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We numerically investigate the quantum phases and phase transition in a system made of two species of
fermionic atoms that interact with each other via s-wave Feshbach resonance and are subject to rotation or
a synthetic gauge field that puts the fermions at Landau level filling factor v = 2. We show that the system
undergoes a continuous quantum phase transition from a v; = 2 fermionic integer quantum Hall state formed
by atoms to a v, = 1/2 bosonic fractional quantum Hall state formed by bosonic diatomic molecules. In the
disk geometry we use, these two different topological phases are distinguished by their different gapless edge
excitation spectra, and the quantum phase transition between them is signaled by the closing of the energy gap in
the bulk. Comparisons will be made with field-theoretical predictions and the case of p-wave pairing.
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I. INTRODUCTION

Topological phases of matter and the phase transitions be-
tween them have been the focus of much recent theoretical and
experimental interest. The integer and fractional quantum Hall
states, which are initially realized in a two-dimensional elec-
tron gas placed in strong magnetic fields, are prime examples
of such topological phases. Trapped ultracold atoms constitute
aunique experimental setup to study condensed-matter Hamil-
tonians in a clean and well-controlled environment [1,2]. One
of the most interesting phenomena in the cold-atom system is
the crossover from a weakly paired atomic fermionic superfluid
to a strongly paired bosonic molecular superfluid as the pairing
interaction is tuned through an s-wave Feshbach resonance [3].
When the trap potential of the cold atoms is rotating, the
Coriolis force experienced by the atoms leads to an effective
perpendicular magnetic field, and the quantum Hall states
are expected in the fast rotation limit [1,2]. Recently, ways
of engineering synthetic magnetic fields to realize quantum
Hall states in cold-atom systems have been proposed, such
as the strained optical lattice [4], optical dressing [5,6] of
atoms in a continuum, and laser-induced tunneling in an optical
lattice [7-9]. Therefore, it is interesting to investigate what
happens to these quantum Hall states in the presence of the
pairing interaction between fermions.

With the s-wave pairing, it was pointed out by Yang and
Zhai [10] that in the quantum Hall regime, instead of a
crossover, the system should undergo quantum phase transi-
tion(s) from a quantum Hall state formed by fermionic atoms
at large positive detuning to a topologically distinct quantum
Hall state formed by bosonic molecules at large negative
detuning. They used field-theoretical methods to study the
special case in which the fermionic state is an integer quantum
Hall state at Landau level filling factor vy = 2 and showed
that the system must undergo a quantum phase transition to a
bosonic fractional quantum Hall state at v, = 1/2 as a function
of detuning, with the transition occurring near the Feshbach
resonance (FR). These two phases, as well as a continuous
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quantum phase transition (QPT) between them, were indeed
found in a numerical study of a Hubbard-like lattice model
that includes only the fermionic atoms (or a single-channel
model) [11] on a torus.

In the present work we perform a numerical study of the
original two-channel model of Yang and Zhai [10] on a disk
through the exact diagonalization method. There are three
motivations to perform the present study. (i) It allows for a more
direct and quantitative test of the predictions made by Yang and
Zhai [10]. (i) The disk geometry is complementary to the torus
geometry used by Ref. [11], as it allows for studies of the edge
states, which are characteristics of the topological order. More
importantly, it is directly relevant to experimental systems.
(ii1) In our previous study of the closely related system with
p-wave pairing interaction between spinless fermions [12], we
found a new phase that is intermediate between the fermionic
integer quantum Hall (FIQH) and bosonic fractional quantum
Hall (BFQH) phases. Such a phase was missed by the effective-
field theory [13]. Therefore, in the s-wave pairing case, it
is interesting to explore whether there is also a similar new
phase.

The remainder of this paper is organized as follows. The
microscopic model Hamiltonian we studied numerically is
introduced in Sec. II, and the low-lying energy spectrum and
ground state phase diagram are presented in Sec. III. In Sec. IV,
we compare our present results with the p-wave pairing case
and discuss the reason for the absence of the Bose-Fermi mixed
phase in the s-wave case. Section V gives the summary and
discussion.

