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A B S T R A C T

Power (amplitude) and frequency are two important characteristics of EEG alpha oscillations (8–12 Hz). There is
an extensive literature showing that alpha power can be modulated in a goal-oriented manner to either enhance
or suppress sensory information processing. Only a few studies to date have examined the task-dependent
modulation of alpha frequency. Instead, alpha frequency is often viewed as a trait variable, and used to char-
acterize individual differences in cognitive functioning. We performed two experiments to examine the task-
dependent modulation of alpha frequency and its functional significance. In the first experiment, high-density
EEG was recorded from 21 participants performing a Sternberg working memory task. The results showed
that: (1) during memory encoding, alpha frequency decreased with increasing memory load, whereas during
memory retention and retrieval, alpha frequency increased with increasing memory load, (2) higher alpha fre-
quency prior to the onset of probe was associated with longer reaction time, and (3) higher alpha frequency prior
to the onset of cue or probe was associated with weaker early cue-evoked or probe-evoked neural responses. In the
second experiment, simultaneous EEG-fMRI was recorded from 59 participants during resting state. An EEG-
informed fMRI analysis revealed that the spontaneous fluctuations of alpha frequency, but not alpha power,
were inversely associated with BOLD activity in the visual cortex. Taken together, these findings suggest that
alpha frequency is task-dependent, may serve as an indicator of cortical excitability, and along with alpha power,
provides more comprehensive indexing of sensory gating.
1. Introduction

EEG alpha rhythm (8–12Hz) is prominent over occipital-parietal
cortices in humans during restful wakefulness. Like any oscillatory ac-
tivity, alpha can be characterized by its amplitude (power) and fre-
quency. Since its initial discovery by Berger (1929), extensive evidence
has accumulated to suggest that alpha oscillations are involved in
cognitive processing, including attention and working memory (Fink
et al., 2005; Jensen et al., 2002; Jensen and Tesche, 2002; Klimesch et al.,
1997). In particular, alpha power is considered a reliable indicator of
cortical excitability (Jensen and Mazaheri, 2010; Lange et al., 2013) and
can be modulated by higher-order brain areas to functionally inhibit or
facilitate sensory information processing according to behavioral goals
(Liu et al., 2014; Mulholland, 1968; Rajagovindan and Ding, 2011; Wang
et al., 2016).

Alpha frequency, in contrast, has been viewed mainly as a trait var-
iable. Individual differences in alpha frequency have been linked to
differences in cognitive capabilities (Anokhin and Vogel, 1996; Grandy
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et al., 2013). An existing theory postulates that alpha frequency is a
manifestation of an internal brain clock controlling the speed of infor-
mation processing (Klimesch et al., 1996); the faster the internal clock
(higher individual alpha frequency), the faster the information and
cognitive processing (e.g., in memory retrieval and cognitive control). In
addition, alpha frequency is known to change systematically over the
lifespan (Bernhard and Skoglund, 1939), and is subject to the impact of
neurological disorders (Bonanni et al., 2008). Perceptually, individual
differences in alpha peak frequency has been shown to predict the tem-
poral windows of the double-flash illusion, suggesting that the peak
alpha frequency is the “fingerprint” that drives cross-modal impact on
visual perception (Cecere et al., 2015). Similarly, the phasic differences
of alpha rhythm has been shown to impact visual perception of rapid
sequential stimuli (Minami and Amano, 2017; Valera et al., 1981).

To what extent alpha frequency can be modulated in a task-dependent
manner? If such modulation occurs, what is the associated functional
significance? These questions have yet to be fully addressed. Two earlier
studies by Osaka and by Earle reported inconclusive findings. Osaka
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showed that alpha frequency increased with task difficulty (Osaka,
1984), but Earle reported that while in some tasks alpha frequency
increased when task difficulty increased, in other tasks, the opposite was
observed (Earle, 1988). Haegens et al., using an n-back working memory
task, found that alpha frequency increased with task difficulty, i.e.,
higher working memory load was accompanied by higher alpha fre-
quency (Haegens et al., 2014). A more recent study reported that alpha
frequency changes according to the types of visual perception such as
temporal stimulus integration and temporal stimulus segregation (Wutz
et al., 2018). Despite these advances, many questions remain; in partic-
ular, the functional and behavioral relevance of alpha frequency modu-
lation by task conditions remains to be further elucidated. Some of the
tasks used in previous studies have temporally overlapping cognitive
processes. For example, in the n-back task used by Haegens et al. (2014),
cognitive processes such as sensory encoding, memory retention and
memory retrieval are difficult to separate temporally, and each process
may have a differential effect on alpha frequency (Jensen et al., 2002).

