR inversion
effect takes place even when a CSA of small magnitude is present (even
those small enough to have any manifestations of CSA effectively
averaged from by MAS). Still, the effects of RR on the final state of the
spin-locked magnetizations are remarkable but easily understandable.

These RR inversion phenomena can also be driven by modulations
arising from the first-order quadrupolar interaction, yet they will not play
an important role when sweeps are chosen such that Δν � νr and/or the
ΩS=2π offsets are small (Fig. 5B). However, they become noteworthy
when the frequency offset becomes significant (e.g.,ΩS=2π ¼ � 60 kHz).
Interestingly, the presence of the Ωc�t

Q;SðtÞ term in νeSðtÞ obscures this
phenomenon somewhat; this is evident in the I→S(1/2) and I→S(S¼ 1)
cases [24,43]. Once again, second-order broadenings spread out this
condition, implying that there will exist no singular time point over the
course the adiabatic frequency sweep where the spin-locked S-spin po-
larization is suddenly inverted due to a RR condition.
2 For quadrupolar nuclei, S� 1; as can be inferred from the simulation data
shown in Figs. 2 and 3, the choice of Δν and ν1 are very critical to satisfy this
condition by avoiding the adiabatic level crossing effects. For S� 3=2 case, this
condition is even more restrictive due to the presence of Ωc�t

Q (t) in the coeffi-

cient of IζZ .
3.6. Analytical time propagation of the spin ensemble throughout the
BRAIN-CPMAS transfer

The rotationally-averaged Hamiltonians in Eqs. (43), (54) and (59)
derived for S¼ 1/2, 1, and � 3=2 cases respectively, as well as the static-
like Hamiltonian in Eq. (55) for S¼ 1, not only allow one to rationalize
the behavior observed in numerical simulations, but also to analytically
propagate the spin density matrix throughout the course of the
frequency-swept pulse. Starting from a ρðt ¼ 0Þ ¼ Iz ¼ IDQz � IZQz state,
the spin polarization obtained from CP on the spin locked S-channel at a
45
time tp, given by Sz in the FM frame, is described by Ref. [91].

Sz
�
tp
� ¼ trace

�
IDQz UDQ

�
tp
�
IDQz Uy

DQ

�
tp
�� trace

�
IZQz UZQ

�
tp
�
IZQz Uy

ZQ

�
tp
�

(61)

with

Uζ

�
tp
� ¼ exp

0@� i
Z tp

0
dt
��
Hζ

T

�
av
ðtÞ�
1A; (62)

where ζ stands for a DQ- or ZQ-coherence. As the Iζz and Iζþ terms in hHζ
Tiav

do not commute, Eq. (62) must, in principle, be evaluated numerically.
However, if the adiabaticity of the WURST pulse employed is sufficiently
high and the dθsðtÞ=dt ≪ 1 condition is satisfied, one can assume that
perturbations in θSðtÞ are negligible, and hence, the angle between the S-
spin magnetization and the effective field remain constant.2 In such a
case, an approximate average Hamiltonian over the whole mixing time,

hHζ
TiavðtÞ ¼ 1

tp

Z tp

0
hHζ

TiavðtÞdt may be obtained, by integrating Iζz and Iζþ

terms separately [44]. This treatment can be justified by considering the
mechanism of polarization transfer for which the adiabaticity of the pulse
employed fulfills dθsðtÞ=dt ≪ 1: Then, perturbations in θSðtÞ can be
neglected and the angle between the spin magnetization and effective
field assumed constant. In this case, the spins' evolution operator, Eq.
(62), can be approximated as

Uζ

�
tp
� ffi exp

�
� itp

�
Hζ

T

�
avðtÞ

�
¼ exp

�
iϕζIζz

�
exp


iθζIζy

�
exp
��iψζIζz

�
exp


�iθζIζy

�
exp
��iϕζIζz

�
:

(63)

Eq. (63) represents a rotation in fζg subspace through an angle ψζ

about an axis whose orientation is described with a polar angle set
(θζ, ϕζ). Given these separate fictitious-spin-½ rotations, evaluation of Eq.
(61) leads to

Sz
�
tp
� ¼ sin2

�
θZQ
�
sin2
�
1
2
ωZQ

eff tp

�
� sin2

�
θDQ
�
sin2
�
1
2
ωDQ

eff tp

�
; (64)

where

ωζ
eff ¼ ψζ

	
tp ¼

ffiffiffiffiffi
Γζ

p
; (65)
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Π0 ¼ 1
2Δω

8<:
�
ΩS þ Δω

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

1S þ
�
ΩS þ Δω

2

�2
s

�
�
ΩS � Δω

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

1S þ
�
ΩS � Δω

2

�2
s 9=;; (68)

and



S. Wi et al. Solid State Nuclear Magnetic Resonance 94 (2018) 31–53
ω2
1S

><�ΩS þ Δω
2

�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

1S þ
�
ΩS þ Δω

2

�2q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq >=
Π1 ¼ 2Δω
ln

8
>:�ΩS � Δω

2

�þ ω2
1S þ

�
ΩS � Δω

2

�2
9
>;: (69)

In Eq. (67), Λk ¼ bk for the S¼ 1/2 and � 3/2 cases. Under these
simplifications, the behavior for a quadrupolar nucleus will be identical
to that derived earlier for S¼½ [68], except that the additional
quadrupole-driven k¼ 0 ZQ-CP condition and the spin-dependent factors
serve to scale the effects of the RF nutation rate.