II. MODEL

To study this QPT, we consider two species of fermions
confined to a disk under rotation or a synthetic gauge field
which gives the same effect as a strong magnetic field. We
assume the Landau level spacing is so large that all particles
stay in the lowest Landau level (LLL). We are interested in the
case with the Landau level filling factor vy = 2 (composed of
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two integer quantum Hall states, vy = vy, = 1). When the
system is tuned through s-wave FR, two fermions of different
species can pair up to form an s-wave bosonic molecule with
twice the “charge.” Between two fermions of the same kind,
however, there is no interaction. Note that when all fermions
pair up as bosons, the boson number is half of the total particle
number, and the bosonic Landau level degeneracy, which is
proportional to particle charge, is doubled. As a result, the
bosonic filling factor v, will be }1 of vy, namely, v, = % In
addition, the corresponding bosonic magnetic length square
12, which is inversely proportional to particle charge, will be
half of the fermionic magnetic length square l}%, lﬁ = %l fc With
rotational symmetry, this system is described by the following
Hamiltonian:
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where m is the angular momentum of the single-particle orbital
in the LLL with b,, (b)) and £, (fJ.) being the correspond-
ing annihilation (creation) operators for bosons and fermions.

The first term (chemical potential) controls whether atoms
should stay unbound or form molecules. § in this term is
the detuning referring to the energy difference between un-
bound and paired fermions. The “detuning” we used here is
from FR. The second term describes the pairing interaction
through s-wave FR. The matrix element of this term can be
written as 8my,my,m3 = g‘sml,M BM.m2+1n3 (0,M|I’I’l2,l’f13), where
g represents the strength of the s-wave pairing, |m,,m3) =
lm2)y ® [m3), is a two-body state with two fermions of
different species with angular momenta m, and ms, and |0, M)
is a two-body state with the relative angular momentum equal
to zero and center-of-mass angular momentum M. This term
allows only two fermions of different species with relative
angular momentum Am = 0 to pair up, and the formed bosonic
molecule will have angular momentum m; = M = m, + m3
based on angular momentum conservation; in other words,
the boson itself has no intrinsic angular momentum (s wave).
The Clebsch-Gordan-like coefficient (0, M |m,,m3) can be
evaluated through
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where z, = x, + iy, is the complex coordinate of the ath
particle on a disk in the LLL, d*z, = =dx,dy,, Am is the
relative angular momentum of a pair, and C), = n,(r:l”'n)! is
the binomial coefficient. The sum of n is over all inte-
gers bounded at max(0,Am — m;) < n < min(Am,m;). The
last term in Eq. (1) is the two-body repulsive interaction
between bosons for stabilizing the BFQH state with v, =
%. Here we include only the zeroth Haldane pseudopoten-
tial [14], which makes the v, = 1/2 Laughlin wave func-
tion the exact ground state when we have only bosonic
molecules. The matrix element is expressed as v(Y =
v O > (my,my|0,M)(0,M|ms3,my4), where v® denotes the
strength of the zeroth-order Haldane pseudopotential. In our
system, we are considering the case at temperature 7 = 0
in which changing v® has no other effect than changing the
overall energy scale. In reality, when 7 > 0, this statement is
still valid as long as v is much larger than kzT. Thus, we
choose v® = 1 in our calculation.

In our model, both the total charge N, and the total angular
momentum My are good quantum numbers. N is the sum of
the numbers of two species of fermions and twice the number
of bosons:

Nt()l :2Nb+NfT+Nf¢
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The prefactor 2 in the bosonic part comes from the fact that a
boson consists of two fermions. The total angular momentum
My is the sum over all orbitals occupied by bosons and
fermions:

Moo =Y mblbw+ Y fl, fuo). )

m

In our numerical calculation on disk geometry, we use Ny, and
M to label the sector where the calculations are performed.

III. NUMERICAL RESULTS

The Hamiltonian H in Eq. (1) has two limits. When § > 0
and |8| > g, unpaired fermions have lower energy than bosons,
so the chemical-potential term drives the ground state of the
system toward being a FIQH state at vy = 2 (composed of
two copies of FIQH state vy, = 1), which does not need to
be stabilized by any interaction between the fermions. On the
other hand, for § < 0 and |§| > g, bosonic molecules have
lower energy and dominate in the ground state of the system.
Owing to the existence of the bosonic repulsive two-body
interaction, the ground state becomes a Laughlin-type BFQH
state with v, = % In the following, we will inspect the low-
energy spectra to distinguish between these two phases.

