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Abstract—The central executive system (CES) may be the most fundamental yet least understood component of
working memory. There is an ongoing debate about which brain regions underlie the top-down regulation of CES
during working memory tasks. The neural substrates and regulatory mechanisms of CES remain controversial
partly because few previous studies have been focused on comprehensive activation and deactivation joint anal-
ysis on all systems involved in all working memory stages, which have shown increasing importance in depicting
the neural configuration of working memory. To address these questions, we conducted a functional magnetic
resonance imaging study using a comprehensive activation-deactivation-behavior joint analysis to examine the
dynamics of a set of cortical systems in healthy subjects performing a modified Sternberg working memory task
which was designed to push the subjects to their limit in working memory and to introduce strong demands for
regulation by CES. We assessed brain activity during various working memory stages using general linear model
and single trial-stage estimation, and examined the relationship between the single trial-stage activity and behav-
ioral performance. We identified constant activation in the dorsal anterior cingulate cortex and anterior insula in
all working memory stages and its relationship with performance, which indicate the CES’s neural basis. We also
identified dynamic configuration of multiple downstream systems in different working memory stages, which indi-
cates the regulation mechanism of CES. � 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
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INTRODUCTION

Working memory (WM) refers to a limited-capacity

system that temporarily stores information and supports

human thought processes by providing an interface

between perception, long-term memory, and action

(Baddeley, 2012). Understanding its neural mechanism

is important for many applications including neuropsy-
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0306-4522/� 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

*Corresponding author.

E-mail address: wuxia@bnu.edu.cn (X. Wu).
Abbreviations: ACC, anterior cingulate cortex; AI, anterior insula;
aPFC, anterior prefrontal cortex; BOLD, blood oxygen level-dependent;
CCN, core control network; CES, central executive system; d, dorsal;
dACC, dorsal anterior cingulate cortex; DLPFC, dorsal lateral prefrontal
cortex; DMN, default mode network; FEF, frontal eye field; fMRI,
functional magnetic resonance imaging; FPN, frontoparietal network;
GLM, general linear model; IFG, inferior frontal gyrus; IPL, inferior
parietal cortex; IPS, intraparietal sulcus; l, left; LOC, lateral occipital
cortex; LTC, lateral temporal cortex; MNI, Montreal Neurological
Institute; MPFC, middle prefrontal cortex; PCC, posterior cingulate
cortex; PI, posterior insula; PMFG, posterior middle frontal gyrus;
pMTC, posterior middle temporal cortex; pRO, posterior Rolandic
operculum; r, right; ROI, region of interest; RT, response time; S-II,
secondary somatosensory cortex; STG, superior temporal gyrus; TEO,
inferior temporal cortex; v, ventral; V1, primary visual cortex; V3/V3a,
visual areas 3 and 3a; WM, working memory.
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chology, psychiatry, development, aging, treatment of

related deficits, and rehabilitation (Chacko et al., 2014;

Constantinidis and Klingberg, 2016; D’Esposito and

Postle, 2015; Dovis et al., 2012; Eriksson et al., 2015;

Hanslmayr et al., 2012; Kofler et al., 2010; Redick et al.,

2013; Stopford et al., 2012). In the WM model proposed

by Baddeley and his colleagues (Baddeley, 1974;

Baddeley, 2000; Baddeley and Wilson, 2002), human

WM comprises a central executive system (CES), a visu-

ospatial sketchpad, a phonological loop, and an episodic

buffer. It is proposed that the CES controls the information

flow to and from the slave components for temporal main-

tenance (Baddeley, 2012). This makes the CES the most

fundamental WM component, yet many studies over the

past decades have focused on single components of the

model, especially the slave components (Baddeley,

2012; Eriksson, et al., 2015; Miller and Erickson, 1996;

Pesaran et al., 2002). This result in the CES being the

least understood component and its neural substrates

being subject to debate.

There is an ongoing debate about which regions and

networks underlie the top-down control of CES during

WM tasks. Accumulating evidence suggests several
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candidate regions and networks in the prefrontal and

parietal cortices that may underlie CES functions (Xu,

2017), but no consensus has yet been reached. For

example, in an early opinion based on the individual

WM task activation results from 6 subjects, D’Esposito

et al. (1995) suggested that a set of frontal regions includ-

ing the anterior cingulate cortex and the dorsal lateral pre-

frontal cortex (DLPFC) forms the neural basis of the CES.

In later functional magnetic resonance imaging (fMRI)

studies, Osaka et al. (2007) and Osaka et al. (2004)

showed that subjects with longer memory spans exhibit

stronger activation in the ACC and inferior frontal gyrus

(IFG) and accordingly hypothesized that those regions

may be associated with the working attention control of

the CES. However, it is proposed that a set of dorsal fron-

toparietal areas comprising the bilateral frontal eye field,

superior parietal gyrus, and intraparietal sulcus are

essential for WM due to the areas’ robust activation dur-

ing WM tasks, forming a so-called WM network

(Courtney et al., 1997; Curtis, 2006; Leung et al., 2004;

Merrikhi et al., 2017; Pessoa et al., 2002; Wu et al.,

2018; Xu et al., 2014). These regions are also activated

when top-down attention control is implemented and are

thus believed to form a network for goal-directed attention

control (Corbetta et al., 2008), though whether they form a

‘‘WM network” or an ‘‘attention network” is a long-debated

issue. Some researchers have proposed that this fron-

toparietal network (FPN) stores task information during

both WM and attention tasks (Corbetta et al., 2002). A

recently proposed alternative opinion suggests that the

so-called central executive network for maintaining and

manipulating information in WM may be anchored in the

DLPFC and posterior parietal cortex (Bressler and

Menon, 2010; Menon, 2015). There is also an emerging

opinion that many cognitive processes including WM rely

on a shared neural mechanism for central executive con-

trol (D’Esposito and Postle, 2015; Harding et al., 2016);

namely, a core control network (CCN) that supports the

dynamic and effective production of diverse behaviors

(Corbetta, et al., 2008). The CCN’s specific components

remain unclear, but some studies indicate that they may

include the DLPFC, dorsal ACC (dACC), anterior insula

(AI), inferior frontal junction, and posterior parietal cortex

(Cole and Schneider, 2007). However, Dosenbach et al.