4. Materials and methods

4.1. Numerical calculations

All simulations in this study were performed in the time-domain with
full Hamiltonians for each I-S spin case, without any approximations
other than the usual rotating frame transformation. These calculations
were carried out by using in-house programs written in Matlab® (The
Mathworks Inc). Evolutions of density matrices were evaluated numeri-
cally by considering piecewise time increments in steps of 2 μs to take
into account the variations of the amplitudes and phases of the RF pulses,
as well as the MAS-driven rotational modulations of dipolar, CSA, and/or
quadrupolar interactions. An isolated S-spin with anisotropic NMR in-
teractions was considered for examining the inversions of longitudinal
magnetizations, the lineshapes of spinning powders, as well as for
considering the RR inversion effect. The actual CP process was examined
by considering an isolated I-S (S¼ 1/2, 1, or � 3=2) spin pair in the
presence of a suitable MAS-modulated dipolar Hamiltonian. Powder
averaging calculations of the S-spin's CSA and quadrupolar interactions
as well as of the I-S dipolar coupling interaction were carried out by
considering the 6044 and 1154 crystal orientations of the ZCW's Euler
angle sets [95], assuming axially symmetric dipolar, CS, and EFG tensors
for simplicity (in all cases, the relative tensor orientations are described
by assuming that the principal components of largest magnitude from
each tensor are coincident).
4.2. Experimental

BRAIN-CPMAS experiments were conducted on powdered samples of:
1) [1–13C] Gly and [U-13C] Gly for examples of I-S(1/2) systems; 2)
glycine-2,2-d2 and L-tyrosine-(phenyl-3,5-d2)⋅HCl for I-S(1) systems; and
3) sodium tetraborate decahydrate and sodium citrate dehydrate for I-
S(3/2) spin systems. All samples were purchased from Sigma-Aldrich (St.
Louis, MO) and used without further treatment except L-tyrosine-(phenyl-
3,5-d2)⋅HCl that was dissolved in 1M hydrochloric acid and recrystal-
lized by slow evaporation before use. All experiments were carried out at
room temperature, in 11.7 T and 14.1 T magnets equipped with Bruker
Avance consoles operating at 1H frequencies of 500.23MHz and
600.92MHz, respectively (13C frequencies of 125.80 and 150.45MHz,
respectively). A 2.5mm Bruker MAS NMR probe was used at 11.7 T for
obtaining a moderate MAS rate, νr ¼ 25–31 kHz; a 1.3mm Bruker MAS
NMR probe at 14.1 T provided an “ultrafast” MAS rate, νr � 50 kHz.
About 2–3mg and 7mg of sample were packed into 1.3 mm and 2.5mm
Bruker MAS rotors, respectively. The swept RF pulse shapes were con-
structed by utilizing the shaped pulse tool of the Bruker Topspin® soft-
ware. The WURST pulse employed in the BRAIN-CPMAS experiments
utilized an amplitude-modulated profile ν1sð1� cos40½πt=τp�Þ and a phase
modulation that results in a linear frequency sweep between 2000 data
points were employed to digitize these WURST pulse shapes. Suitable
frequency sweep windows (Δν) and CP mixing times (tp) were chosen to
cover ranges from 20 to 400 kHz and 2–14ms, respectively. Optimal CP
pulse parameters were found to be: 1) Δν¼ 60–110 kHz (< 2νr) and tp
¼ 10ms for 13C-labeled compounds at νr ¼ 60–65 kHz; 2) Δν¼ νr ¼
60 kHz and tp ¼ 8ms for 2H-labeled compounds at νr ¼ 60 kHz; 3)
Δν¼ 15 kHz and tp ¼ 8ms for 23Na and 11B experiments at νr ¼
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25–31 kHz. Optimal 1H and S (13C, 2H, 23Na, and 11B) RF power condi-
tions were sought experimentally by sweeping both RF channels inde-
pendently and iteratively for 2 or 3 times.

For comparison, conventional CPMAS NMR experiments were also
carried out with independent optimizations, employing either square-
shaped or ramped (90%–110%) spin-lock pulses on the 1H channel
while simultaneously applying a rectangular spin-lock pulse on the S
channel (13C, 2H, 23Na, or 11B). The mixing times used in these CPMAS
experiments were between 0.5 and 2.5ms, based on optimizations. All
CP spectra were acquired by co-adding 4 transient signals with a 5 s
recycle delay. SPINAL-64 [96] proton decoupling was used during the
direct acquisition period, with a 100 kHz decoupling power. In addition,
a low-power decoupling sequence, (XiX)45 [97], was also utilized in 2D
13C-13C EXSY experiments under ultrafast MAS spinning rates.