Figure 1 shows the low-energy spectra for a system with
Nyt = 12 given 9 up (down) fermionic orbitals and 18 bosonic
orbitals at th = 29t033. Instead of providing the least orbital

numbers ( N‘]‘)"(/ " )71) + 1), we give three more orbitals for each

species of fermions and seven more orbitals for bosons to allow
the appearance of the edge states [15]. Under the FIQH limit,
with the least orbitals the system will have the lowest-energy
state only when it forms a FIQH state in which there are
no bosons and all fermionic orbitals are occupied, namely, at
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FIG. 1. The energy spectra for a system on a disk with Ny, = 12
fermions, given 9 fermionic orbitals and 18 bosonic orbitals. The 20
lowest-energy states are plotted for each M,,. The ground state at
Mo = M, = 30 is separated by a large gap from all excited states
for(a)g =0.5and$§ = Sand (b) g = 4and§ = 5, which are under the
FIQH limit. The numbers right above the low-lying states represent
their (near) degeneracy. At M, > M,,, many low-lying states are
found, and their numbers are consistent with the edge-state counting.
We find a different set of low-lying states for M, > My, = 30 for
(c) g=0.5and 6 = —10 and (d) g =4 and § = —10, which are
under the BFQH limit. These correspond to the Laughlin-like ground
state at Mo = My, = 30 and edge states for M, > My, = 30. The
numbers of these states indicated in the plots match the expected
numbers of edge states. (N, ) indicate the expectation values of boson
numbers in the corresponding states pointed to by small arrows. The
Hilbert space dimensions for the situation where Ny, /2 are bosons
and Ny, /2 are fermions for fermions and bosons at M, = 30 are
about (£4)” = 400 and % = 364, respectively.
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For this case with Ny = 12, Mg, = 30. With extra orbitals,
edge states degenerate with the FIQH state are expected to
appear at M, > M, but not at My, < M. Since we have
two species of fermions (1 and | ), the Hilbert space of the
fermionic part of the system is the tensor product of the Hilbert

space of each species of fermion. As a result, the counting
of the fermionic edge states is U(1) x U(1). Some examples
are shown in Table I [15]. By counting and comparing the
low-lying states with the numbers of edge states at various
M, we can demonstrate the system forms a FIQH state. In
Figs. 1(a) and 1(b) with § =5 at g = 0.5 (weak coupling)
and g = 4 (strong coupling), the consistency of the numbers
of the low-lying states (the numbers right above the low-lying
states) and the edge states illustrates that the system stays
in the FIQH phase. Note that the low-lying states are no
longer exactly degenerate due to the existence of the pairing
interaction. Moreover, we also inspect the boson numbers in
the ground and first excited states at M. The former is very
close to zero, and the latter is about 1, as expected. The energy
gap between the ground state and the first excited state AE,
mainly contributed by the chemical-potential term, which is
about 3|§| (losing two fermions and gaining a boson), is also
observed in Fig. 1(a), as expected.

In the BFQH limit § — —oo, the system contains N, =
Niot /2 bosonic molecules at v = % and has the Laughlin wave
function

Nj

Nb _
2 :
Y—1(z1,22,...) = | |(Zi—Zj) e k=

i<j

Iz 2
412

(6)

as its exact ground state. The corresponding total angular
momentum is My, = 2 X Nyp(N, — 1)/2 = My, the same as
that in the FIQH limit. To identify the BFQH phase, we
compare the numbers of the low-lying states with the numbers
of edge states of Laughlin-type states which correspond to
U(1) counting in Table I. In Figs. 1(c) and 1(d), we see
that both countings are consistent, meaning that the system
forms a Laughlin-type BFQH state with v = % at § = —10.
In addition, the low-lying states at M, in both weak- and
strong-coupling regimes have nearly six bosons, the maximum
number of bosons. In Figs. 1(b) and 1(d), the bigger deviation
of the particle numbers from the expected values in the strong-
coupling regime tells us that the pairing term provides fermions
more chances (bigger matrix elements) to jump back and forth
between bound and unbound states. One thing very different
from the FIQH limit is that the energy gap at M, in Fig. 1(c) is
much smaller than 3|§| because the low-energy excited states
are still made dominantly of bosons (almost no fermions) with
different angular momentum configurations. It turns out the
bosonic two-body interaction becomes the main contributor to

TABLE . Edge-state counting. AM is the exceeded angular momentum compared to M ; € is the root configuration of the Laughlin state,
and € represents the change in the configuration where one «-type particle changes its angular momentum by i, where o =% or |. In our
model, the edge counting for fermionic Hilbert space corresponds to the U(1) x U(1) case, and that for bosonic Hilbert space corresponds to
the U (1) case. Note that some possibilities may be prohibited by the number of extra orbitals.

