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We study the dynamics of systems quenched through topological quantum phase transitions and investigate the
behavior of the bulk and edge excitations with various quench rates. Specifically, we consider the Haldane
model and checkerboard model in slow quench processes with distinct band-touching structures leading to
topology changes. The generation of bulk excitations is found to obey the power-law relation Kibble-Zurek
and Landau-Zener theories predict. However, an anti-Kibble-Zurek behavior is observed in the edge excitations.
The mechanism of excitation generation on edge states is revealed, which explains the anti-Kibble-Zurek behavior.

DOI: 10.1103/PhysRevB.97.235144

I. INTRODUCTION

The nonequilibrium dynamics of systems undergoing phase
transitions is an important subject in statistical physics. In par-
ticular, quench dynamics through both classical and quantum
second-order phase transitions involving symmetry breaking
has been of great interest. The Kibble-Zurek (KZ) mechanism,
a theory originally developed in the study of the formation of
topological defects in the early universe [1,2], was applied to
quench dynamics near symmetry-breaking second-order phase
transitions [3–5] and provided a fairly accurate prediction of
a power-law relation between the topological defect density
and the quench rate [6]. In the meantime, Landau-Zener (LZ)
theory [7] describing a two-level transition was also applied
to the study of the dynamics of quantum phase transitions
where applicable, yielding results [8,9] consistent with KZ
theory. Some systems under inhomogeneous quench [10] and
nonlinear quench [11,12] out of the scope of the KZ mechanism
have been investigated as well.

In contrast, nonequilibrium dynamics across topological
phase transitions that do not involve symmetry breaking has
been studied much less. Topological phases of matter are of
tremendous importance and current interest [13]. Some fun-
damental questions about the dynamics of topological phase
transitions naturally arise. First, since there is no symmetry
breaking in such phase transitions, can KZ theory effectively
describe their dynamics? Second, what is the mechanism of
topological defect generation, and how is it related to the
symmetry-breaking case? Among many unique properties of
topological states, of particular importance is the presence of
robust edge states that often give rise to dissipationless and
quantized transport; they have been proposed to be the building
blocks of electronic devices with low or even zero dissipa-
tion [14,15]. Operating such devices often involves switching
between topologically trivial (the insulating, or off) states
and nontrivial (conducting, or on) states. Thus, understanding
quench dynamics across topological phase transitions, espe-
cially its impact on edge states, is of both fundamental and
practical importance. While there exist some reports on such
studies [16–28], a comprehensive understanding has yet to
emerge, especially when edge states are involved.

In this work, we study quench dynamics across topological
quantum phase transitions (TQPTs) in the simplest setting of
free-fermion systems. Since in the ultracold-atom field the
Haldane model can be realized through optical traps [29],
which enables people to explore and access the phase diagram
of the Haldane model, some research about the sudden quench
dynamics through various topological phase transitions in
the Haldane model has been demonstrated in ultracold-atom
experiments [23]. We believe the slow quench process of
the Haldane model is feasible because sudden quench is
just a limit of a general quench process. Thus, here we
specifically consider two models: the Haldane model [30] and
the checkerboard model [31,32] with linear and quadratic band
dispersions at the gap-closing points (where the TQPTs occur),
respectively. The TQPTs result in changes in the band Chern
numbers by 1 and 2, respectively, and the appearance of edges
states in the former and the reverse of edge-state chirality in
the latter. We numerically follow the time evolutions of the
systems (initially in the ground states) under quenches that
move the systems across the phase boundaries and monitor
the generation of excitations both in the bulk and at the edge.
We argue the bulk excitations are analogous to the topological
defects in the case of symmetry-breaking phase transitions and
obtain results consistent with the prediction of KZ and LZ
theories. The appearance of edge excitations, on the other hand,
is unique to TQPTs and has no analog in symmetry-breaking
phase transitions. A particularly interesting finding that we
report here is an anti-KZ behavior; namely, the number of edge
excitations depends on quench rate nonmonotonically. We will
provide an explanation of this counterintuitive result.