Alpha frequency modulation may also be considered in the context of
how alpha interacts with other neural processes, such as theta oscillations
(Sauseng et al., 2005; Scheeringa et al., 2009), beta oscillations (Yuan
et al., 2010), and gamma oscillations (Voytek et al., 2010). In particular,
in light of the proposal that gamma cycles are embedded within alpha
(Osipova et al., 2008; Roux and Uhlhaas, 2014), alpha frequency mod-
ulation may become a means to flexibly increase and decrease the
number of gamma cycles accommodated within a cycle of alpha to either
facilitate or inhibit sensory processing.

In this study, we considered task-dependent modulation of alpha
frequency, its functional significance, and the underlying neural corre-
lates by conducting two experiments. In the first experiment, high-
density EEG (128 channels) was recorded from 21 subjects performing
a Sternberg working memory task. In this task, memory related cognitive
Fig. 1. Paradigm and behavioral results. (A) Schematic illustration of the working me
correct response. (B) Definition of time periods of analysis for pre-cue, encoding, rete
C and D were obtained from a mixed-effects linear model fit on the behavioral data
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processes such as encoding, retention and retrieval are well separated in
time, making it well-suited for analyzing modulations of alpha frequency
by distinct cognitive processes. Alpha frequency was estimated during
different stages of the task and compared across memory loads. Func-
tional significance was further assessed by correlating the modulations of
alpha frequency with behavioral performance and other neural variables
such as event-related brain responses. In the second experiment, we
examined the neural sources underlying the modulation of scalp level
alpha variables, namely, alpha power and alpha frequency. Simultaneous
EEG-fMRI was recorded from a cohort of 59 subjects at rest. Utilizing the
naturally occurring fluctuations of alpha frequency and alpha power, we
examined the possible neural underpinnings of alpha frequency modu-
lation and alpha power modulation by correlating them with the simul-
taneously recorded fMRI BOLD (Blood Oxygen Level Dependence)
fluctuations from different regions of the visual cortex as well as the
entire brain.

2. Materials and methods

2.1. Experiment 1

2.1.1. Procedure and paradigm
The experimental protocol was approved by the Institutional Review

Board of the University of Florida (UF IRB). Twenty-one healthy in-
dividuals (age: 20 to 34; 3 women) with normal or corrected-to-normal
vision gave written informed consent and participated in the study. On
each trial of the working memory task, a digit set (cue set) of 1, 3 or 5
distinct numerical digits (0–9) was displayed for 1s (encoding). This was
followed by a 3s period during which the subjects held the cue set in
working memory while fixating on a cross on the computer screen
(retention). At the end of the retention period, a probe digit was
mory task. Depicted is a trial where the memory load is 5 and a yes answer is the
ntion, pre-probe, and retrieval. (C) Reaction time. (D) Accuracy. (The p-values in
.)
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presented, and the subject was instructed to indicate whether it belonged
to the cue set with a button-press response (retrieval). The inter-trial-
interval between the button-press and the onset of the next cue set was
2s. Schematically illustrated in Fig. 1A is a trial with a cue set containing
5 digits (memory load 5) and the correct response is ‘yes’ since the probe
digit is present in the cue set.

2.1.2. Data acquisition and preprocessing
High-density EEG was acquired using a 128-channel BioSemi System.

The data was band-pass filtered between 0.3Hz and 40Hz, down-sampled
to 200Hz, average referenced, projected to the standard 81-channel
montage using BESA 6.0, and epoched from �0.5s to 5s. Here 0s deno-
ted the onset of the cue set, 1s the cue offset, and 4s the probe onset.
Noisy epochs were rejected. Independent Component Analysis (ICA)
implemented in EEGLAB was further applied to the EEG data and the
components containing eye-blink artifacts and electrode noise were
removed (Delorme and Makeig, 2004).