5. Results

The aim of our experiments was to verify the various phenomena
introduced in Figs. 5–6, and in particular, the offset dependent, broad-
band BRAIN-CPMAS profile for each spin pair at fast spinning rates. For
comparison, both BRAIN- and conventional ramped HH-CPMAS experi-
ments were conducted at identical MAS spinning rates for a model
compound, [1–13C] Gly, under optimal ν1S and ν1I RF field strengths after
individual optimizations. For optimizing RF pulse strengths for the
BRAIN-CPMAS experiments, sets of ν1I and ν1S amplitudes were experi-
mentally tested under a fixed set of Δν, tp, and νr parameters, as shown in
Fig. 7 (data for the RF field strength optimizations of the ramped HH-
CPMAS experiments are not shown). In Fig. 7A, optimal 13C and 1H RF
amplitudes for the I(1H)-S(13C) BRAIN-CPMAS experiment with νr ¼
65 kHz were determined experimentally by independently varying ν1I
and ν1S, while employing WURST pulse parameters Δν¼ 110 kHz and tp
¼ 10ms (ψ0¼ 0�). The y-axes of the various plots are scaled relative to
the largest absolute magnitude, which is normalized to one. The optimal
13C and 1H RF fields (i.e., those yielding the largest signal) found were
with ν1S(13C)¼ 45 � 4 kHz and ν1I(1H)¼ 17 � 5 kHz at νr ¼ 65 kHz,
satisfying the DQ1 CP mode (ν1H þ νeC ¼ νrÞ. In a separate set of mea-
surements employing aMAS rate of νr ¼ 25 kHz at 11.7 T, the optimal 13C
RF field was found at 20 kHz while the optimal 1H RF fields were 42 kHz
(ZQ-1; ν1H ¼ νr þ νeCÞ and 65 kHz (ZQ-2; ν1H ¼ 2νr þ νeCÞ (data not
shown). In this case, the WURST pulse parameters employed for the
experiments were Δν¼ 48 kHz and tp ¼ 10ms (ψ0¼ 0�). As can be
deduced from these data, the ZQ CP mode is dominant at low MAS
spinning rate, but when MAS spinning rate is increased, the DQ CP mode
becomes dominant.

Fig. 7B shows the optimal ν1I(1H) and ν1S(2H) RF field strengths
determined for the I-S(1) BRAIN-CPMAS, using partially deuterated
glycine-2,2-d2 as a model compound. For νr ¼ 60 kHz, an optimal 2H RF
field ν1S was found at 8�4 kHz, when ν1H was set at 47�5 kHzwithΔν¼
νr ¼ 60 kHz and tp ¼ 8ms; this mode is also corresponds to the DQ1 CP
mode. Other CP modes are visible in the RF pulse sweep profiles, such as
DQ2 (ν1H ¼ 116�5 kHz; ν1S ¼ 8�4 kHz) and ZQ-1 (ν1H ¼ 78�5 kHz;
ν1S ¼ 8�4 kHz); however, these are not as efficient as the DQ1 mode.
Fig. 7C shows the optimal ν1I(1H) and ν1S(11B) RF field strengths deter-
mined for I(1H)-S(11B) BRAIN-CPMAS, using sodium tetraborate deca-
hydrate as a model compound. Under a moderately fast spinning rate of
νr ¼ 31 kHz, an optimal 11B RF field was found at 5�3 kHz when ν1I(1H)
was set to 55 �2 kHz, with Δν¼ 15 kHz and tp ¼ 4ms (this corresponds
to the DQ2 condition). Other modes visible in the ν1I(1H) sweep profiles,
such as DQ1 (ν1I ¼ 26 � 3 kHz; ν1S ¼ 5 � 3 kHz), ZQ-1 (ν1I ¼
35 � 3 kHz; ν1S ¼ 5 � 3 kHz) and ZQ-2 (ν1I ¼ 65 � 3 kHz; ν1S ¼
5 � 3 kHz), were not as efficient as the DQ2 mode.

The broadband nature of the BRAIN-CPMAS method was tested on an
I(1H)-S(13C) system, and compared to a ramped HH-CPMAS pulse
sequence at moderately fast and ultrafast MAS rates, while varying the
13C offset frequencies (Ωs), while using the optimal ν1H and ν1C