(2006) hypothesized that a CCN comprising areas com-

monly activated during highly demanding tasks, which

mainly includes the dACC and AI, may provide top-

down regulation of downstream systems to guarantee

performance in various goal-directed tasks, though

whether and how this core regulation system applies to

WM remains unclear. Controversy on which of the fron-

toparietal network and the ACC-AI network plays the core

role in WM also remains. A recent magnetoencephalogra-

phy study suggested that the former is responsible for

top-down modulation while the latter plays a more down-

stream role in WM (Wallis et al., 2015), which is in conflict

with some previously proposed models (Dosenbach,

et al., 2006).

In summary, the neural basis of the CES, its relation to

the CCN, and its functions in relation to WM remain

elusive. The limited understanding of its neural
substrates may be associated with the limitations of

previous studies, which for decades have been focused

on brain activation during various WM conditions

(Cohen et al., 2014; Rypma et al., 1999), with fewer sys-

tematically examining WM activation, deactivation, and

the activation-deactivation relationship. However, several

recent studies have demonstrated the importance of

deactivation in WM (Anticevic et al., 2013; Anticevic

et al., 2010; Piccoli et al., 2015), indicating that the

hypotheses and network models mentioned above, which

only been considered within regions activated during WM,

may hinder the identification of regions associated with

the CES and their mechanisms for regulating the slave

components. According to the literature, the CCN shows

robust activation in many cognitively demanding tasks

including WM, and was proposed to regulate the other

downstream systems according to different task sets.

We hypothesized that during WM, the core regions of

the CCN may function as the neural basis of the CES,

regulating the slave systems according to demands of dif-

ferent WM stages. A comprehensive analysis of the spa-

tial and temporal pattern of both activation and

deactivation may help to identify the neural basis of the

CES and scrutinize its regulation to other systems.

To address these questions and test our hypothesis,

we conducted an fMRI study using a general linear

model (GLM) and single trial-stage analysis to examine

brain activation and deactivation in healthy subjects

performing a modified Sternberg WM task with an

event-related design. The task was designed to push

the subjects to their limit in WM and to introduce

significant stage-dependent activation/deactivation of

multiple subsystems which demands for dynamic

regulation by CES. We measured blood oxygen level-

dependent signals as a proxy for brain activity during

the encoding, maintenance, and probe stages of WM

and investigated the relationship between stage-

dependent brain activity and behavioral performance.

EXPERIMENTAL PROCEDURES

Participants

Nineteen young healthy right-handed individuals (11 men,

mean age: 25.26 years, standard deviation: 2.79 years)

with normal or corrected-to-normal vision were recruited.

All participants were students from Beijing Normal

University. Each subject filled a screening form to report

psychiatric history and drug use. None had a history of

psychiatric illness or recreational drug usage, or was

currently taking medications that could affect the central

neural system. This study was approved by Beijing

Normal University’s Institutional Review Board and

conducted in accordance with the principles of the

Declaration of Helsinki. All participants gave written

informed consent. Each participant received a

compensation of 100 Chinese Yuan. All participants

participated an out-scanner task training session in a pre-

scanning visit, were fully informed about the scanning

environment, safety rules, and scanning procedure during

their pre-scan visit. One woman quit the experiment

halfway, so her data were excluded from analysis.
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Modified Sternberg’s WM task

The Sternberg WM Task is an established test of WM

performance and tool for investigating the WM process

(Peterburs et al., 2016; Reed et al., 2017). Each trial

was divided into a 2-s baseline stage with a fixation point

in the middle of the screen; a 3-s encoding stage during

which a load condition of 0, 3, 5, or 9 letters was dis-

played; a 7-s maintenance stage with fixation; and a

300-ms probe stage during which a letter was shown in

the middle of the screen. The inter-trail interval randomly

varied between 5 and 7 s (Fig. 1A). If letters were pre-

sented during the encoding stage, then the subjects were

asked to memorize the letters, remember them during the

maintenance stage, and indicate as quickly as possible

whether the letter displayed in the probe stage matched

any of the memorized letters by pressing the ‘‘L” or ‘‘R”

key for a match or mismatch, respectively. Capital letters

were randomly selected from the alphabet, excluding L or

R. Hash tags (‘‘#”) were used in place of unoccupied letter

spaces (Fig. 1A). If no letters were presented during the

encoding stage, then ‘‘L” or ‘‘R” was presented during

the probe stage, and the subjects were asked to press

the corresponding key as quickly as possible. The number

of the letters to remember in the highest load condition

was setting to 9 to increase the difficulty of the task and

push the subjects to challenge their limit and to introduce

significant stage-dependent activation/deactivation of

multiple subsystems which demands for dynamic regula-

tion by CES. The whole task was divided evenly into 3

task runs. The total number of the trials was 180. Data

of the participants who had the percentage of correct-

response trials higher than 70% were accepted for further

analysis.
MRI data acquisition and preprocessing

All MRI data were acquired using a 3-tesla Magnetom

Trio whole-body MRI system (Siemens, Munich,

Germany) at the Beijing Normal University MRI Center.
Fig. 1. A: Experimental paradigm. Under the 3-, 5-, and 9-letter load con