The rest of this paper is organized as follows: in Sec. II, we
introduce the two models, the Haldane model and checker-
board model, studied in this work. In Sec. III, we briefly
describe the concepts of Kibble-Zurek theory and Landau-
Zener theory, derive the power-law relation between the (bulk)
excitation density and the quench rate based on each theory,
and use the results for our models. Before showing the
results, in Sec. IV we describe the numerical methods of
studying slow quench problems with edges and calculating
bulk and edge excitations. We show our results and provide
some discussion in Sec. V, in which the discussion of and a
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FIG. 1. (a) Haldane model on the honeycomb lattice. (b) Checker-
board model. The NNN hoppings along the red and the black cross
lines have hopping strengths ξ ′ and ξ ′′; the imaginary strength of the
NN hoppings following the directions of the arrows is positive, and
it is negative otherwise. (c) Phase diagram of the Haldane model.
(d) Phase diagram of the checkerboard model with only one relevant
parameter, V .

comparison with theoretical predictions of the bulk excitations
are given in Sec. V A and the discussion of edge excitation
and the mechanism of the excitation generation are included
in Sec. V B. In Sec. VI we end the paper by offering some
concluding remarks.

II. MODELS

In this section we introduce the models we study and their
phase diagrams.

A. Haldane model

The Haldane model describes spinless fermions hopping
on a honeycomb lattice with a real nearest-neighbor (NN)
hopping, a complex next-nearest-neighbor (NNN) hopping,
and an energy offset with a sign difference on the two
sublattices. The Hamiltonian can be written as

H = −
∑
〈i,j〉

(C†
A,iCB,j + H.c.)

+ η
∑
〈〈i,j〉〉

[ eivij φ(C†
A,iCA,j − C

†
B,iCB,j ) + H.c.]

+m
∑

i

(C†
A,iCA,i − C

†
B,iCB,i), (1)

where C
†
σ,i (Cσ,i) is the fermion creation (annihilation) oper-

ator, 〈i,j 〉 and 〈〈i,j 〉〉 represent summing over the NNs and
NNNs, respectively, and A and B label the two sublattices.
vij ≡ ẑ · (d̂j × d̂i) with ẑ being the unit vector perpendicular
to the two-dimensional (2D) plane and {d̂i} being the unit
vector along the bond connecting two nearest sites, as shown in
Fig. 1(a). The complex hopping with a phase eivij φ in the second
term due to the staggered magnetic field breaks time-reversal
symmetry, and the last term breaks spatial-inversion symmetry.

FIG. 2. (a)–(c) Dispersions of the Haldane model with the zigzag
edge at the initial time (C = 0), at the critical time when m = √

3
with gap closing (linear dispersion), and at the final time (C = 1)
with edge states (red curves). (d)–(f) Dispersions of the checkerboard
model at the initial time (C = −1) with edge states on the left, at the
critical time when V = 0 with gap closing (quadratic dispersion), and
at the final time (C = +1) with edge states on the right. Edge states
are the red curves.

As shown in the phase diagram [30] [Fig. 1(c)], we can
access different topological phases by tuning parameters m,
η, and φ. In this study, we quench the system from the
topologically trivial phase with Chern number C = 0 to the
topologically nontrivial phase with C = −1 along the path
(vertical dashed arrow) in Fig. 1(c), setting η = 1

3 and φ = π
2

(|η| � 1
3 prevents band overlap) [30], by varying m from 3 to

0 linearly with time, namely, m = 3 − t
τ

, with 1
τ

being the
quench rate. When m = √

3, the system reaches the phase
boundary, and the energy gap in the bulk closes at the high-
symmetry point (K or K ′), resulting in linear dispersion.
Figures 2(a) to 2(c) show the dispersions of H (t) of the Haldane
model with zigzag edges in the x direction at the initial time,
critical time, and final time, corresponding to no edge states,
band touching, and edge states popping up, respectively.

