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We combine magnetic circular dichroism and photoconductivity with prior optical
absorption and first principles calculations to unravel spin-charge interactions in the
high Curie temperature magnet CoFe2O4. In addition to revising the bandgap hier-
archy, we reveal a broad set of charge transfer excitations in the spin down channel
which are sensitive to the metamagnetic transition involving the spin state on Co
centers. We also show photoconductivity that depends on an applied magnetic field.
These findings open the door for the creation and control of spin-polarized elec-
tronic excitations from the minority channel charge transfer in spinel ferrites and
other earth-abundant materials. © 2018 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5021792

Multifunctional, high Curie temperature magnetic semiconductors are tailor-made for modern
device applications. They naturally provide sizable magnetic moments, switchable spin states, and
spin-selective bandgaps for use in spintronics, spin-caloritronics, and straintronics.1–4 Moreover, the
use of the spin rather than the charge is crucial for the development of ultra-low power devices because
there is less heat to dissipate. Among the various candidate materials, iron oxides are well studied,
sustainable, and earth-abundant. The spinel ferrites, with general formula AFe2O4, are particularly
attractive with CoFe2O4 and NiFe2O4 as flagship examples.

CoFe2O4 is well-known as a magnetic semiconductor with a typical AB2O4 spinel crystal struc-
ture (space group Fd3̄m, No.: 227) (Fig. 1).5 This system has an inversion fraction λ of ≈0.75, so
an explicit rendering can be written as {Co0.25Fe0.75}tet[Co0.75Fe1.25]octO4.6,7 Here, {}tet refers to
the tetrahedral site and []oct refers to the octahedral site.8 By comparison, NiFe2O4 is a fully inverse
spinel.9,10 The Curie temperature, TC, is 795 K,11 and the coercivity and saturation magnetization
are 1.1 T and 450 emu/cm3, respectively.12 The saturation of the Co moments occurs at Bs,Co ≈ 3 T.12

Thus, an applied field drives the system from a to configuration and vice versa, upon
field reversal [Fig. 1(d)]. This sequence refers to spins on the Co site, the Fe octahedral site, and
the Fe tetrahedral site, respectively. The field therefore selects one magnetic state over another as
the Co spin flips. Presumably, the iron moments saturate at even higher magnetic fields (giving
the configuration), although the exact value of Bs,Fe has not yet been measured. Confinement
and strain provide additional control of the magnetic state.13 The magnetocrystalline anisotropy of
CoFe2O4 is 2× 106 ergs/cm3,14 and the magnetostrictive coefficient along the [100] direction is large:
−5.90 × 10−4.15–17 Together, these properties have led to contemporary usage in spin-filtering
heterostructures, composite multiferroics, and embedded nano-structures.12,18–22

Recent work uncovers fascinating electronic properties as well.11,15,23,25 The analysis of the
spectral functions and partial densities of states [Figs. 1(b) and 1(c)] reveals sizable exchange
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splittings, a fundamental indirect bandgap, and the possibility of spin-polarized current emanating
from low energy minority channel excitations.23 Importantly, CoFe2O4 has a lower electronic energy
scale compared to similar materials like NiFe2O4 and Co:ZnO.23,26,27 Our recent spectroscopic work
on epitaxial thin films of CoFe2O4 uncovers a 1.2 eV indirect gap, a hierarchy of higher energy
direct gaps, and a favorable overlap with the solar spectrum.23 These findings raise questions about
broader aspects of the electronic structure in CoFe2O4 and the Ni analog, for instance, what are the
band polarizations that contribute to magnetism, and how does the I–V curve respond to light? These
issues are central to advancing the microscopic understanding of high TC magnetic oxides and their
many applications.

Spinel ferrites are also well-suited to the development of structure-property relations.28–30 Just
as in perovskites, transition metal centers bring in the electron correlation, anisotropy, and control
charge, spin, and local lattice environment. To the first order, the charge, spin, orbital, and lattice
channels operate independently, although their entanglement leads to compelling interactions along
with opportunities for property control under external stimuli.31–34 At the same time, spinel ferrites
sport degrees of freedom that reach beyond those in perovskites, e.g., the cation inversion parameter
λ.35–37 This provides a framework for the development of new and useful properties as well as novel
physics.