instructed to memorize the letters presented during encoding stage and then q

the letter displayed during the probe stage matched any of the memorized let

or ‘‘R” key for a match or a mismatch, respectively. Under the 0-letter load

presented during the encoding stage, and subjects were instructed to press

soon as the corresponding letter was presented. B: The overlapped activation

maintenance, and probe stages highlighted 3 core regions (white) including

right AI that were consistently activated in all 3 working memory stages. Ab

insula; dACC, dorsal anterior cingulate cortex; l, left; r, right.
Functional scanning was performed using a T2*-

weighted echo-planar imaging sequence (field of

view= 200 mm � 200 mm, echo time= 30 ms; repetition

time= 2 s; flip angle= 90�; axial slices per volume= 33;

matrix size = 64 � 64; slice thickness = 3.5 mm; voxel

size is 3.13 mm � 3.13 mm � 3.5 mm). For each task

run, 600 whole-brain volumes were recorded. High-

resolution anatomic images were acquired with a

T1-weighted 144 slice MPRAGE sequence (repetition time,

2530 ms; echo time, 3.39 ms; flip angle, 7�; inversion

time, 1100 ms; voxel size, 1 mm � 1.33 mm � 1 mm).

The subjects were informed of the importance of

keeping their heads still in the scanner, and head

movement was strictly controlled with a set of memory

foam adapters.

We used SPM8 software (http://www.fil.ion.ucl.ac.uk/

spm/software/spm8/) for preprocessing including

temporal processing (slice timing), motion correction,

anatomical coregistration, normalization to Montreal

Neurological Institute (MNI) space, structure image

resampling to 1 mm � 1 mm � 1 mm per voxel,

functional image resampling to 3 mm � 3 mm � 3 mm

per voxel, and spatial smoothing with an 8-mm full-width

at half-maximum Gaussian core.

GLM analysis and region of interest selection

To examine dynamic brain activation patterns in the WM

task and determine the ROIs for further analysis, we

conducted a GLM analysis in SPM8. For the first-level

analysis, we used a high-pass filter with a cutoff

frequency of 1/128 Hz. The model included 15 BOLD

predictors for trial conditions and 6 head motion

parameters generated in the realignment procedure.

The first 12 predictors corresponded to the combination

of the 3 WM stages (encode, maintain, and probe) and

the 4 load conditions (0, 3, 5, or 9 letters) from correct-

response trials. The next 3 predictors corresponded to

the 3 WM stages from wrong-response trials. The BOLD

predictors were generated by specifying the onset and
ditions, subjects were

uickly indicate whether

ters by pressing the ‘‘L”

condition, no letter was

the ‘‘L” or ‘‘R” key as

maps for the encoding,

the dACC, left AI, and

breviations: AI, anterior
duration of each event under each

combination and a canonical

hemodynamic response function

provided by SPM8. Individual

activation maps were generated by

contrasting the 3-, 5-, and 9-letter

load conditions against the 0-letter

load condition, while individual deacti-

vation maps were generated by

contrasting the 0-letter load condition

against the 3-, 5-, and 9-letter load

conditions. For second-level random-

effect analyses, we applied 1-sample

t-tests to the individual activation/

deactivation contrast maps to gene-

rate group activation/deactivation

maps (T-maps).

Because the global strength

of activation/deactivation varied

strongly between WM stages, we

used an adaptive approach to

objectively define the significance

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/


16 X. Wen et al. / Neuroscience 391 (2018) 13–24
thresholds for extracting the relatively strong activation

and deactivation in different WM stages. Specifically, we

sorted the in-brain voxels according to their t-values and

then defined the top and bottom deciles of voxels as

being strongly activated and strongly deactivated,

respectively. We then superimposed T-maps of these

voxels for each task stage onto a spatially normalized

high-resolution MNI T1 template (Collins et al., 1994)

(Fig. 1B). Regions that exhibited local maximal activa-

tion/deactivation in these T-maps were selected as ROIs

for BOLD signal analyses.
Single-trial BOLD estimation

We performed single-trial BOLD estimation to examine

the dynamic characteristics of ROI BOLD responses

during different WM stages and under different load

conditions. For each subject, ROI BOLD percentage

changes were extracted and calculated from the

smoothed and normalized images.

Because event onsets in the task could fall into gaps

between sampling points, we tried to better fit the data

to events’ onsets by up-sampling the BOLD percentage

change signals to a 10-Hz sampling rate and 100-ms

repetition time using cubic spline interpolation. The

interpolated signals for correct-responses’ trials were

then epoched into single-trial periods based on task

onsets and durations. The epochs were then classified

by load conditions. Each single-trial period was

decomposed into 3 components representing activity

during the encoding, maintenance, and probe stages

using regressors generated by convolving the trial

events with the canonical hemodynamic response

function. The 0-letter load condition was defined as the

baseline, and we estimated the beta value and fitted

BOLD response for the contrast of 3-, 5-, and 9-letter

loads against the baseline during each WM stage in

each trial. We then averaged these single-trial BOLD

responses for each WM stage across all trials to yield

estimated mean stage-specific BOLD responses under

each load condition. Finally, we averaged these mean

responses across all subjects to yield group mean

responses.
Correlating brain activity with behavioral
performance

We explored the behavioral significance of the BOLD

responses by examining whether those measured in the

encoding and maintenance stages predicted behavioral

performance in the probe stage. We performed

correlation analysis between single-trial regional BOLD

signals and response times (RTs) at the subject and

group levels. This correlation analysis was designed to

adapt to the variable number of correct-response trials

across subjects and conditions by converting correct-

response trial RTs into z-scores and then sorting and

stacking the correct-response trials by those z-scores.