B. Checkerboard model

Motivated by Refs. [31,32], we consider a simplified
checkerboard model with two sublattices (A and B) with real
and isotropic NN hoppings, two kinds of nontrivial NNN
hoppings, and a complex NN hopping which leads to a quantum
anomalous Hall (QAH) phase. The Hamiltonian is given by

H = −
∑
�r,�δ

C
†
A,�r CB,�r+�δ + iV

∑
�δ

Dδ C
†
A,�r CB,�r+�δ

− ξ ′ ∑
�r

(
C

†
A,�rCA,�r±�a1 + C

†
B,�rCB,�r±�a2

)

− ξ ′′ ∑
�r

(
C

†
A,�r CA,�r±�a2 + C

†
B,�r CB,�r±�a1

) + H.c., (2)

where �a1 = ±(0,a), �a2 = ±(a,0), and D�δ = +1 if �δ =
±(a/2,a/2) and D�δ = −1 if �δ = ±(a/2, − a/2), with a/

√
2

being the lattice spacing. The first term represents the isotropic
NN hopping. The second term is a purely imaginary NN
hopping which is positive if hopping along arrows in Fig. 1(b)
and is negative otherwise, inducing the QAH phase with
nontrivial topology C = ±1. The last two terms correspond
to the NNN hoppings along the red and black cross lines in
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FIG. 3. Schematic diagram to illustrate the Kibble-Zurek theory.
The energy gap of two states 	 is a function of time t . Within t = −t̂

to t̂ , the system is in the impulsive regime in which the relaxation
time is comparable to or much greater than the quench timescale, so
that the system evolves diabatically.

Fig. 1(b) with strengths ξ ′ and ξ ′′, respectively, which break
C4 symmetry if ξ ′ �= ξ ′′.

A phase diagram of the checkerboard model with only one
relevant parameter, V , is provided in Fig. 1(d). In this model,
we change the complex hopping strength V from 1 to −1
linearly, V = 1 − t

τ
, so that the Chern number C changes sign

(from −1 to 1), indicated by the dashed arrow in Fig. 1(d)
with ξ ′ = −ξ ′′ = 0.5. At V = 0, the gap in the bulk closes
at (kx,ky) = (π,π ) with a quadratic dispersion, as shown in
Fig. 2(e). During the quench process, the dispersions of H (t)
with edges in the x direction at the initial, critical, and final
times are shown in Figs. 2(d) to 2(f). Since the system is
quenched from one topologically nontrivial phase to another,
edge states always exist during the whole process, but their
chirality is reversed. Note that one can also change the Chern
number by 2 in the Haldane model following the horizontal
dotted path in Fig. 1(c). However, the gap closing will occur at
two Dirac points, K and K ′, instead of one, resulting in critical
behavior distinct from the case in the checkerboard model but
similar to what happens when the gap closes at a single Dirac
point, as discussed earlier.

III. THEORIES

In preparation for later comparisons, in this section we
review the basics of the KZ and LZ theories and, in particular,
discuss the relevance of the KZ theory to the topological phase
transitions we study.

A. Kibble-Zurek theory

For a quench process which involves a second-order phase
transition from a high-symmetry phase to a broken-symmetry
phase with gap closing at the critical point, the system can no
longer evolve adiabatically due to the unreachable relaxation
time which is inversely proportional to the energy gap. KZ
theory separates such a quench process into two regimes: the
adiabatic regime and impulsive regime, as shown in Fig. 3.
When the system enters the impulsive (diabatic) regime, the
information of the system will be frozen because the relaxation

time and the timescale of the quench are comparable. In such
a quench process, (bulk) excitations (defects) are inevitable.

In the following, we derive the relation between the (bulk)
defect density and the quench rate based on a linear quench
assumption. For a second-order phase transition, the energy
gap 	 has a power-law relation with the quench parameter
μ(t) with the critical point μc where the gap closes:

	 ∼
∣∣∣∣μ(t)

μc

− 1

∣∣∣∣
zν

, (3)

where z is the dynamic critical exponent and ν is the correlation
length critical exponent. Moreover, the correlation length ξ has
a power-law relation with the quench parameter as well and will
blow up for infinite systems or be comparable to the system
size for finite systems at the critical point:

ξ ∼
∣∣∣∣μ(t)

μc

− 1

∣∣∣∣
−ν

. (4)

Assume that the quench process starts at t = −∞ and termi-
nates at t = ∞ and the gap closes at t = 0. According to the
linear quench assumption, we can define ε(t) ≡ μ(t)

μc
− 1 ∼

|t |
τ

, with 1
τ

being the quench rate. While the system enters the
impulsive regime at time −t̂ , as shown in Fig. 3, the relaxation
time η(−t̂) and the quench timescale |t̂ | are comparable,
namely,

η(−t̂) = h̄

	
∼ t̂ . (5)

From Eq. (5) we can express t̂ in terms of the quench rate
1
τ

. From a high-symmetry phase to a broken-symmetry phase,
the excitation size could be estimated through the correlation
length as ξd in d-dimensional space. Combining Eqs. (3)–(5),
therefore, we get the power-law relation of the excitation
density ntopo, which is inversely proportional to the size of
an excitation, and the quench rate

ntopo ∼ τ
−dν
1+zν . (6)

The power-law relation in Eq. (6) has been shown to have very
good agreement with the numerical result from studying the
phase transitions associated with symmetry breaking [6].