In this work, we bring together magnetic circular dichroism (MCD) and photoconductivity to
investigate entangled electronic and magnetic degrees of freedom in the spinel ferrite CoFe2O4. Our
objective is to determine the spin polarization and the rotation (which is proportional to magnetization)
and by so doing uncover the bands and charges that are responsible for the unique magnetic properties.
Even though there has been other magneto-spectroscopy of spinels,38,39 to our knowledge, there has
been no work on these issues—an important oversight considering the very real application potential of
these compounds. Analysis reveals (i) a broad energy window of purely minority channel excitations
that overlaps well with the solar spectrum, (ii) magnetic field tunability of these states that derives
from field-induced switching of the spin state and the spin-charge coupling in this system, and (iii)
enhanced photoconductivity under the applied magnetic field. Comparison with the Ni analog23,40

also allows the development of several important structure-property relations particularly with regard
to the role of the inversion fraction. Taken together, we uncover an energy window in the electronic
structure where light generates spin-polarized carriers and where the magnetic field influences the
relevant charge excitations. We discuss how high temperature magnets like CoFe2O4 and NiFe2O4

may offer new opportunities for light harvesting and oxide electronics.41,42

High-quality epitaxial CoFe2O4 films (30–200 nm) were grown on (001)-orientated MgAl2O4

substrates via pulsed laser deposition as described previously.12 The different thicknesses allowed for
the control of optical density. MCD measurements were carried out at the National High Magnetic
Field Laboratory using a 300 W Xe lamp, an 0.25 m monochromator, a purpose-built transmittance
probe, and a 10 T superconducting magnet. Importantly, the MCD measurements were done in
the Faraday geometry, that is, ~k and ~B are parallel/anti-parallel, depending upon the sign of ~B. The
signal-to-noise ratio was increased by chopping the light; likewise, by passing linearly polarized light
through a photoelastic modulator, right-circularly polarized light and left-circularly polarized light
were dynamically separated as δ(t) = λ/4 sin(ωt).43 All signals were separated by lock-in amplifiers.
In addition to the epitaxial CoFe2O4 films, we also measured the dichroic response of MgAl2O4 as a
function of energy and magnetic field. No magnetic field dependence of the substrate was observed at
any energy (see the supplementary material). Photoconductivity measurements were carried out on a
home-built setup equipped with a Xe lamp, a series of narrow bandpass filters, a high voltage source,
and a 1.5 T magnet. Sputtered gold contacts along with silver epoxy and 75 µm wires were used as
contacts. The photoconductance was normalized by power density at each measurement wavelength
and then converted to energy for comparison with the spectral data.

Figure 2(a) displays the MCD spectrum of CoFe2O4 in applied fields up to ±10 T at 1.6 K. The
trends are overall systematic with increasing and decreasing fields, as expected. For comparison, we
include the linear absorption spectrum (α(E)), with the 1.2 and 2.7 eV bandgaps indicated on the
energy axis.23 Examination of the spectra in Fig. 2(a) immediately reveals a large number of states
below the majority channel direct gap (2.7 eV). Moreover, local maxima in the dichroic response
coincide with inflection points in the absorption spectra. This demonstrates an important derivative

ftp://ftp.aip.org/epaps/apl_mater/E-AMPADS-6-009805
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relationship between IMCD and α(E). The magnitude of the dichroic response is often expressed
as44

IMCD ≈
(α+(E) − α−(E))d

2
≈
∆E
2

1
α(E)

dα(E)
dE

. (1)

Here, α+(E) − α−(E) is the absorption difference between right- and left-circularly polarized light,
dα(E)/dE is the energy derivative of absorption, ∆E is the change in energy of the peak position,
and d is the film thickness. Further, the resulting contrast in α±(E) correlates with σ±, the helicity.44

Note that there is a direct proportionality between IMCD and dα(E)/dE. Absorption is a joint density
of states effect, so IMCD highlights critical points in the band structure.

The direct assignment of the spectral features of CoFe2O4 comes from an understanding of the
band structure and projected density of states [Figs. 1(b) and 1(c)].23,24 Minority-channel transitions
involving hybridized Co(Oh) + O→ Fe(Oh) are responsible for the absorption edge and the funda-
mental indirect gap.23 These transitions can be considered to be inter-sublattice charge transfer as
indicated by the schematic in Fig. 1(f). The same set of transitions also gives a direct gap excita-
tion in the spin-down channel.23 We confirm that it is direct from the magnitude of the absorption
(1 × 105 cm−1). The majority-channel direct gap arises from Co(Oh) + O→ Fe(Td) excitations. Of
course, when λ = 0.75, this becomes Co(Oh) + Co(Td) + O→ Fe(Td).