For analysis, the encoding period is defined as the time interval
between 0.5s and 1s, the retention period between 1.5s and 4s, and the
retrieval period between 4.5s and 5s (Fig. 1B). In these definitions, the
0.5s time interval immediately following stimulus onset and offset was
removed from analysis, to avoid the influence of the trial-to-trial
variability of evoked response on spectral estimations (Wang et al.,
2008; Wang and Ding, 2011). ERPs were also removed before calcu-
lation of any spectral measures to reduce spectral contributions from
evoked responses. To investigate the impact of alpha frequency pre-
ceding probe onset on neural activity evoked by probe processing, a
fourth time period of 3s–4s, which was the interval immediately pre-
ceding the onset of the probe stimulus, was defined as the pre-probe
time period. To investigate the impact of alpha frequency preceding
cue onset on cue-evoked neural response, a fifth time period, the
pre-cue period, was further defined to be �0.5s to 0s. These
pre-stimulus periods were defined in such a way that neural activities
in these periods were expected to have an impact on the early
stimulus-evoked neural responses.

2.1.3. Estimation and analysis of alpha power and alpha frequency
The channels of interest were occipital and parietal-occipital

channels, including PO9, PO7, PO3, POz, PO4, PO8, PO10, O1, Oz,
O2, O9, O10, and Iz. For a given time period of analysis (Fig. 1B), a
Fourier-based periodogram method (“scipy.signal.periodogram,” n. d.)
was applied to the data of each channel to estimate the power spectra.
The power spectra were normalized by dividing average baseline
alpha power (pre-cue period) and then averaged across channels. To
maintain consistency in the spectral resolution across different func-
tional states, for each of the five time periods defined above that were
longer than 0.5s, the time period was divided into 0.5s windows with
50% overlap and the spectrum was estimated for each window after
detrending and zero-padding to the length of nfft¼ 1000 and averaged
across windows. Alpha frequency was calculated according to (Kli-
mesch et al., 1993):

Alpha Frequency ¼
P12

f¼8ðPowerðf Þ � f Þ
P12

f¼8Powerðf Þ
Alpha frequency, along with alpha power in the 8–12Hz band, were

compared across memory loads for each of the three cognitive states:
encoding, retention and retrieval. A mixed-effects model was used to test
for significant effects of memory load, in which alpha frequency or alpha
power was taken as the dependent variable, with subjects as the random
factor. To test whether alpha power modulation by memory load and
alpha frequency modulation by memory load were related, the alpha
variables were plotted against the memory load, and the slope of the
linear least squares fit was taken as the load modulation index of that
alpha variable. The load modulation indices of alpha power and alpha
frequency were then correlated to determine their relationship.
899
2.1.4. Assessment of functional significance of alpha frequency modulation
As a first step to assess the functional significance of alpha frequency

modulation we utilized the naturally occurring variability in behavioral
performance to sort trials. Since the accuracy was over 95%, there were
too few error trials to perform a convincing accuracy-related analysis,
and consequently, reaction time (RT) was chosen as the behavioral
measure for our analysis. For an individual subject, according to z-scored
reaction time (RT), within each memory load, trials were divided into a
fast RT group (z< 0) and slow RT group (z> 0). During the retention and
retrieval time periods, alpha frequencies of the fast RT trials were aver-
aged across memory load and compared to that of the slow RT trials
averaged across memory load. To verify the findings, a full statistical
model with alpha power, alpha frequency and memory load as the in-
dependent variables and reaction time as the dependent variable was also
implemented.