The topological phase transitions in which we are interested
in this work are second-order phase transitions. Since there
is no symmetry breaking in such transitions, it may not be
obvious that the KZ theory is relevant here at first glance. Those
topological phases here are characterized by Chern numbers
and have one-to-one correspondences to (integer) quantum
Hall states. As reviewed in Ref. [33], quantum Hall states
can be mapped onto superfluid states, in which composite
bosons made of electrons and an appropriate amount of flux
condense and develop (quasi-)long-range order. They are thus
analogous to broken-symmetry states. In particular, excitations
(particles in the conduction bands and holes in the valence
bands) in quantum Hall states are analogues to vortices and
antivortices in the superfluid in this mapping, which are the
topological defects of the ordered phase. In retrospect this is
rather natural as the topological characterization is specific to
the ground state; any excitation on top of the ground state
causes a deviation from, say, the perfectly quantized Hall
conductance of the ground state and is clearly a topological
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defect. Thus, the excitations induced by the quenches through
topological phase transitions are analogs to the those in ordered
phases. This allows us to use the results of KZ theory [Eq. (3)]
in the Haldane and checkerboard models, which we turn to
now.

Due to linear quench, the gap has a linear dependence on
the quench parameter in both the Haldane and checkerboard
models, giving zν = 1 (according to 	 ∼ |μ − μc|zν , where
	 is the gap and μ is the quench parameter). For the Haldane
model, which has d = 2, z = 1 (linear dispersion), and ν = 1,
the predicted power α is 1 from KZ theory (ntopo ∼ τ−α);
for the checkerboard model, with d = 2, z = 2 (quadratic
dispersion), and ν = 1

2 , it gives α = 0.5.

B. Landau-Zener theory

LZ theory describes the dynamics of a two-level system
with a time-dependent Hamiltonian in which the energy gap
of the two states varies linearly with time. Note that LZ theory
can be applied to such a two-level system regardless of the
topology (trivial or nontrivial) of the states. Suppose that the
Hamiltonian evolves with time t , from t = −∞ to t = +∞ in
which the gap of the two states has a minimum at t = 0 (one
can always shift the time such that the gap minimum occurs
at t = 0), and that initially (at t = −∞), one of the states is
occupied and the other is empty. The Hamiltonian with the
basis (ψ+,ψ−) can be written as

H =
(

ε1 ε12

ε21 ε2

)
, (7)

where ψ+ and ψ− represent the two states with ψ+ = (1
0),

which is occupied, and ψ− = (0
1), which is empty at t = −∞;

ε1 and ε2 are the energies of the two states; and ε12 and ε21

correspond to the interaction between the two states. According
to Ref. [7], the transition probability from ψ+ to ψ− will be

�(�k) ∼ e
−π

2h̄	�k , (8)

with 	−1
�k = 4ε2

12

| d
dt

(ε1−ε2)| . With the transition rate, the excitation

density can be estimated through the integral of the probability
over the first Brillouin zone, namely, ntopo ∼ ∫

1BZ
dd �k �(�k).

For the Haldane and checkerboard models we consider
here, two free-fermion models, the many-body problems can
be reduced to one-body problems since the eigenstates of
the many-body Hamiltonian must be the Slater determinant
of the single-particle states. In addition, with full translation
symmetry, there are two good quantum numbers, namely, the
two components of the 2D momentum �k. Associated with
two sublattices, the Haldane model and checkerboard model
therefore become collections of two-level systems (one for
each �k), so the LZ theory, which considers a transition of two
levels, can be applied. As we mentioned earlier, the particles in
the conduction bands and holes in the valence bands generated
by the quench process are the topological defects in our models
thanks to the analogy between the quantum Hall effect and
superfluidity. In the following, we will apply LZ theory to both
the Haldane and checkerboard models and compare the results
with those of KZ theory.