Fig. 8. Experimental ΩC-dependent CP profiles of BRAIN- and conventional CPMAS methods measured on [1–13C] Gly at MAS rates of νr ¼ 25 kHz (A) and νr ¼
65 kHz (B) with the optimized ν1C and ν1H values as shown in Fig. 7a: for BRAIN-CPMAS ν1H ¼ 17 kHz and ν1C ¼ 45 kHz in the case of νr ¼ 65 kHz, and ν1H ¼ 42 kHz
and ν1C ¼ 20 kHz in the case of νr ¼ 25 kHz. For CPMAS, a separate optimization experiment was carried out for both rectangular version and a ramped version with a
mixing time of 2ms. The optimal HH-CPMAS conditions thus were found were: ν1H ¼ 112 kHz (rectangular) and 148 kHz (ramped) in the case of νr ¼ 65 kHz; ν1H
¼ 44 kHz (rectangular) and 82 kHz (ramped) in the case of νr ¼ 25 kHz. The same ν1C (¼ 45 kHz) was used as the BRAIN-CPMAS method in each case of MAS rate.
Spectra were collected in ΔΩS ¼ 1.5 kHz (10 ppm) increments to simulate the effects of sites with varying offsets. Included in (C) are expanded versions of (B) to better
view the central ΩC range, with the BRAIN inset's negative peaks multiplied by �1 in order to better appreciate the CP dip.
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conditions shown in Fig. 7A. As proof-of-principle, CPMAS performance
was evaluated between �400 and þ 500 ppm 13C offset ranges for
νr ¼ 25 kHz, and between �1000 and þ 1100 ppm for νr¼ 65 kHz.
Spectra arising from BRAIN-CPMAS experiments on [1–13C] Gly under
moderate (νr ¼ 25 kHz) and fast (νr ¼ 65 kHz) MAS rates, are shown in
47
Fig. 8A and B, respectively. A single vertical line in each profile corre-
sponds to a CP spectrum measured at a particular 13C frequency offset
(spectra are free from CSA-derived spinning sidebands because of the fast
MAS rates employed). Also included in Fig. 8A and B are the offset-
dependent profiles of HH-CPMAS experiments based on the
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conventional spin-lock pulse on the 13C channel, while employing either
a rectangular or ramped pulse on the 1H channel. In these HH experi-
ments, the same ν1C value as in the BRAIN-CPMAS experiment was used,
while employing an optimal ν1H that was found by sweeping the latter's
strength in the of 10–200 kHz range. It is clear that at moderate MAS
rates (νr¼ 25 kHz), the BRAIN-CPMAS method does not possess an
advantage over conventional or ramped HH-CPMAS methods. However,
when νr ¼ 65 kHz, the BRAIN-CPMAS method provides polarization
transfers over a far broader range of frequency offsets (over 285 kHz in
this case). For the central frequency region, the best CP modes corre-
spond to DQ1, ZQ-1, and ZQ-2 for the BRAIN-, rectangular HH-, and
ramped HH-CPMAS experiments, respectively. The bandwidth of the DQ1
mode in the BRAIN-CPMAS profile is about j2νr j, which reaches 130 kHz
when νr ¼ 65 kHz. Even if only this central DQ1 mode is considered, the
ensuing bandwidth of cross-polarization is far wider than what is ach-
ieved by the ramped HH-CPMAS method. The signal intensity of the DQ1
mode of the BRAIN-CPMAS method is comparable to that of rectangular
HH-CPMAS; although its bandwidth is narrower, the ramped HH-CPMAS
method provides the highest signal intensity among all the cases for
frequencies that are close to the on-resonance position. An interesting
feature displayed by all the BRAIN-CPMAS profiles is the presence of an
overall anti-symmetry about Ωs � 0; this is due to the afore-mentioned
Fig. 9. BRAIN-CPMAS, ramped HH-CPMAS, and direct excitation MAS 2H spectra of
each rate are the CP modes involved, and (in red) the relative intensities of the integra
spectra are shown with equally normalized vertical scales, for equal gains, and same n
simulated for the corresponding spinning rates. Every experimental spectrum was o
fields for the DQ1 BRAIN-CPMAS acquisition and for the ZQ1 of HH-CPMAS spectr
optimized condition, ZQ1 mode, for the ramped HH-CPMAS experiment at νr ¼ 60 k
experimental spectra were obtained by coadding 128 transients with a 4 s recycling de
is referred to the Web version of this article.)
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RR inversion effects that occur when the matching condition νeC ¼ νr is
met. Fig. 8C shows a magnified view of the central portion of Fig. 8B,
with the phases of peaks possessing reversed intensities in the BRAIN-
CPMAS profile multiplied by �1 to better compare the overall profile
to the HH-CPMAS results. It is worth noting that similar RR effects were
also observed with other types of frequency-swept pulses, such as those
featuring hyperbolic secant phase modulation [44].

For evaluating the effectiveness of the various 1H-2H CPMAS
methods, Fig. 9 compares BRAIN-CPMAS, ramped HH-CPMAS and
directly excited 2H spectra of glycine-2,2-d2 with MAS rates of 40, 50 and
60 kHz. Also included for comparison on the bottom panels are ideal 2H
MAS lineshapes of a 2H site simulated with CQ¼ 168 kHz. Both BRAIN-
CPMAS and ramped HH-CPMAS NMR spectra were acquired after opti-
mizations of ν1S and ν1H for each spinning rate according to the strategy
described in Fig. 7. The number shown beside each spectrum represents
the relative integrated intensity of the isotropic centerband and spinning
sideband manifolds, as compared to the DQ1 mode spectrum arising from
HH-CPMAS, whose centerband possesses the strongest intensity for every
MAS rate and whose height has been used to normalize the intensities of
all the remaining spectra. Notice that although both DQ1 and ZQ-1 HH-
CPMAS modes are included in this comparison, only the DQ1 BRAIN-
CPMAS condition is presented, as this provides the highest intensity
glycine-2,2-d2 at spinning rates νr ¼ 40 (A), 50 (B) and 60 (C) kHz. Indicated for
ted sideband manifolds. Except for the indicated 90� direct excitation panels, all
umber of scans. The bottom spectrum in each column is an ideal MAS lineshape
btained by independently optimizing 1H and 2H RF fields. For instance, the RF
um at νr ¼ 60 kHz are as given in Fig. 7b; see text for additional details. The
Hz was ν1S ¼ 73 � 4 kHz and ν1I ¼ 130 � 5 kHz with a mixing time of 2ms. All
lay. (For interpretation of the references to color in this figure legend, the reader



Fig. 10. BRAIN-CPMAS (red), ramped CPMAS (blue),
and direct excitation (black) MAS 11B and 23Na
spectra of sodium tetraborate decahydrate and 23Na
spectra of citrate dehydrate at spinning rates νr ¼
31 kHz and 25 kHz, respectively. The experimental
parameters used for BRAIN-CPMAS in each case are:
(A) the same parameters as introduced in Fig. 7c; (B)
tp¼ 4ms, DQ1 mode (ν1S ¼ 14 kHz, ν1I ¼ 4.7 kHz);
(C) tp¼ 2ms, ZQ-2 mode (ν1S ¼ 30 kHz, ν1I ¼ 85 kHz).
The experimental parameters used for the ramped
HH-CPMAS were based on individual optimizations in
each case (conditions are not shown). Directly excited
11B and 23Na MAS spectra were also acquired via the
application of a 90� pulse on the S-channel (11B and
23Na) and subsequent 1H decoupling (bottom spectra
in black color in each column). The relative signal
intensities are indicated by the numbers, established
by placing the signal intensity of the directly excited
spectrum as 100. Every spectrum was obtained by
coadding 1024 transients with a 30 s recycle delay.
Simulations of ideal spectra are included in the top
two rows in (A). (For interpretation of the references
to color in this figure legend, the reader is referred to
the Web version of this article.)