Returning to Fig. 2(a), there are several features in the 1.5 to 2.5 eV energy window—where
only minority channel charge transfer excitations are expected—indicating that there are excitations
that exist solely in the spin-down channel. The lowest energy excitation, centered at 1.8 eV, presents
considerable asymmetry on the low energy tail, suggesting that the nearby indirect gap excitation
may be affecting the line shape. By comparison, peak fitting reveals that the excitation centered at
≈2.2 eV has the expected Lorentzian line shape (see the supplementary material). Beyond the exquisite
sensitivity for locating important features in the density of states, dispersion in MCD spectra gives
reliable estimates of the spin splitting between majority and minority bands. We find exchange
splittings of 0.15 eV, in reasonable agreement with theoretical predictions.23,25

Figure 2(b) displays the derivative of the MCD spectrum dIMCD/dE as a function of energy at
±10 T. There are several intriguing features that give rise to zero-crossings near 1.2, 1.8, 2.15, and
2.7 eV. As a reminder, the indirect gap in the minority channel is at 1.2 eV, and the direct gap in the
majority channel is at 2.7 eV. The energy scale at ≈1.8 eV—indicated by the node in dIMCD/dE—is
also important, although it was overlooked in our prior analysis of the absorption spectrum because
it was less than clear. We assign this feature as a Co (eg) → Fe (t2g) excitation in the minority
channel—probably between two octahedral sites. By comparison, the zero crossing in dIMCD/dE
near 2.15 eV seems to be a density of states effect. This supposition is based upon the shape of the
projected density of states in this energy window. The full bandgap hierarchy in CoFe2O4 is thus
1.2 eV (indirect, minority channel), 1.8 eV (direct, minority channel), and 2.7 eV (direct, majority
channel).

The MCD spectrum of CoFe2O4 is similar in magnitude to that of NiFe2O4,40 although in the Ni
analog, the oscillator strength and the series of bandgaps are pushed to higher energies. The excitations
in CoFe2O4 thus have a much better overlap with the solar spectrum from both a bandgap and density
of state perspective. The fact that λ ≈ 0.75 in CoFe2O4 is not readily apparent from the MCD data,
although as discussed earlier, it does affect the assignments. For instance, the majority-channel direct
gap arises from Co(Oh) + O → Fe(Td) excitations, and when λ = 0.75, the assignment should be
considered as Co(Oh) + Co(Td) + O → Fe(Td). The complexity of the charge transfer excitations
below 2.5 eV may be responsible for the additional oscillator strength.

From the preceding discussion and Eq. (1), we see that the electronic aspects of the dichroic
response of CoFe2O4 are fairly straightforward. But what about the magnetic response and what
effect will a change in spin state have on IMCD? In other words, we know that the applied field flips
the spin on the Co sites and drives a to transition at Bc,Co [Fig. 1(b)]. We do not, however, yet
know the electronic signatures of this entanglement.

The connection between the magnetic circular dichroism and the spin state can be understood
in a straightforward manner by recalling that time reversal symmetry is broken in magnetic mate-
rials. This means that separate wave vectors ~k+ and ~k− must be used to define the propagation of

ftp://ftp.aip.org/epaps/apl_mater/E-AMPADS-6-009805
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right- and left-circularly polarized light [Fig. 1(e)]. This results in the development of off-diagonal

elements in the complex dielectric tensor
↔
ε (E).45,46 In addition to separate wave vectors being

required to describe the propagation of right- and left-circularly polarized light, all of the optical
constants are energy dependent and tensorial in nature. For example, the complex refractive index is
↔
n (E)=

↔
n
′

(E) +
↔
n
′′

(E)=
√
↔
ε (E)

↔
µ(E). Moreover, the extinction coefficient

↔
n
′′

(E) is proportional to

absorption
↔
α(E). Therefore, off-diagonal components of the dielectric tensor (or the fact that the mag-

netic permeability of a magnetic material
↔
µ is not 1.0) are directly connected to the absorption (and

in turn the absorption difference between right- and left-circularly polarized light). More precisely,

the information derived from the dielectric tensor, and hence the refractive indices (
↔
n± =

↔
n
′

± + i
↔
n
′′

± )
for right- and left-circularly polarized light, is expressed in the relationships in Eqs. (2)–(5).47 Tak-
ing the z direction as being parallel to the magnetization ~m, the dielectric tensor appears as the
following:

↔
ε =

�������

εxx iεxy 0
−iεxy εyy 0

0 0 εzz

�������
, (2)

≈
↔
n

2
�������

1 iQ~mz 0
−iQ~mz 1 0

0 0 1

�������
, (2a)

↔
ε± =

↔
ε xx ±

↔
ε xy, (3)

↔
n± =

√
↔
ε± ≈

↔
n0 ±

↔
ε xy

2
↔
n0

, (4)