For the Haldane model near the K (or K ′) point where the
gap closes at critical time, the low-energy Hamiltonian reduces
to

HK (�k) =
(

m(t) + η̄ vf k e−iφ

vf k eiφ −m(t) − η̄

)
, (9)

where m(t) = t
τ

, with 1
τ

being the quench rate; η̄ is a constant;
vf is the velocity of particles near the K (or K ′) point;
and �k = ke−iφ is the 2D momentum. Note that the linear
dependence of |�k| in the off-diagonal matrix elements captures
the property of the linear dispersion near the K (or K ′)
point. As a result, the transition rate of the two energy levels

�(�k) ∼ e
−πv2

f
|�k|2 τ

h̄ gives the topological defect density ntopo ∼∫
d�k �(�k) ∼ h

v2
f τ

∝ τ−1, a power-law relation with the same

power as KZ theory predicts.
For the checkerboard model, setting ξ ′ = −ξ ′′ = 0.5 to

simplify the calculation without loss of generality, the Hamil-
tonian near the gap-closing point K̄ = (kx,ky) = (π,π ), after a
unitary transformation such that it satisfies the initial condition
LZ theory requires that one band is fully occupied and the other
is empty, can be expressed as

HK̄ (�k) =
( −V −i

4 k2e2iθ

i
4k2e−2iθ V

)
, (10)

where �k = keiθ and V = t
τ

. In this model, the off-diagonal
matrix elements have quadratic dependence on |�k| due to the
quadratic band structure near the band-touching point. Thus,

the transition rate �(�k) ∼ e
−πτk4

16h̄ , and ntopo ∼ τ−0.5, which also
agrees with the prediction of KZ theory.

IV. QUENCH DYNAMICS WITH EDGES

The presence of edges breaks translation symmetry at least
in one direction, and we can no longer reduce the problem to a
collection of two-level systems. Instead, we numerically study
the slow quench process in the two models by considering
strips infinitely long in the y direction with finite width in the
x direction with open boundary conditions (OBCs), keeping
ky as a good quantum number.

Initially, we prepare the system in the ground state of the
initial Hamiltonian H0 and consider the half-filling case in
which the lower bands are filled. During the slow quench pro-
cess, we divide the whole process into many time periods such
that the Hamiltonian H (t) barely changes during each period
	t . From t to t + 	t , the eigenstate of H (t) evolves approxi-
mately with a phase e−i

Eα (t)
h̄

	t , where Eα is the corresponding
eigenenergy. Taking advantage of the simple evolution of the
instantaneous eigenstates, we expand the wave function by the
set of the instantaneous eigenstates of H (t) so that the evolution
of the wave function from t to t + 	t can be expressed
as ψβ(t + 	t) = ∑

α

e−iEα (t)	t/h̄ |φα(t)〉〈φα(t)|ψβ(t)〉, where

β labels the βth eigenstate of H0 and |φα(t)〉 and Eα(t)
represent the αth eigenstate of H (t) and the corresponding
eigenenergy. At the end of the quench process, we count the
contribution of the initial states to each eigenstate of the final
Hamiltonian Hf .
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FIG. 4. Topological excitation density versus quench rate in a
log-log plot for (a) the Haldane model and (b) the checkerboard model.
Considering strips infinitely long in the y direction with L sites in
the x direction with PBC (no edge), our data and the results from
Landau-Zener (LZ) theory are shown for comparison. We perform
finite-size scaling on our data such that n′

topo(τ−1Lβa ) = Lγa ntopo(τ−1)
is size independent in the insets, with βa and γa being the scaling
parameters and a being the model label (H for the Haldane model and
C for the checkerboard model.) According to LZ theory, τ−1

a ∼ kβa ∼
L−βa , with βH = 2 and βC = 4. In addition, ntopo ∼ L−1, meaning
γH = γC = 1. Our fitting scaling parameters are βH = 1.9332, γH =
0.9701, βC = 4.2266, and γC = 1.063, consistent with the scaling
analysis. The black lines are the fitting lines for the powers α. In the
Haldane model, α = 1.0000 in the (relatively) fast quench regime
(slope of the dashed line), and α = 0.5008 in the slow quench regime
(slope of the dotted line). In the checkerboard model, α = 0.4925
in the fast quench regime, and α = 0.2502 in the other regime.
In each model, five systems with L = 16, 20, 40, 60, and 80 are
considered.