Fig. 11. Comparisons between the experimental and theoretical ΩC-dependent
CP profiles observed for [1–13C] Gly from the BRAIN- (A) and conventional
CPMAS (B) experiments measured at a MAS rate νr ¼ 65 kHz. The theoretical
profiles in (A) and (B) show cross-sections taken at the optimal ν1C values from
the corresponding 2-dimensional (2D) ΩC-ν1C map taken at ν1C ¼ 37.2 kHz and
ν1C ¼ 48 kHz, respectively, that match the DQ1 mode of each case at the central
region, with ν1H ¼ 17 kHz and νr ¼ 65 kHz (tensor parameters employed in
both simulations were: bIS¼ 23 kHz; δcsa ¼ 40 ppm, ηCSA¼ 0.3). Experimental
CPMAS profiles are taken from Fig. 8b. The theoretical profile shown in (A) with
a red line depicts the theoretical BRAIN-CPMAS profile expected when
neglecting CSA-driven RR effects. Both the experimental and simulated spectra
of the BRAIN-CPMAS case shown in (A) are the same DQ1 mode. However, the
experimental HH-CPMAS spectra that were compared to the simulated DQ1

mode in (B) correspond to ZQ1 (rectangular; ν1H ¼ 112 kHz, ν1C ¼ 48 kHz) and
ZQ2 (ramped; ν1H ¼ 148 kHz, ν1C ¼ 48 kHz) modes that were found indepen-
dently by experimental optimizations. (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of
this article.)
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and best lineshape, even while employing the smallest 2H RF amplitudes.
Features to notice from these comparisons are: (i) The centerband ob-
tained from HH-CPMAS DQ1 mode is the highest at every νr , and
although this does not hold when considering the overall integrated in-
tensity from the isotropic centerband and spinning sidebands, the spec-
trum's appearance is dominated the isotropic centerband only. (ii) The
BRAIN-CPMAS DQ1 condition yields MAS sideband patterns at every
spinning rate that are in excellent agreement with ideal simulations; the
experimental conditions in each case feature relatively small 1H and 2H
RF fields (e.g., ν1S ¼ 8 �4 kHz and ν1H ¼ 47 �4 kHz for νr ¼ 60 kHz).
(iii) Although the ZQ1 mode of HH-CPMAS method also provides an MAS
sideband pattern that matches relatively well with simulations, it does so
at the expense high RF amplitudes for both 1H and 2H channels (e.g., ν1S
¼ 73 �4 kHz and ν1H ¼ 130 �5 kHz for νr ¼ 60 kHz).

Fig. 10 compares BRAIN-CPMAS, ramped HH-CPMAS and directly-
excited (a) 11B and (b) 23Na MAS spectra of sodium tetraborate deca-
hydrate, and (c) 23Na MAS spectra of citrate dihydrate. The number next
to each spectrum represents the relative peak intensity of the spectrum.
The peak intensity of the directly excited spectrumwas set at 100 for each
nuclide, and the peak intensities of the other spectra obtained by the
BRAIN-CPMAS and HH-CPMAS methods are compared with respect to
this directly excited spectrum. When two peaks occur in one spectrum,
they are described based on the intensity of the larger peak. Among many
different CP modes producing signals in the BRAIN-CPMAS and HH-
CPMAS spectra, only those yielding the highest intensities are included
in these comparisons: for instance, DQ2 for BRAIN-CPMAS and ZQ2 for
HH-CPMAS in (A). Also included in the top two rows in Fig. 10A are
simulations of the idealized quadrupolar patterns based on the known
parameters (CQ¼ 1.8MHz, ηQ¼ 0.6; CQ¼ 7.8MHz, ηQ ¼ 0:1Þ [98]. A
good match between experiment and simulation is observed for the
BRAIN-CPMAS spectrum in (A), which has lower SNR but fewer distor-
tions than its ramped HH-CPMAS counterpart. Also note that the 1H and
11B RF amplitudes are very small for this BRAIN-CPMAS spectrum
(ν1I[1H]¼ 55 kHz; ν1S[11B]¼ 5 kHz) in comparison to those used in the
HH-CPMAS case. From the spectra shown in Fig. 10B and C, the relative
increases in signal intensity in the BRAIN- and HH-CPMAS spectra are
comparable. Furthermore, both BRAIN-CPMAS and HH-CPMAS spectra
of sodium tetraborate decahydrate possess higher signal intensities than
their directly polarized counterpart, in accordance with the observations
by Harris and Nesbitt [98].