AM
0 1 2 3
u) €o €0+ € €+ 261, €t+e € +3e, etete, €te,
U x U(l) € €0+ € € +2€, € +el, otel +ef €0 +3€l, € +es e, e+ e,
€+el+el, e+e ey, €+2e +ef,
60+2€1$—|—61T
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FIG. 2. Plot of the energy gap (A = E; — Ey, where E; and E,
are the energies of the ground state and the first excited state in the
M, sector) versus § for systems with Ny, = 10,12,14, and 16 at M.
(a)For g = 0.5. There is one gap-closing point §. for each curve. Inset:
blowup of the gap-closing region. (b) For g = 4. There is still one
gap-closing point for each curve, despite the existence of another local
gap minimum on the left which fades away as system size increases.
Inset: values of gap minimums corresponding to the phase boundary
versus inverse of system size.

the energy gap rather than the chemical-potential term in this
case.

In order to reach the appropriate ground states for continu-
ously varying § and to save calculation efforts, given a specific
Nyot, from now on we give the fewest orbitals [%fijl) + 1]for
each kind of particle and focus on the My, sector, which is the
same for any § in our calculation. To explore the phase diagram,
we drive the system from the FIQH phase to the BFQH
phase by changing § at various g. Since topological quantum
phase transitions between distinct gapped phases must be
associated with gap closing, we investigate the behavior of
the gap A while varying § in Figs. 2(a) and 2(b) at g = 0.5
and g = 4, with A defined as the energy difference between
the first excited state and the ground state. Four system sizes
with Ny = 10,12,14, and 16 are considered. In Figs. 2(a)
(weak-coupling regime) and 2(b) (strong-coupling regime), the
observation of one gap-closing point signifies there exists only
one phase boundary, separating the FIQH and BFQH phases, in
the entire phase diagram. Although another local gap minimum
in the strong-coupling regime in Fig. 2(b) is observed at small
sizes, it fades away as the system size grows and does not
signal gap closing or another phase boundary. From Fig. 2
[see also the inset in Fig. 2(a)], the nonzero gap (close to
zero but not exactly zero) at . is due to the finite-size effect,
and it approaches zero with increasing system size, consistent
with the feature of a continuous phase transition. The inset of
Fig. 2(b) shows the values of the gap minimums corresponding
to the phase boundary decrease with system size, although the
values oscillate with the parity (even or odd) of the particle
number, which is also due to the finite-size effect. In addition,
we inspect the average boson numbers (N;) of the ground state
and the first excited state in Figs. 3(a) and 3(b) and find (N;)
of the ground states in both pairing regimes increase smoothly
and monotonically when § changes from positive (FIQH phase)
to negative (BFQH phase). This is also strong evidence of a
continuous phase transition.

Based on the locations of the gap closings, we obtain a
phase diagram in Fig. 4. This phase diagram possesses a single
phase boundary, which starts at zero detuning (§ = 0) in the
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FIG. 3. The expectation values of boson numbers (N,) in the
ground state and the first excited state versus & for the system with
Nyt = 16 at (a) g = 0.5 and (b) g = 4. The vertical black lines
indicate the critical points.

weak-coupling (or narrow-resonance) limit (g = 0) and moves
toward negative detuning (§ < 0) with increasing g. These
features of the phase diagram are in qualitative agreement with
the predictions of Yang and Zhai [10].

IV. COMPARISON WITH p-WAVE PAIRING

In the p-wave pairing case (spinless case) in our previous
work [12], we found an intermediate phase called the coher-
ent Bose-Fermi mixture phase in the strong-coupling region
between the FIQH phase at vy = 1 and the BFQH phase at
v, = 1/4. However, we do not find such a phase in our present
study (spin-1/2 case). The purpose of this section is to analyze
the origin of this difference. To get a hint, in Fig. 5, where the
g term dominates (g = 1,8 = 0, and v® = 0), we find that the
fermion fraction of the ground state increases with the system
size, different from the observation of a constant fermion
fraction (independent of system size) in the spinless case. This
suggests the fermions prefer to stay unbound instead of forming
bound molecules, despite the fact that the Hamiltonian is purely
off-diagonal between bound and unbound states, thus favoring
an equal-weight mixture between the two. The increase in
fermion number, therefore, must be due to the larger phase
space available to fermions compared to bosons. This suggests
that as system size increases, the phase-space sizes grow at an
unequal rate for fermions and bosons in a way that favors the

former.
5 .
3
FIQH
21 —
o mtotzlg
0 Byt==< |
1 0Ny =14
AN, =16
0
1

FIG. 4. Phase diagram with system sizes Ny, = 10,12,14, and
16. The FIQH state is characterized by two branches of edge modes,
and the BFQH state has only one branch.
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FIG. 5. The average fermion fraction <NN—£3 in the ground state at
g =1,8 =0, and v® = 0 versus the system size on the left axis and
the ratio of the size of the fermionic Hilbert space HS ) to the sum of
the sizes of the fermionic and bosonic Hilbert spaces HSy) + HS;
in the spin-1/2 case vs the system size on the right axis, regarding
HS(s) and HS;) in the spinless case as a unit. Five system sizes are
explored with N, = 10,12,14,16, and 18.