We next examined the impact of pre-probe (3s–4s) alpha frequency
on early probe-evoked neural responses quantified by global field power
(GFP) (Lehmann and Skrandies, 1980; Murray et al., 2008). GFP at a
given instant of time is defined as the standard deviation of EEG data
across all scalp channels and is commonly used to measure the strength of
stimulus processing. For probe processing, since the ERP component P1 is
the early neural response evoked by the probe stimulus, we set the time
period of interest (TOI) to be between 80ms and 120ms relative to probe
onset, which approximates the onset and offset of the probe-evoked P1
component. Similar to RT, the trials were grouped based on z-scored
single-trial GFP during the TOI, into a high response group (z> 0) and a
low response group (z< 0) for each memory load. The pre-probe alpha
frequency from high response trials averaged across memory load and
that from low response trials averaged across memory load were
compared. Given that differences in early visual sensory processing can
give rise to differences in late higher-order processing (Wiens et al.,
2011), we further examined the relation between alpha frequency during
the retrieval period and the early probe-evoked response defined above.
The same analysis was also done for the pre-cue period to test the effect of
pre-cue alpha frequency on the early cue-evoked neural responses
(80ms–120ms relative to cue-onset) and how alpha frequency during
the encoding period relates to early cue-evoked responses. Similar to the
analysis on alpha frequency and reaction time, a full statistical model
with alpha power, alpha frequency and load as the independent variables
and early stimulus-evoked neural response as the dependent variable was
also implemented to further examine the relation between alpha fre-
quency before and after a stimulus (cue or probe) and stimulus-evoked
response.

2.2. Experiment 2

2.2.1. EEG acquisition and preprocessing
Much like alpha power, even at rest, alpha frequency is expected to

fluctuate naturally. To shed further light on the functional significance of
alpha frequency modulation, we collected simultaneous EEG-fMRI data
from a different cohort of 59 subjects (age: 17 to 31; 20 women) in an
eyes-closed resting state condition, and performed EEG-informed fMRI
analysis. Written informed consent approved by UF IRB was obtained
from these participants before recording. For EEG data acquisition, a 32-
channel MRI-compatible EEG system was used (Brain Products, Ger-
many). Thirty one sintered Ag/AgCl electrodes were applied in the
standard 10–20 montage. One additional electrode was placed on the
subject's upper back to record electrocardiogram (ECG) which was
needed for removing scanner artifacts. Impedance from the thirty one
scalp channels were kept low (<10kOhms) for optimal signal to noise
ratio. The EEG data was sampled at 5 kHz, digitized to 16 bit and
transferred to a recording computer through an optic fiber cable. The
EEG data acquisition system and the scanner's internal clock were syn-
chronized to ensure successful removal of gradient artifacts during
preprocessing.

EEG data was preprocessed off-line to remove MR related gradient
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artifacts and cardio-ballistic artifacts using Brain Vision Analyzer 2.0. To
remove gradient artifact, a template of the artifact generated using a
sliding window across 41 consecutive TRs was subtracted from the raw
data. To remove the cardio-ballistic artifact, an average artifact template
was generated for every 21 consecutive heart beat event identified by R
peaks and subtracted from the data. The data was then down-sampled to
250 Hz, average referenced, and epoched into 1 TR (1.98s) time seg-
ments relative to scan onset pulse obtained from the MR scanner. Since
the data was recorded in an eyes-closed resting state, eye-blink related
ICA correction was not performed.

2.2.2. FMRI acquisition and preprocessing
Functional MRI scans were recorded on a 3-T Phillips Achieva whole-

body MRI system (Phillips Medical Systems). T2* weighted echo planar
imaging (EPI) sequence was used to obtain 212 functional volumes
(session duration ~ 7mins) with echo time (TE) ¼ 30 ms, repetition time
(TR) ¼ 1980 ms and flip angle ¼ 80�. Each functional volume consisted
of 36 axial slices (field of view: 224 mm, matrix size: 64 � 64; slice
thickness: 3.5 mm; voxel size: 3.5 mm � 3.5 mm x 3.5 mm). The pre-
processing for fMRI data was carried out within SPMwhich included slice
timing, realignment to mean image, normalization to the MNI template
and re-sampling to voxel size of 3 mm � 3 mm x 3 mm. Normalized
volumes were spatially smoothed using 8 mm FWHM (Full Width at Half
Maximum) Gaussian kernel.