To further evaluate these experiments, offset- (ΩS � ) dependent 2D
BRAIN-CPMAS and HH-CPMAS profiles were numerically simulated,
49
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seeking their variation with ν1S (along the horizontal x-axis) and with ΩS

(in the vertical-y axis). Then, an 1D slice can be taken at a specified
ν1S-value from a 2D ν1S-Ωs plot, and compared with experimental BRAIN-
or HH-CPMAS profiles [68]. For the simplest I(1/2)-S(1/2) case, these
experimentally obtained offset-frequency profiles could be compared
against analytical predictions arising from the average Hamiltonian
theory described in Section 3.6. Shown in Fig. 11A is the 1D slice
calculated analytically by employing ν1H ¼ 17 kHz, 37 kHz � ν1C � 42
kHz, and νr ¼ 65 kHz, compared against the experimental BRAIN-CPMAS
profile measured for [1–13C] Gly (see Fig. 8B). Shown in Fig. 11B is a
comparison of experimentally obtained ramped and rectangular
HH-CPMAS profiles with the simulatedΩs-dependent CP profile expected
under a HHmatch with an optimized value of ν1C ¼ 48 kHz, ν1H ¼ 17 kHz
and νr ¼ 65 kHz. As can be seen from Fig. 11A, the CP model introduced
earlier together with the RR inversion explains the overall shape and
frequency positions of the Ωs-dependent CP profile.

Fig. 12A shows the offset dependence of the BRAIN-CPMAS pulse
sequence, as explored by collecting a series of spectra under DQ1
matching conditions when ΩS ¼ 0, as a function of the 2H centerband
offset vs. the width of the adiabatic pulse sweep. Three different spinning
50
rates (νr ¼ 40, 55, and 60 kHz) were utilized, while setting Δν ¼ νr in
order to satisfy a “single spinning sideband sweep” situation that is free
from the destructive interferences introduced in Fig. 1. Remarkably, for
every νr , “modes” arise where peaks change their signs as the frequency is
swept, with the width of each mode spanning ~0.5νr ; these sign changes
are influenced solely by the effective offset between the centerband and
the center of the WURST pulse. All these offset dependencies are nearly
symmetric with respect to the ΩS ¼ 0 position. These periodic inversions
cannot be entirely ascribed to RR phenomena, as no such effects are
expected over the offset range �νr

2 � ΩS=2π � þνr
2 for the small values of

ν1S, while the first inversions are observed at jΩS=2πj � νr
4 . The origin of

these sign changes in the experimental spectra acquired at different offset
frequencies can be heuristically understood by investigating the offset-
swept profile of time-dependent ZQ- and DQ-CP matching conditions.
Fig. 12B illustrates the time-dependent HH matching conditions that are
satisfied by the DQ1, DQ2, ZQ0, ZQ-1, and ZQ-2 BRAIN-CPMAS modes,
during the course of an 8msWURST-40 pulse. As derived in Eqs. (54) and
(55), these conditions are given as ν1I � νeSðtÞ ¼ 0 and ν1I 
 νeSðtÞ �
kνr ¼ 0. Also shown in Fig. 12B are the positions where RR conditions
arise as a function of carrier offset ΩS and of the contact time. Notice that
Fig. 12. (A) Influence of the isotropic 2H offset on the
BRAIN-CPMAS performance for different spinning
rates. Experimentally CP-enhanced profiles of the 2H
polarizations were measured on glycine-2,2-d2 by
varying the central carrier ΩS of the adiabatic sweeps
involved, with individually optimized ν1S and ν1I
values. The sweep frequency span Δν was matched to
the MAS rate νr in each case. Each ΩS-varied CP-
enhanced profile shown consists of an entire BRAIN-
CPMAS 2H spectrum measured at a specific ΩS

value, as illustrated by the inset figure (corresponding
to a spectrum measured at ΩS=2π¼�4 kHz with νr ¼
Δν ¼ 60 kHz, ν1S ¼ 5 kHz and ν1H ¼ 47 kHz). Offset
increments of 1–2 kHz were used to record the entire
sets of experiments. Notice the spectral sign inversions
observed around the central on-resonance frequency
position, at offsets within the range �0:25νr � ΩS

2π �
0:25νr : (B) Analysis of the experimentally observed
periodic magnetization inversions observed using
BRAIN-CPMAS on a glycine-2,2-d2 sample, and the
time-dependent fulfillment of DQ1 (blue line), DQ2

(green line), ZQo (purple), ZQ-1 (red), and RR (black)
matching conditions, within a HH process involving a
linearly-chirped pulse lasting for a duration tp. Plots
are shown as a function of offset frequency ΩS/2π. The
ΩS-varied CP-enhanced profile analyzed in (B) is the
νr ¼ Δν ¼ 60 kHz case in (A). (For interpretation of
the references to color in this figure legend, the reader
is referred to the Web version of this article.)