V. NUMERICAL RESULTS

A. Bulk excitation

In order to test the numerical accuracy, we first follow the
quench evolution with periodic boundary conditions (PBCs)
applied in the x direction, instead of OBCs. In this case there
is actually no edge, and we can reduce the problem to two-level
systems, as discussed earlier. This allows us to compare our
numerical results with those of the LZ theory (taking discrete
kx values for finite strips). In Figs. 4(a) and 4(b), our data in both
models agree with LZ theory very well. In addition, we find that
the excitation density ntopo and the quench rate 1

τ
have power-

law relations with different powers α in the (relatively) fast-
quench and slow-quench regimes; α in the fast-quench regime
agrees with the theoretical value that the KZ and LZ theories
predict, but it becomes half of the expected value in the slow-
quench regime. In the inset of Fig. 4(a) for the Haldane model,
α (slope) at fast quenches is 1.0000 and becomes 0.5008 at slow
quenches; in the inset of Fig. 4(b) for the checkerboard model,
α is 0.4925 and 0.2502 in the fast- and slow-quench regimes,
respectively. The halved powers in the slow-quench regime are
due to the finite-size effect. For systems with finite width in
the x direction, kx takes discrete values, so that the transition
occurs dominantly at kx = 0 if we shift the critical point to
the origin; at other kx values far from the origin, the dynamics
is adiabatic. Therefore, the diabatic dynamics becomes one-
dimensional (along ky at kx = 0), leading to an exponent half
that of the 2D system.

FIG. 5. Edge excitation vs quench rate in a log-log plot for (a) the
Haldane model with zigzag edges and (b) the checkerboard model.
System sizes L = 16, 20, 40, 60, and 80 are considered.

B. Edge excitation and the excitation-generation mechanism

Now turning to the cases with edges, we consider strips
with OBCs and zigzag edges for the Haldane model. Since ky

is now the only good quantum number, we will simplify the
notation by using k for ky in the following. In the presence
of edges, a system will have edge states in a topologically
nontrivial phase. If the system were in the ground state for
the half-filling case, the bands below the Fermi energy EF

would all be occupied, and the others would all be empty.
Since edge states cross the bulk gap, the electron occupations
on edge states in the ground state take the form of a step
function �(EF − E), where �(x) = 1 for x > 0 and �(x) = 0
otherwise. Under a quench process, however, the system cannot
evolve adiabatically near the critical time and hence cannot
stay in the ground state. Instead, excitations will be generated
both in the bulk and on the edge states. We can expand the
eigenstates of the final Hamiltonian Hf through those of the
initial Hamiltonian H0 (half filling) at each k as |ψ(k)〉(f )

α =∑L
β=1 ωαβ(k)|ψ(k)〉(0)

β , where |ψ(k)〉(f )
α and |ψ(k)〉(0)

β denote
the αth and βth eigenstates of Hf and H0, respectively, with
ωαβ(k) = (0)

β 〈ψ(k)|ψ(k)〉(f )
α ; L is the width in the x direction

(so there are L states.) Assume the states have energies in
ascendant order, namely, E(i)

1 < E
(i)
2 < · · · < E

(i)
L , with i = f

and 0. The edge states of Hf are |ψ(k)〉(f )
L/2 and |ψ(k)〉(f )

L/2+1,
and the (total) edge excitations nedge can be defined as

nedge =
L/2+1∑
α=L/2

∫
dk

⎧⎨
⎩

L/2∑
β=1

|ωαβ(k)|2�[
E(f )

α (k) − E
(f )
F

]

+
L∑

β=L/2+1

|ωαβ(k)|2�[
E

(f )
F − E(f )

α (k)
]⎫⎬⎭, (11)

the deviation of the electron occupations on edge states from
their ground-state occupations at the end of the quench. In
Figs. 5(a) and 5(b), we investigate nedge with various quench
rates and find distinct behaviors in three regimes of the
quench rate. In regime I, nedge decays as the quench rate
decreases, consistent with the physical intuition. In regime
II, unexpectedly, nedge increases as the quench rate decreases,
displaying an anti-KZ behavior. In regime III, it seems to obey
the KZ mechanism again.