To quantify this idea, we estimate the size of the
fermionic Hilbert space for each species of fermions, which
. NI . . . f
is IR AAY (choosing Ny positions for fermions frlom Ny
orbitals), where Ny is the fermion number and N(')"rb is the
fermionic orbital number. For the spinless case which has Ny
fermionic orbitals and N /2 fermions in the special situation
of an equal mixture of bosons and fermions, the size of the
1 3 Niot! . in- 1 1
Hilbert spgce is N 2 Ny 201 for the spin .1 / 2 case ?n which
each species of fermions has Ny./2 fermionic orbitals and

Niot/4 particles, the size is about [%]2, where the
power of 2 originates from the two species. On the other
hand, the size of the bosonic Hilbert space can be evaluated as
(N5 +Np—1)!

(Nb —DIN!
the bosonic orbital number, based on the nature of bosons in
which more than two bosons can occupy the same orbital. The
spinless case with two times as many bosonic orbitals has the
Hilbert space size —(é%f‘[tl;’;‘;‘(ﬁ ,_/ 41))!!, and the size in the spin-1/2
case is %M.

When the system size is small, both Hilbert spaces of
fermionic and bosonic parts in the spin-1/2 case are slightly
smaller than but comparable with their corresponding Hilbert
spaces in the spinless case. When the system size increases
(Niot — oo limit), the fermionic Hilbert space in both cases
has the same expansion rate as system size (~e%301*Not), but
the bosonic Hilbert space in the spin-1/2 case has a small
expansion rate (~e’2"1*Not) compared to the rate (~e03*1*Not)
in the spinless case due to the fact that given the same number
of bosons N, the spinless case at v, = 1/4 will have 4N,
bosonic orbitals, two times more than that in the spin-1/2 case
at v, = 1/2, leading to significantly different Hilbert space
sizes in these two cases, especially with a large number of
bosons. Therefore, in the thermodynamic limit, the Hilbert

space of the fermionic and bosonic parts in the spin-1/2 case

with N, being the boson number and N, being

are no longer compatible, resulting in the dominance of the
fermions, as shown in Fig. 5. In Fig. 5, the ratio of the size
of the fermionic Hilbert space HSy) to the sum of the sizes
of the fermionic and bosonic Hilbert spaces HSr) + H Sy
in the spin-1/2 case, regarding the corresponding sizes in the
spinless case as a unit, increases with increasing system size. Its
trend is consistent with that of the fermion fraction, indicating
the significance of the small expansion rate in the bosonic
Hilbert space (compared to the spinless case) even though
the difference is only the coefficient on the exponent. This
observation also explains the appearance of two gap minima
in Fig. 2(b). For a small system with Ny, = 10, the system is
trying to form a coherent Bose-Fermi mixture phase similar
to that in our previous work [12] and two apparent phase
boundaries that correspond to the two gap minima. As the
system size increases, this intermediate phase is disfavored,
and the second gap minima disappears accordingly.

Moreover, comparing the possible combinations of
fermions to form molecules, the spin-1/2 case has N2, /4 ways
to pair between up- and down-spin fermions, about a factor of
2 less than the spinless case, which has Ny (Nior — 1)/2 ways
to pair. This means that the spin-1/2 case has fewer channels
for fermions to resonate between bound and unbound states.
This also disfavors the coherent Bose-Fermi mixture phase in
the present case.

V. SUMMARY AND DISCUSSION

Using exact diagonalization of finite-size systems on a
disk, we investigated the topological phase transition from
a fermionic integer quantum Hall state composed of two
copies of an integer quantum Hall state of two species of
fermions to a bosonic fractional quantum Hall state made of
bosonic molecules, driven by an s-wave Feshbach resonance.
We demonstrated the existence of a continuous phase transition
from the fermionic integer quantum Hall phase to the bosonic
fractional quantum Hall phase and provided a phase diagram
which contains a single phase boundary. Our results agree
with earlier theoretical predictions [10] and a recent numerical
work [11] based on a different model. In addition, we argued
that the absence of the coherent Bose-Fermi mixed phase found
in a related work [12] is due to the imbalance between bosonic
and fermionic Hilbert space sizes in the present case.
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