Fig. 13. An offset-frequency jump scheme of 2D
13C-13C exchange spectroscopy utilizing the BRAIN-
CPMAS-based fp-RFDR(XY8)41 mixing scheme. (A) A
pulse scheme of the 2D homonuclear dipolar correla-
tion experiment that combines the BRAIN-CPMAS
sequence with the fp-RFDR(XY8)41 pulse scheme. The
pulse phases used in the fp-RFDR(XY8)41 mixing
scheme shown in the figure. Marked by “a” and “b” in
pink color in the pulse sequence denote offset jump
positions for off-resonance and on-resonance irradia-
tion, respectively, for obtaining a 2D exchange spec-
trum with all in-phase peaks. (B) An offset-frequency
swept CP profile measured on [U-13C] Gly measured
at 14.1T (Δν¼ 70 kHz, tp¼ 10ms) under νr ¼ 55 kHz.
Signals in red and blue are for carbonyl carbon and
Cα, respectively, obtained by varying the offset fre-
quency for the BRAIN-CPMAS mixing. Each line cor-
responds to the sideband-free center peak of the
corresponding 13C signal. The DQ1 mode of each site
that spans about 2νr , with a central RR inversion, is
indicated. Note the spectral region in the dashed
rectangle (in pink) with the same signal phase for both
C0 and Cα peaks to which the offset frequency can be
jumped during the BRAIN-CPMAS block in the
sequence shown in (A) for obtaining all positive sig-
nals in the 2D spectrum. (C) 2D 13C-13C spectrum,
with all positive diagonal and cross peaks, measured
on [U-13C] GB1 at 14.1 T under a MAS spinning rate
νr ¼ 55 kHz employing an offset jump scheme with
a¼ 240 ppm and b¼ 0 ppm (110 ppm from TMS was
considered as the on-resonance position; Δν¼ 70 kHz,
tp¼ 10ms). (For interpretation of the references to
color in this figure legend, the reader is referred to the
Web version of this article.)
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for small offsets and sweeps spanning a range� Δν two different lines for
each CP mode are present due to the quadratic dependence of veS ðtÞ on
the sweep's offset – even if only one of these will be associated with a
significant I→S polarization transfer, as discussed for Fig. 5B above.
Fig. 12B was derived assuming Δν ¼ νr ¼ 60 kHz, ν1S ¼ 5 kHz, and ν1H
¼ 47 kHz; the experimental offset-swept spectrum shown in Fig. 12A,
collected employing the same experimental parameters, is shown for
purposes of comparing the frequency positions of the sign inversions.
From this, it appears that the changes in the S-spin polarization arising at
jΩs=2πj � νr=4; 3νr=4; and 5νr=4, coincide with a change in the CP
mode that is affecting the transfer – from DQ to ZQ, and vice versa.
Indeed, all spectral sign changes coincide with the starting or ending of
one of these CPmodes. This is reasonable, as these CPmodes will polarize
Sz in opposite directions – cf. Eqs. (61)–(64). Furthermore, it appears that
when multiple potential CP modes can become active over the course of
the contact time for a particular ΩS offset value, one of them usually
dominates the sign of the resulting S-magnetization. Moreover, much
weaker effects are observed here upon traversing a RR condition than in
the case of BRAIN-CPMAS for a I→S(1/2) system, apparently due to the
higher efficiency of RR processes when CSA is present [28].

The presence of a central RR inversion results in negative peaks along
one side in the offset-frequency profile (ΩS � 0). This is an undesirable
that can be corrected by post-processing, or experimentally addressed
using an offset-frequency jump scheme whereby the off-resonance fre-
quency position of the chirp is optimized for obtaining all peaks with the
same phase following the mixing The way in which this can be imple-
mented is illustrated using the 2D 13C-13C exchange spectroscopy (EXSY)
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sequence shown in Fig. 13A, formed by combining the BRAIN-CPMAS
scheme with the fp-RFDR(XY8)41 sequence [99]. An off-resonance fre-
quency jump (240 ppm; 350 ppm from TMS) was applied at position “a”
before the BRAIN-CPMAS sequence, as both the Cʹ and Cα peaks of
[U-13C] Gly, which was used as an external standard and for calibration,
exhibit the same phase (Fig. 13B). Then, another frequency jump to an
on-resonance position (110 ppm from TMS) is made to position “b”
before entering the RFDR mixing block to obtain a 2D correlation
resembling the usual on-resonance situation. A model protein, [U-13C]
GB1, was employed for demonstrating the functionality of this
offset-frequency jump scheme (BRAIN-CPMAS: νr ¼ 55 kHz,
Δν¼ 70 kHz, tp¼ 7ms; RFDRmixing time¼ 14ms). As is identified form
the 2D 13C-13C correlation spectrum shown in Fig. 13C, all peaks along
both frequency domains are positively absorptive, as expected.

6. Discussion and conclusions

The features and properties of the BRAIN-CPMAS method as applied
to polarization transfers between an I¼ 1/2 nuclide and S¼½, 1 or 3/2
nuclide, were summarized herein. Particular emphasis was given to the
possibility of polarizing bandwidths that are much larger than the
applied RF fields, by employing adiabatic passage schemes covering a
wide frequency range of ΩS-offsets under fast MAS. In exploring this
approach, some similarities with the static BRAIN-CP are noted; how-
ever, there are numerous differences in the two classes of experiments,
largely due to MAS-driven effects. Some new features are expected MAS-
induced aspects, like the need to contend with new νr -dependent DQ and
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ZQ matching conditions arising during a frequency-swept pulse. Other
features include coherent adiabatic/sudden passage phenomena of the
kind taught to us by Lex Vega, including level crossings in half-integer
quadrupoles, and rotary resonance phenomena driven by CSA or quad-
rupolar couplings. New phenomena are also explored, including a static-
like ZQ0 matching condition, driven by MAS-modulated quadrupolar-RF
dipolar recoupling effects (this is clearly visible for the S¼ 1 case). From
the standpoint of new phenomena, the RR effects were arguably the most
interesting features noticed in these studies. Rotary resonances have been
known to arise when an anisotropic shift or quadrupolar interaction is
modulated by an MAS process at a spinning rate νr, and a magnetization
that has been spin-locked by a field jjν1Sjj ¼ νr, 2νr [100–102]. This
condition leads to a rapid dephasing of the spin-locked polarization,
which can be visualized in a tilted rotating frame where the spin-locking
RF takes the role of a Zeeman-like field, and the CSA- or
quadrupolar-driven time modulation is akin to an oscillating transverse
field. In this scenario, the “Zeeman field” is constant; however, when it
becomes resonant with the transverse oscillations, the magnetization
“tilts away” from the direction of the ν1s spin-locking field. Furthermore,
this evolution is orientation-dependent, depending upon the magnitude
of the anisotropic CS or quadrupolar interactions; for a powder sample
with many crystallite orientations, this leads to dephasing of the origi-
nally spin-locked magnetization. The case of a frequency swept pulse
(i.e., WURST pulse), by contrast, leads to a different scenario, whereby
the “Zeeman” field is slowly swept through resonance as the offset of the
RF pulse changes. Given the relatively slow sweep rates involved in this
passage, the effective field that is now relevant for defining the rotary
resonance conditions always manages to invert the spin-locked polari-
zation as the field transverses through the jjνeSjj ¼ νr, 2νr RR conditions,
provided that conditions of adiabaticity are met. This implies that the