↔
n0 =

√
↔
ε±
↔
µ±. (5)

These relationships demonstrate the attenuation of circularly polarized light across a medium. Here,
↔
n± = (εxx ± εxy)1/2 is the refractive index, as expressed by Eqs. (2)–(5), for right- and left-circularly

polarized light arising from the dielectric function
↔
ε . It is also customary to define Q as a material-

specific magneto-optic constant. The correlation between the imaginary component of the refractive

index
↔
n
′′

± and absorption provides a direct correspondence between the magnetic polarization under-
lying the transition and the dichroic response. Therefore, an assignment of the magnetic nature of the
electronic structure underpinning specific spectroscopic transitions follows logically. An important

caveat to these relationships is that the nature of the excitation precludes
↔
µ = 1 and thus the refractive

index includes this salient component as shown in Eq. (5). This makes magnetic circular dichroism
a sensitive tool for probing both electronic and magnetic properties.

Figure 2(c) shows the residual MCD signal. This quantity is defined as the difference in the MCD
spectra taken in the positive and negative field directions, ∆IMCD = IMCD(E, B) − IMCD(E, −B). Thus,
the residual signal is differentiated from the primary signal by simple subtraction. Physically, ∆IMCD

represents the difference in the dichroic response between the and states. In other words, the
field selects the magnetic state, and∆IMCD represents the asymmetry in the number of spin-dependent
states present in the excitation upon reversing the applied magnetic field. In NiFe2O4, electronic
structure calculations reveal that the Ni states reside in either the minority or majority channel
depending on whether spins are in the or state.40 A similar swap of the Co density of states
is anticipated here as the magnetic field is swept across Bc,Co. Just as IMCD quantifies the number of
states involved in Co → hybridized Fe(Oh) + Co excitations (with Co charge accessing a different
set of states above the Fermi level depending on the field direction), ∆IMCD reveals the small fraction
of excitations that are spin independent and insensitive to field reversal. They probably involve ions
other than Co, e.g., Fe and O. The overall size of the residual signal represented by ∆IMCD is small.
It is on the order of 10−5 near Bc,Co, increasing to 10−4 at a full field. Overall, the MCD spectrum of
CoFe2O4 is controlled by the underlying spin state ( or ) and spin-charge interactions. The use
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of a small (rather than large) field to flip the Co spins obviously assures a large, controllable primary
signal and a modest residual signal.

To further explore the energy and magnetic field dependence of the dichroic response of CoFe2O4,
we created contour plots of these spectra. The data in Fig. 2(a) are thus a set of constant field cuts
through the contour plot of Fig. 2(d). Examination of IMCD in the contour format reveals that the slope
reaches a maximum near 2.5 or 3 T depending upon the energy. This suggests that a more detailed
analysis of this edge may provide useful information about how the electronic excitations depend
upon the spin state (and how they change across the coercive field). Figure 2(e) displays dIMCD/dB,
as a function of energy and magnetic field. The largest changes are between 1.5 and 2.1 eV. This
indicates that low energy charge transfer excitations are most strongly correlated with the spin state
as well as with spin-polarized absorption. Figure 2(f) cuts the dIMCD/dB data in the contour plot
at selected energies. Again, we see that changes are most pronounced between 1.5 and 2.1 eV
(where the mixed state transitions in the minority channel reside) and that the high energy regime
(E > 2.25 eV) is effectively flat. We conclude that the applied field controls these states and excitations
through spin-charge interactions.

In order to provide additional information on how these light-generated excitations can be con-
trolled, we carried out a series of magnetic field sweeps of the dichroic response and compared the
results to the magnetization of CoFe2O4 [Fig. 1(d)] which we already know is hysteretic. The latter is
expected because spinel ferrites are well-known ferrimagnets, although it is not entirely obvious that
the hysteretic nature of the to transition in CoFe2O4 will be reflected in the magneto-optical
properties. There is little effect near the fundamental indirect gap—mainly because there are so few
Co states with which to work. Higher energies are different. Here, a clear hysteresis develops in the
MCD response [Figs. 3(a) and 3(b)]. This is important and interesting because the optical tracking of
a magnetic hysteresis loop has a number of applications. That the size of the optical hysteresis loop
depends upon energy is, however, an unexpected surprise and suggests that the electronic states are
spin correlated. Figure 3(c) displays the coercive field as a function of energy. Strikingly, the coercive
field determined from optical measurements is overall higher than that extracted from magnetization.
It also has a weak dependence on energy. One logical explanation for these observations is that higher
energy light accesses more Co states. Overall, the field sweeps of the dichroic response in CoFe2O4

show that there is a large energy window with promise for ultra-low power devices because of the
magnetically switchable optical response.