Specifically, for a certain condition, let Xi be the number

of the correct-response trials of the ith participant.

Because Xi might vary across participants, we stack the
trials according to RT into N levels from fast to slow,

where N was the same for all participants so that we

could average the data (neural data or RT) across

participants within each level and perform the

neurobehavioral correlation analysis on a group level.

To do this, we sorted the trials according to an

ascending order of RT. Then each stack was centered

by one of the N milestones evenly distributed along the

sorted list and included M neighboring trials (M was

even, M/2 on each side). The index of the jth ‘‘milestone”

trial for the ith participant, the Iij, was determined using

the rounding of M/2 + 1 + [(j � 1)(Xi �M)/(N � 1)],

where (Xi �M)/(N � 1) was the step length between

each ‘‘milestone”. A similar correlation strategy was

used in our previous research to correlate neural data

with behavioral performance (Wen et al., 2012; Wen

et al., 2013).

In the current study, we specified 25 ‘‘milestone trials”

evenly distributed along the list of the sorted correct trials

and combined each milestone trial and its neighboring 4

trials (2 on each side) into 1 level. We designated the

group with the shortest RTs as level 1 and the group

with the longest RTs as level 25. The RT z-scores and

single-trial BOLD response beta values were averaged

in each level. We then averaged the results for the 3-,

5-, and 9-letter load conditions for subsequent analysis.

This sorting and grouping process made group analyses

possible by scaling each individual’s behavioral

performance to a unified space despite the variable

number of correct-response trials and the performance

differences across subjects and conditions. We then

performed group correlation analysis by averaged mean

beta values across subjects for each ROI and WM

stage. We used Spearman’s ranked partial correlations

to examine the relationship between RTs in probe stage

and BOLD responses during encoding or maintenance

stage while using those during other stages as control

variables.

RESULTS

Behavioral performance summary

Eighteen subjects completed the experiment according to

instructions. The average RT was 613.7 ± 61.6 ms for

the 0-letter load, 762.8 ± 85.0 ms for the 3-letter load,

886.6 ± 94.0 ms for the 5-letter load, and 1013.3

± 112.8 ms for the 9-letter load. The average correct-

response rate was 92.1 ± 1.9% for the 0-letter load,

89.0 ± 1.5% for the 3-letter load, 91.6 ± 2.0% for the

5-letter load, and 70.0 ± 3.4% for the 9-letter load. All

those subjects had an overall correct-response rate

higher than 70% and their data of correct trials were

included in further analysis.

A CCN constantly activated in all stages

To identify the core regions involved in all 3 WM stages,

we examined the overlapping regions in the stage-

specific activation maps. The minimum T-values that

met our strong activation threshold were 5.68, 1.12, and

1.96 for the encoding, maintenance, and probe stages,
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respectively. We found that the strongly activated regions

in the different stages’ T-maps overlapped in a network

that included the dACC, right AI, and left AI (Fig. 1B,

white region; MNI centers: 0 18 50, 36 25 8, and �34

19 3, respectively). These overlapping regions are

anatomically consistent with the CCN proposed by

Dosenbach, et al. (2006).
Dynamic activation and deactivation patterns in
different WM stages

We found that activation in the encoding stage was

intense, widespread, slightly left-lateralized, and

included several networks and regions (p< 0.00005,

false discovery rate-corrected). We observed activation

of the CCN, which comprises the right dACC and

bilateral AIs (Dosenbach et al., 2007); the FPN, which

comprises the bilateral frontal eye fields and intraparietal

sulcus (Corbetta, et al., 2008); phonological regions,

which comprise the left posterior middle frontal gyrus

and left inferior temporal cortex (Aboitiz et al., 2010;

Chein et al., 2003; Glezer et al., 2016; Hickok and

Poeppel, 2007; Logie, 2003); and various visual areas,

which comprise the primary visual cortex and lateral

occipital cortex. Deactivation, however, was much

weaker. When applying a looser threshold (p< 0.001,

uncorrected), we observed deactivation in the default

mode network (DMN), the secondary somatosensory cor-

tex (S-II), and the left superior temporal gyrus of the audi-

tory pathway. The deactivated DMN areas included the

posterior cingulate cortex, bilateral inferior parietal cor-

tices, and bilateral temporal cortices. The deactivated S-

II areas included the right posterior Rolandic operculum

and bilateral posterior insula.

Compared to the encoding stage activation, the

maintenance stage activation was weaker but more

focused, while deactivation was stronger and more

widespread. Activation could be observed in the dACC,

left IFG, and left posterior middle temporal gyrus at

p< 0.002 (uncorrected). The latter 2 areas were also

proposed to be the phonological network’s essential

components (Aboitiz, et al., 2010; Chein, et al., 2003;

Glezer, et al., 2016; Hickok and Poeppel, 2007). How-

ever, strong deactivation was observed in multiple classi-

cal DMN regions; ventral and dorsal visual pathways

including the bilateral lateral occipital cortex, left inferior

temporal cortex, and visual areas 3 and 3a; and S-II

regions including the posterior Rolandic operculum and

posterior insula (p< 0.001, false discovery rate-

corrected). During the probe stage, the dACC and bilat-

eral AIs were activated (p< 0.002, uncorrected), and

deactivation was weak.