To understand the behaviors of nedge, especially the anti-KZ
behavior, we examine the formation and evolution of the
edge states, starting with the moment when the band gap
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FIG. 6. Schematic diagrams for electron occupation of one branch
of edge states (a) at the critical time and (b) after the critical time. The
light gray curve is the other edge state, which can be ignored in the
quasiadiabatic regime due to the lack of edge-state mixing. kD and
kF denote the Fermi energy locations at the critical time and at some
moment after the critical time, respectively.

closes and edge states just begin to form in the Haldane
model. At the critical time, conduction and valence bands
strongly mix near the band-gap-closing point kD and form
edge states. Except for the slowest quench rate, which we
will comment on later, we can ignore the coupling between
states on opposite edges and focus on one branch of the
edge states, pretending the other edge does not exist. We can
schematically express the branch of the edge states of interest
as ψedge(k) = a(k)ψc(k) + b(k)ψv(k), where ψc and ψv denote
the contributions from the conduction and valence bands before
the gap closing, respectively, and a(k) and b(k) represent the
corresponding weights, depending on k but not the quench
rate, with a2(k) + b2(k) = 1. As illustrated in Fig. 6(a), edge
states with k < kD are predominantly from valence bands,
while those with k > kD are predominantly from conduction
bands. This feature is expected to persist as the gap opens
up, as illustrated in Fig. 6(b). We now introduce a regime of
“quasiadiabatic” time evolution after the gap opens; namely,
the quench rate is small enough that there is no transition
between edge states and bulk states but fast enough that edge
states remain at the same edge. That is, an edge state at one
edge does not evolve into the other at the opposite edge with
the same k when their energies cross. For sufficiently wide
strips such a regime is guaranteed to exist as the coupling
between the edges is exponentially suppressed. In this regime
the occupation number of an edge state is well approximated
by b2(k) at the point of gap closing, which is close to 1 for
k < kD and close to zero otherwise. With the gap opening up,
however, the Fermi wave vector kF increases [see Fig. 6(b)],
resulting in significant numbers of holelike edge excitations for
kD < k < kF . On the opposite edge we expect equal numbers
of particlelike excitations. Increasing the quench rate induces
relaxations of the edge excitations into the bulk, giving rise to
the anti-KZ behavior. Further increasing the quench rate, on
the other hand, induces additional edge excitations, especially
outside the range kD < k < kF . This brings us back to the
usual KZ behavior. Figures 7(a) and 7(b) show the electron

FIG. 7. Electron occupation along k with different quench rates
for (a) the Haldane model and (b) the checkerboard model. The dotted
lines mark kD and kQ (the Fermi level location at the critical time for
the Haldane and checkerboard models, respectively), and the dashed
curves represent the electron occupation of the edge state in the ground
state. The insets show the edge excitation nedge corresponding to each
quench rate. The edge excitations in the shaded area are particle
excitations, and they are hole excitations otherwise.

occupation distribution of one edge state along k in different
quench regimes, and the insets show the dominance of hole
excitations on this edge state, supporting our argument.

Finally, the KZ behavior in regime III is due to essentially
true adiabatic evolution in which edge states on opposite edges
are mixed. This is a finite-size effect due to the exponentially
small coupling between the edges. Consistent with this un-
derstanding, we find it is more prominent in small systems,
as shown in Fig. 5. In the thermodynamic limit, without the
particle leaking from edges, the edge excitation numbers will
eventually saturate in the slow quench, instead of going to zero
as we observed at finite strip width.

VI. CONCLUSION

We numerically studied the dynamics of the Haldane model
and the checkerboard model in slow-quench processes through
topological quantum phase transitions with 	C = 1 and 2,
respectively. We showed the agreement of the power-law
relations of the bulk excitation and the quench rate with the
predictions of the KZ and LZ theories. In addition, an anti-KZ
behavior of the edge excitation was found in both models. We
provided a physical picture for this counterintuitive feature
which originates from the unrelaxable nature of excitations on
edge states since the edge states form.
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