Motivated by recent work in which iron oxides like BiFeO3 are used as active elements of a
solar cell,48 we decided to take a step toward evaluating CoFe2O4 for light harvesting applications.
Photoconductivity is well suited for this purpose, and it is naturally connected to the series of bandgaps,
the spin split electronic structure in spinel ferrites, and the entanglement of the charge and spin. These
measurements also provide another opportunity to compare the electronic properties of CoFe2O4 with
those of the Ni analog.23

Figure 4 summarizes the photoconductivity of CoFe2O4. This property derives from the creation
of electron-hole pairs with light, σPC ∝ η α(E) τ.49 Here,σPC is the photoconductance, η is the prob-
ability of creating a carrier, α(E) is the absorption coefficient, and τ is the carrier lifetime. Figure 4(a)
displays typical current vs. voltage (I–V ) curves with white light on and off. The open-circuit voltage
VOC is 100 mV at an intensity of ≈50 kW m−2. The data in panel (b) were obtained from similar I–V
curves collected at specific illumination energies. Comparison reveals that photoconductivity tracks
the absorption spectrum (shown here on a semi-log scale) reasonably well. A closer examination
of Fig. 4(b) reveals three regions of particular interest. That centered near 1.0 eV is connected with
charge transfer excitations across the fundamental indirect bandgap. There is also a d-to-d excitation
in the vicinity, but a localized excitation will not carry current. σPC is largest near 2.0 eV—just above
the direct gap in the minority channel. σPC continues to rise at energies above the direct gap in the
majority channel, with a feature near 3.5 eV that is most likely related to the additional structure in
the joint density of states. The non-zero photoconductance below the majority channel direct gap is
particularly interesting. It provides evidence that there are indeed important electronic states in the
energy window below 2.8 eV arising from the two discrete symmetry environments of the Fe centers.
We therefore see that the minority channel states can carry current and that this current can be created
with light. A similar situation occurs in NiFe2O4—although the overall energy scale is higher. The
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Ni compound also has less structure in σPC .40 Exchange splitting is the origin of spin-dependent
excitations in the ferromagnetic insulator Y3Fe5O12 as well.40,50

The application of a magnetic field provides an opportunity to further explore the photo-excited
minority channel carriers. This is because applied field drives a to transition on the Co
sites.12 Figure 4(a) displays a typical set of I–V curves taken under white light. As a reminder, light
at this energy excites the Co Oh → Fe Oh charge transfer in the minority channel. The illumination
and magnetic field conditions are indicated as (hν, B). Using I–V curves like those in Fig. 4(a), we
determined field-induced changes in photoconductivity at various energies. Figure 4(c) summarizes
these findings by plotting them as magnetoresistances. It is immediately apparent that CoFe2O4

exhibits strong field effects (−8%) in the range where only minority carriers are active. The strongest
effect is near 1.8 eV. This response is well above the standard magnetoresistance (on the order of
−1%).51,52 We conclude that light and field together are more effective than field alone—at least in the
energy window between the minority channel indirect and the majority channel direct gaps. Moreover,
magnetoresistance in CoFe2O4 (−8%) is significantly stronger than that in NiFe2O4 (−6.5%)—even
though the 1.5 T field applied here is not enough to fully saturate the Co moments. Spin-dependent
excitations can be manipulated with external electric and/or magnetic fields in Y3Fe5O12 as well.53

In summary, we measured the magneto-optical properties of CoFe2O4 and compared them with
prior optical absorption and first principles electronic structure calculations. Analysis of the dichroic
response reveals that the full bandgap hierarchy is 1.2 eV (indirect, minority channel), 1.8 eV (direct,
minority channel), and 2.7 eV (direct, majority channel). The energy scale is overall lower than
that of the Ni analog, and this series of bandgaps has a strong overlap with the solar spectrum.
Photoconductivity shows that the minority channel states can carry current, that this current can be
created with light, and that it depends upon the magnetic field. Moreover, we show that the applied
magnetic field switches the spin state and, by so doing, modifies the electronic properties. Spin-charge
coupling, while dramatic in NiFe2O4, seems to be even more important in the Co compound, probably
because the inversion fraction makes a combination of charge transfer excitations more prominent.
This work opens the door to new applications of spinel ferrites that employ the magnetic field control
of electronic properties.

See supplementary material for the magneto-optical response of the substrate material, MgAl2O4.
We also take a closer look at the derivative relationship between magnetic circular dichroism and
optical absorption as well as the lineshape analysis.
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