These activated and deactivated regions were chosen

as ROIs for the following analysis (Table 1). The 3 stages’

overall activation patterns are summarized in Fig. 2A.

We subsequently examined functional differences

between the CCN and other functional networks by

listing the ROIs according to the canonical functional

networks (systems) that they belong to. We found that

the CCN was the only system that was consistently

activated in all 3 stages (Fig. 2B). The FPN was
strongly activated only in the encoding stage, while the

phonological network was strongly activated in the

encoding and maintenance stages. The visual pathways

were activated in the encoding stage but strongly

deactivated in the maintenance stage. The DMN

regions, however, were consistently deactivated in all 3

stages. The S-II and auditory cortex were deactivated in

the encoding and maintenance stages.

C+ denotes core regions that were consistently

activated during all 3 stages. E+/�, M+/�, and P+/�
denote activation and deactivation during the encoding,

maintenance, and probe stages, respectively. *False

discovery rate-corrected (all others were uncorrected).

Abbreviations: AI, anterior insular cortex; aPFC, anterior

prefrontal cortex; CCN, core control network; dACC,

dorsal anterior cingulate cortex; d, dorsal; DMN, default

mode network; FEF, frontal eye field; FPN,

frontoparietal network; IFG, inferior frontal gyrus; IPL,

inferior parietal cortex; IPS, intraparietal sulcus; l, left;

LOC, lateral occipital cortex; LTC, lateral temporal

cortex; MPFC, middle prefrontal cortex; MNI, Montreal

Neurological Institute; PCC, posterior cingulate cortex;

PI, posterior insula; PMFG, posterior middle frontal

gyrus; pMTC, posterior middle temporal cortex; pRO,

posterior Rolandic operculum; r, right; S-II, secondary

somatosensory cortex; STG, superior temporal gyrus;

TEO, inferior temporal cortex; v, ventral; V1, primary

visual cortex; V3/V3a, visual areas 3 and 3a.

BOLD responses in different WM stages

For each ROI, we plotted the estimated BOLD responses

averaged across trials for each load condition (Fig. 3). We

found that the CCN regions, namely the dACC and AI,

exhibited stronger activation under greater load

conditions in all 3 WM stages. However, the FPN

regions exhibited stronger encoding stage activation.

The left IFG/Broca’s area exhibited stronger activation in

the maintenance stage, while the visual cortices, such

as visual area 2, exhibited deactivation in that stage.

The auditory cortex, DMN regions, and S-II regions

such as the posterior insula exhibited deactivation in all

3 stages under greater load conditions.

Brain activity predicts behavioral performance

We examined whether the BOLD responses in the

encoding and maintenance stages could predict

behavioral performance in the probe stage. We

observed significant correlations between BOLD

responses and RTs (p< 0.05; Fig. 4). Most encoding

stage correlations in the CCN were negative, indicating

that greater encoding stage BOLD responses in those

regions may predict faster recall in the probe stage.

However, most of the detected correlations in the DMN,

S-II, auditory cortex, and some visual areas were

positive. Given that those regions were deactivated in

the encoding stage, this indicates that stronger

deactivation may correspond to faster recall. In the

maintenance stage, most of the detected correlations in

the DMN and S-II were positive. Only the phonological

regions showed more negative correlations than positive



Table 1. Regions of local maximal activation and deactivation in different WM stages

Condition Network ROI T-value p-value MNI coordinates (mm)