actual size of the “transverse” CSA or Hð1Þ
Q ðtÞ field does not matter, as it

will effectively lead to an inversion of the spin-locked magnetization for
all orientations – even when the CSA is too small to manifest in the NMR
spectrum due to the application of relatively fast MAS rates. As such, this
leads to homogeneous inversions of signal over broad bandwidths
without dephasing, as was observed in both experiments and
simulations.

All of these effects, as well as the matching conditions of the ZQ- and
DQ CP modes in the BRAIN-CPMAS schemes, are accurately predicted by
an average Hamiltonian model specifically developed to analyze the
BRAIN-CPMAS experiment. The various predictions and phenomena
described in this study on the basis of time-averaged Hamiltonian the-
ories and of numerical simulations, coincided well with experiments on
model samples. In general, we observed that under fast spinning rates,
BRAIN-CPMAS presents advantages over conventionally ramped HH-
CPMAS for achieving transfers over wide frequency ranges with low RF
powers, but the method loses its advantage at lower MAS rates (e.g.,
<15 kHz).

For the I-S(1/2) CP case, an enhancement profile spanning in excess
of 285 kHz was measured with the BRAIN-CPMAS method on [1–13C]
Gly, This is an unprecedented frequency span for a HH transfer, and is
particularly remarkable in light of the low RF amplitudes that were used
on both the I- and S-channels. Even the width of the single DQ1 CP mode,
the most practically useful mode of the BRAIN-CPMAS method, reached
ca. 130 kHz; this is ca. twice the polarizing window experimentally ob-
tained by the ramped HH-CPMAS method (75 kHz). Moreover, the
magnitude of the central DQ1 mode transfer in the BRAIN-CPMAS
method becomes larger as the MAS rate increases. Thus, BRAIN-
CPMAS promises to become an even more attractive method for
obtaining broadband CP transfers for nuclei possessing large chemical
shift dispersions and anisotropies at fast MAS rates.

BRAIN-CPMAS can also be applied to I-S(1) spin systems, delivering
undistorted 2H MAS NMR lineshapes with high SNR with the application
of low RF amplitudes. This probably reflects the larger range of HH
conditions that can be satisfied by a frequency-swept pulse for multiple
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crystallites in a powder in comparison to its rectangular-wave counter-
part. Based on repeated experiments, it appears that the optimal sweep
width Δν for the WURST pulse used in these I-S(1) BRAIN-CPMAS ex-
periments is one set equal to νr . Under such conditions, the HH-matching
conditions become robust, and are satisfied regardless of the values of the
quadrupolar coupling constants. However, 1H-2H BRAIN-CPMAS exper-
iments also have a number of limitations and complications. One concern
is the complex polarization behavior shown in Fig. 12, which involves
multiple sign changes of the peaks as a function of carrier offset fre-
quency, ΩS. From a practical standpoint, however, these are not terribly
problematic, given the relatively narrow chemical shift range and small
quadrupolar interactions associated with a spin-1 nucleus like 2H. These
considerations may become increasingly problematic for other integer
spin nuclides like 14N (S¼ 1) or 10B (S¼ 3).

The performance of the BRAIN-CPMAS, in terms of maximizing po-
larization transfer an resultant S-spin signal, was the poorest for I→S(�3/
2) systems. This is largely due to quadrupolar-driven level crossings that,
as in conventional CPMAS NMR [75,76], disrupt the spin-lock associated
with the transition one is attempting to polarize (in this case, the CT). The
use of a frequency-swept pulse further complicates matters, since this will
simultaneously overlap with multiple central and satellite spinning
sideband manifolds, which further decreases the spin-locking efficiency
(Fig. 3). Optimized BRAIN-CPMAS conditions lead to ν1S fields that are
smaller than their HH counterparts; the quadrupolar-driven level
crossing effects associated with spin-locking a central þ½ ↔ -½ transi-
tion [43,49], are thus minimized. Moreover, small ν1S fields yield nearly
ideal spectral lineshapes for the central transition spectrum, but then
often have lower SNR than their directly excited counterparts. The
optimal solution for polarizing these species –the challenge first thrown
to us by Vega's pioneering work– thus still stands.
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