x y z

Co-activation CCN dACC (C+) 0 18 50

rAI (C+) 36 25 8

lAI (C+) �34 19 3

Encode activation CCN ldACC (E+) 9.6 <0.00005* �6 23 28

rdACC (E+) 9.5 <0.00005* 6 11 55

rAI (E+) 8.52 <0.00005* 36 17 7

lAI (E+) 7.85 <0.00005* –33 20 7

FPN rFEF (E+) 7.73 <0.00005* 27 2 64

lFEF (E+) 10.74 <0.00005* �27 �4 64

rIPS (E+) 11.57 <0.00005* 24 �64 55

rIPS2 (E+) 10.81 <0.00005* 21 �76 58

lIPS (E+) 9.6 <0.00005* �30 �67 52

Visual rV1 (E+) 12.56 <0.00005* 15 �82 �11

lLOC (E+) 12.28 <0.00005* �39 �79 �5

Phonological lPMFG (E+) 9.28 <0.00005* �48 2 49

lTEO (E+) 11.45 <0.00005* �45 �67 �5

Encode deactivation DMN lIPL (E�) �6.08 <0.001 �45 �82 31

rIPL (E�) �4.7 <0.001 54 �67 28

lLTC (E�) �6.08 <0.001 �63 �13 �11

rLTC (E�) �5.25 <0.001 51 5 �14

PCC (E�) �5.24 <0.001 �9 �49 40

S-II rpRO (E�) �4.56 <0.001 42 �28 22

rPI (E�) �4.44 <0.001 42 �10 4

lPI (E�) �4.19 <0.001 �45 �13 4

Auditory lSTG (E�) �5.35 <0.001 �42 –22 7

Maintenance activation Phonological lpMTC (M+) 6.83 <0.002 �39 �52 4

lIFG (M+) 6.1 <0.002 �51 23 25

CCN rdACC (M+) 3.49 <0.002 9 32 40

Maintenance deactivation DMN laPFC (M�) �9.2 <0.001* �18 47 49

rdMPFC (M�) �10.17 <0.001* 6 65 13

ldMPFC (M�) �8.69 <0.001* �6 56 13

vMPFC (M�) �7.4 <0.001* 0 26 �8

PCC (M�) �5.89 <0.001* �6 �64 28

Visual rLOC(M�) �9.24 <0.001* 36 �85 1

lLOC (M�) �8.35 <0.001* �30 �94 4

lTEO (M�) �7.83 <0.001* �36 �67 �11

rV3/V3a (M�) �8.3 <0.001* 30 �88 25

S-II rpRO(M�) �7.03 <0.001* 57 �1 16

rPI (M�) �8.85 <0.001* 45 �13 �5

lPI (M�) �7.07 <0.001* �36 �4 �11

Probe activation CCN rdACC (P+) 4.13 <0.001 �6 29 28

rAI (P+) 5.21 <0.001 33 32 7

lAI (P+) 5.41 <0.001 �30 32 10
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correlations when combining the encoding and

maintenance stages.
DISCUSSION

In this study, we investigated dynamic brain activation/

deactivation configurations and their behavioral

significance in a WM task. Our examination of the

spatial distribution and strength of BOLD responses in

different WM stages revealed consistent activation in the

dACC and AI, the core regions of the so-called CCN, as

well as dynamic activation and deactivation according to

stage-specific WM requirements in other functional

networks, such as the FPN, phonological network,

visual pathways, auditory cortex, S-II, and DMN. Our

results indicated that CCN is the neural basis of the
CES which provides top-down regulation in Baddeley’s

WM model in WM and also showed how the slave

components are regulated (Fig. 5).
Consistent dACC-AI network activation indicates a
WM control center

Our observation that the dACC and AI were consistently

activated in all 3 WM stages (Fig. 5) is consistent with

previous reports that these regions may play important

roles in top-down regulation of numerous goal-directed

tasks including attention, WM, and task switching

(Dosenbach, et al., 2006; Shenhav et al., 2016; Wen

et al., 2013) and that damage to these regions may cause

various cognitive deficits in tasks requiring top-down reg-

ulation (Bonnelle et al., 2012). Imaging studies that imple-
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mented multiple task activation pattern analyses showed

that these regions are robustly activated in many highly

demanding tasks, including visual search, motor timing,

stimulus matching, and speech generation, while other

networks such as the FPN and language areas may be

differentially activated according to specific tasks

(Dosenbach, et al., 2006). Dosenbach, et al. (2007)

accordingly proposed that they form a CCN that regulates

downstream systems in such tasks. We further observed

sustained CCN activation across different conditions in a

WM task, which indicates that the CCN may underlie sus-

tained top-down regulation to slave components of WM

(Fig. 5).
The functional role of the dACC and AI requires further

elucidation. Some researchers have suggested that the

dACC plays a central role in maintaining task control

and is more prominent than the AI in top-down

controlling other systems during tasks (Shenhav, et al.,

2016; Wen, et al., 2013). Other studies suggest that the

AI may be an important station linking the CCN with other

networks and relaying top-down signals to regulate their

activities (Cai et al., 2016; Menon and Uddin, 2010). As

for the non-CCN systems, it seems that their activation

or deactivation in the current WM task depends on WM

stages and conditions.
Sustained DMN deactivation versus sustained CCN
activation

In our experiment, the DMN was consistently deactivated

in the encoding and maintenance stages (Fig. 5). The

DMN is considered an internal interference source

(Buckner et al., 2008; Elton and Wei, 2015; Wen, et al.,

2013). To perform the WM task successfully, the subjects

had to suppress internal interference such as mind wan-

dering and free thinking. In the encoding and mainte-

nance stages, most detected correlations between DMN

BOLD responses and probe stage RTs were positive,

such that successful DMN suppression predicted quicker

task performance. Given that the CCN was the only con-

sistently activated system while the DMN was consis-

tently deactivated, top-down control over the DMN might

come from the CCN (Fig. 5). This may explain why dis-

rupted CCN integrity predicts attenuated DMN deactiva-

tion and impaired task performance in patients with

traumatic brain injuries (Bonnelle, et al., 2012; Jilka

et al., 2014). It is also consistent with our previous atten-
Fig. 2. A: Activation during the 3 WM stages. Voxels with T-values in

the top 10% were considered strongly activated (red), while those in

the bottom 10% were considered strongly deactivated (blue). The

histograms summarize the activated and deactivated voxels pro-

jected onto a brain surface template. Voxels outside the shaded

rectangle were considered strongly activated or strongly deactivated

according to the threshold above. Note that in the encoding stage,

activation was stronger and more widespread than deactivation was,

while the reverse was true in the maintenance stage. B: Activation of

various regions and systems in different WM stages. Left panel:

Activation or deactivation of each ROI. C+ denotes core regions that

were consistently activated in all 3 stages (see Fig. 1A). E+/�, M+/�,

and P+/� denote activation and deactivation during the encoding,

maintenance, and probe stages, respectively. Right panel: Summary

of the system-wide activations by averaging within each subsystem.

CCN(C) denotes summaries of the 3 consistently activated core

regions. CCN denotes summaries of all CCN ROIs. Abbreviations: AI,

anterior insular cortex; aPFC, anterior prefrontal cortex; CCN, core

control network; d, dorsal; dACC, dorsal anterior cingulate cortex;

DMN, default mode network; FEF, frontal eye field; FPN, frontopari-

etal network; IFG, inferior frontal gyrus; IPL, inferior parietal cortex;

IPS, intraparietal sulcus; l, left; LOC, lateral occipital cortex; LTC,

lateral temporal cortex; MPFC, middle prefrontal cortex; MNI, Mon-

treal Neurological Institute; PCC, posterior cingulate cortex; PI,

posterior insula; PMFG, posterior middle frontal gyrus; pMTC,

posterior middle temporal cortex; pRO, posterior Rolandic operculum;

r, right; ROI, region of interest; S-II, secondary somatosensory cortex;

STG, superior temporal gyrus; TEO, inferior temporal cortex; v,

ventral; V1, primary visual cortex; V3/V3a, visual areas 3 and 3a;

WM, working memory.

3



Fig. 4. Predicting behavioral performance in the probe stage from

ROI-specific BOLD responses in the encoding and maintenance

stages. Red and blue denote significant positive and negative

Fig. 3. Estimated mean BOLD responses of some example ROIs.

Blue, green, and red refer to the 9-, 5-, and 3-letter load conditions,

respectively. Thin solid lines, thin dashed lines, and dash-dot lines

refer to responses in the encoding, maintenance, and probe stages,

respectively. Thick lines refer to the sum of responses for all 3 stages.

C denotes core regions that were consistently activated in all 3 stages

(see Fig. 1A). E+/� and M+/� denote activation and deactivation

during the encoding and maintenance stages, respectively. Abbrevi-

ations: AI, anterior insula; BOLD, blood oxygen level-dependent;

dACC, dorsal anterior cingulate cortex; IFG, inferior frontal gyrus;

IPS, intraparietal sulcus; l, left; LOC, lateral occipital cortex; MPFC,

middle prefrontal cortex; PCC, posterior cingulate cortex; pRO,

posterior Rolandic operculum; ROI, region of interest; STG, superior

temporal gyrus.
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tion study (Wen, et al., 2013) that found sustained CCN

activation and DMN deactivation throughout the task

blocks. Causal influence analysis in that study also indi-

cated that the CCN may exert top-down DMN regulation

to improve performance, while internal interference from

the DMN may disturb CCN task control and degrade

performance.
correlations, respectively, between BOLD responses and RTs.

Abbreviations: AI, anterior insula; aPFC, anterior prefrontal cortex;

BOLD, blood oxygen level-dependent; CCN, core control network; d,

dorsal; dACC, dorsal anterior cingulate cortex; FEF, frontal eye field;

IFG, inferior frontal gyrus; IPL, inferior parietal cortex; IPS, intrapari-

etal sulcus; l, left; LOC, lateral occipital cortex; LTC, lateral temporal

cortex; PCC, posterior cingulate cortex; PI, posterior insula; pMFG,

posterior middle frontal gyrus; pRO, posterior Rolandic operculum; r,

right; ROI, region of interest; RT, response time; STG, superior

temporal gyrus; TEO, inferior temporal cortex; v, ventral; V1, primary

visual cortex; V3/V3a, visual areas 3 and 3a.
Sensory input-related regional activity is regulated
according to WM demands

Sensory input systems were activated or deactivated

according to WM task stages. For example, during the

encoding stage we saw activation of the visual cortices

but deactivation of the somatosensory and auditory

cortices (Fig. 2). This indicates that the visual

presentation of verbal stimuli caused selective attention

that enhanced visual pathway processing while

depressing activity in other sensory input pathways. The

correlations between behavioral performance and

encoding stage activation in these areas were

consistent with the activation/deactivation results, such

that stronger S-II and auditory cortex deactivation in the
encoding stage predicted faster probe stage responses

(Fig. 4), indicating that the suppression of task-irrelevant

inputs during the encoding stage improves WM

performance.



Fig. 5. Schematic summary of the CCN’s top-down regulatory

function in the current working memory task. Red and blue denote

activation and suppression, respectively. Abbreviation: CCN, core

control network; DMN, default mode network; FPN, frontoparietal

network.
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During the maintenance stage, we observed

deactivation in the visual cortices, auditory cortices, and

S-II, which indicates that most sensory input channels

were shut down to prevent external interference

(Fig. 5B). Maintenance stage deactivation in some of

these regions was negatively correlated with RTs,

indicating that external inputs in this stage may disturb

the maintenance of task-relevant information and

therefore need to be suppressed. The deactivation was

stronger under greater load conditions. Furthermore, the

deactivation of the visual cortex in maintenance stage is

in agreement with our previous finding of alpha power

increase in higher load conditions during verbal WM

task, indicating decreased excitability to gate out

external interference to protect the information held

online (Anderson and Ding, 2011; Wang et al., 2016).

The suppression of the irrelevant sensory inputs was

released in the probe stage (Fig. 5C).
Functional differences between the CCN and FPN

Researchers have reached a consensus that prefrontal

regions can exert top-down attentional control and
influence which low-level features are selected to be

encoded in WM (Altamura et al., 2007; Xu, 2017). But

there is an ongoing debate about which system underlies

the top-down control during highly demanding tasks such

as attention and WM. Some researchers have proposed

that the FPN maintains WM and underlies the top-down

control to guarantee task focus (Corbetta, et al., 2002).

Others have proposed that the CCN provides top-down

control (Corbetta, et al., 2008). We observed strong

CCN activation in all WM stages but strong FPN activa-

tion only in the encoding stage (Fig. 2B). The distinct acti-

vation patterns of the 2 networks suggest that their

functional roles are different, although both are consid-

ered CES candidates that are essential in top-down con-

trol (Curtis, 2006; Xu, et al., 2014). The CCN may

supervise the entire task, with responsibility for initiating

and maintaining WM, monitoring and regulating the slave

systems, and terminating or switching the task (Cai, et al.,

2016; Dosenbach, et al., 2006; Kolling et al., 2016). The

FPN may function on a trial level by initiating and main-

taining attention that enhances the processing of task-

relevant information (Corbetta, et al., 2008).

Our results may also elucidate long-running questions

about the FPN’s functional role in WM and attention, as

we observed FPN activation in WM and attention tasks.

Some researchers have proposed that the FPN is

mainly an attention network whose activation in WM

reflects the need for attention (Corbetta, et al., 2008;

Wen, et al., 2013; Wen et al., 2012), while others have

suggested that it is mainly a WM network that temporally

stores information. Its activation during attention reflects

temporal attention set maintenance in WM (Corbetta,

et al., 2008). Our study, which separately examined acti-

vation patterns in each WM stage, clearly showed that the

FPN was strongly activated only in the encoding stage,

which suggests that it may be more important when atten-

tion is required to selectively enhance the processing of

task-relevant information.

In summary, although people have linked numerous

frontal and parietal structures to CES, our results

indicate that CCN is the most likely candidate underlying

CES which regulates the middle class (including FPN)

and the lower class (including the sensory channels) in

all WM stages, while FPN mainly regulates the sensory

channels in encoding stage.
Buffer system regulation in WM

Our results suggest that 2 cortical systems being related

to WM buffer may be regulated according to the task

demands (Fig. 5B). We found strong maintenance stage

activation of the left IFG and left middle temporal gyrus,

which are proposed to form the so-called phonological

loop, a network responsible for verbal rehearsal in the

current WM task (Aboitiz, et al., 2010; Chein, et al.,

2003; Glezer, et al., 2016; Hickok and Poeppel, 2007).

However, the primary and higher-order visual pathway

areas exhibited maintenance stage deactivation. This

selective activation/deactivation pattern is consistent with

the hypothesis that the CES recruits slave buffers accord-

ing to current WM task demands.
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Strengths and limitations of the current work

This study used a modified Sternberg paradigm, whole-

brain GLM analysis, and ROI-based single-trial

estimation to separately analyze brain activation and

deactivation patterns in different WM stages, thereby

elucidating the functional roles of different task-relevant

networks and systems. The paradigm utilized the

number of items more than the canonical ‘‘7” in the

highest load condition to challenge the limit of the

subjects and induced significant activation/deactivation

of several subsystems in different WM stages. Some of

the patterns had seldom been reported in previous WM

studies, such as deactivation of visual regions

associated with visual inputs and visual sketchpad in

maintenance stage, and of somatosensory and auditory

pathways in encoding and maintenance stages. Our

single-trial estimation also provides a way to examine

the timecourse and strength of BOLD activity in different

regions under different WM conditions, making it

possible to explore the relationship between these

regions and behavioral outcomes in the WM task.

However, these approaches fall into the scope of

univariate analysis, which is designed for inferring

relationships between different regions and networks

instead of directly assessing communication between

them. Further elucidating network interactions and

communication in WM will require more advanced

functional connectivity analysis tools and tasks designed

for them.

Trial-by-trial correlation analysis between BOLD

signals and behavioral performance is often nontrivial

due to noise and the nature of single-trial fMRI time

series, so the results of correlation analysis between

BOLD activity and RTs should be considered carefully.

Our results were not corrected for multiple comparisons,

and the data were very noisy. Overall network-level

correlation analysis provides robustness against noise

by averaging results, which makes its results more

meaningful than those of single ROI-level correlation

results for illustrating the networks’ functional

significance. Despite our efforts to estimate single-trial

responses and correlate them with behavioral

performance, many regions exhibited no significant

correlations between BOLD responses and behavioral

performance. This might arise from noisy fMRI signals

or BOLD response saturation. The use of more

sophisticated task designs and acquisition techniques in

future may improve the analysis.

The current study only considered the young healthy

subjects. The overall activation results were consistent

with many previous studies using young healthy

subjects. For example, the dACC-AI activation

(Dosenbach et al., 2006; Wen et al., 2013) and the dorsal

frontoparietal activation (Merrikhi et al., 2017; Wu et al.,

2018; Xu, 2017), as well as the deactivation of DMN in

many high-demanding tasks including WM (Anticevic

et al., 2010; Bonnelle et al., 2012; Elton and Wei, 2015).

Therefore, the current results may be generalized to

young healthy populations performing WM tasks.

Although previous studies considering populations in dif-

ferent groups, such younger and older people (Cappell
et al., 2010; Clapp et al., 2011; Payer et al., 2006; Stern

et al., 2008), also showed results in line with the current

study, it is still an open and important question that

whether and how the processes develops normally or

alters in disease.

Additionally, a further important question is whether

there is a gender difference in deploying CES functions

between men and women performing WM tasks,

especially in a verbal scenario. This could be a future

direction that may require recruitment of a larger

number of subjects of each gender.

Conclusions

We showed the neurobiological bases for some of the

essential components in Baddeley’s theoretical model of

WM. Our results suggest that a CCN comprising the

dACC and AI that exhibits consistent activation in all

WM stages may play a central role of in regulating other

systems, forming the neural basis of CES in Baddley’s

model. Our results also elucidate the dynamic

configuration of other systems, including different

buffers, sensory input channels, external attention

systems, and internal default systems, according to WM

stage demands.
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