2.2.3. EEG-informed fMRI analysis
Alpha power and alpha frequency was obtained for each epoch of

1 TR in duration, and averaged across the occipital and parietal-occipital
channels of interest, including POz, O1, O2, and Oz. To quantify the
intrinsic alpha frequency variations within subjects, the mean, minimum
andmaximum alpha frequency was obtained for each subject; population
means and standard deviations were calculated. Alpha power and alpha
frequency time series with a sampling rate of 1 TR was convolved with
the hemodynamic response function (HRF). A GLM analysis was applied
at the single subject level to examine the relationship between alpha
power/frequency and BOLD time series from multiple visual cortical
regions, including V1d, V1v, V2d, V2v, V3d, V3v, V4 and IPS, defined by
a recently published visuo-topic atlas (Wang, Mruczek, Arcaro and
Kastner, 2015). Second level statistical tests were done on the correlation
maps obtained from the single subject analysis. Specifically, the mean of
the correlation map within the ROIs were obtained for each subject and a
t-test was done to obtain group level significance for each ROI. Because
there are multiple visual regions within the atlas, we applied the false
discovery rate (FDR) method to cope with the resulting multiple com-
parison problem (Genovese et al., 2002). In the GLM model, 6 motion
regressors were included to remove the effects of head movement during
the scan and a constant regressor was added to remove the temporal
mean. For the exploratory whole brain analysis, the correlation maps for
single subject analysis were taken over the whole brain and a voxel-wise
second-level t-test followed by cluster enhancement (FSL-TFCE) was
done to identify group-level associations between BOLD fluctuations and
alpha power/frequency fluctuations.

3. Results

3.1. Experiment 1

3.1.1. Behavioral results
Behavioral measures were analyzed using a mixed-effects linear

model with performancemetrics as the dependent variable, memory load
(1, 3 and 5) as the independent variable, and subjects as the random
effects. As shown in Fig. 1C and D, reaction time was significantly slower
for higher memory load (p< 0.001), whereas accuracy was significantly
lower for higher memory load (p< 0.001), in agreement with previous
studies of the same paradigm (Jensen and Lisman, 1998; Sternberg,
1969).
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3.1.2. Alpha power and frequency modulation by working memory load
Power spectra for the threememory loads during encoding were shown

in Fig. 2A. A mixed-effects linear model showed that both alpha frequency
(Fig. 2B) and alpha power (Fig. 2C) decreased with increasing memory
load (p< 0.001). To test whether alpha power modulation and alpha fre-
quency modulation by memory load are related, a modulation index as
described in the methods section (2.1.3) was defined for each alpha vari-
able at the individual subject level. As shown in Fig. 2D, the lack of cor-
relation (r¼ 0.168, p¼ 0.468) between alpha power modulation index
and alpha frequency modulation index suggests that the two alpha char-
acteristics were modulated independently by memory load. For retention,
both alpha power and alpha frequency increased with memory load
(Fig. 2F and G, p< 0.001 and p =0.002, respectively), and their modu-
lation indices at individual subject level were again uncorrelated (Fig. 2F,
r¼�0.187, p¼ 0.417). For retrieval, as shown in Fig. 2J and K, whereas
alpha frequency increasedwith increase inmemory load (p< 0.001), there
was no load dependent alpha power modulation (p¼ 0.116). As with
encoding and retention, during retrieval, there was no relation between
alpha frequency modulation and alpha power modulation (Fig. 2L,
r¼ 0.156, p¼ 0.5).

3.1.3. Effect of alpha frequency modulation on behavioral performance
We tested the impact of alpha frequency modulation during retention

on reaction time. Trials were divided into fast RT trials and slow RT trials
for each memory load. Power spectra were estimated for each RT group,
averaged across loads, and shown in Fig. 3A. The slow RT trials were
associated with a significantly higher (p¼ 0.012) alpha frequency than
the fast RT trials, as shown in Fig. 3B, suggesting that higher alpha fre-
quency during retention may impede probe processing and lead to
increased reaction time. Alpha frequency during retrieval and RT, in
contrast, were not associated (p¼ 0.962), as shown in Fig. 3C and D. A
full statistical model on the effects of alpha frequency on behavioral
performance in which alpha power and memory load were also co-
variates showed similar effects, namely, the higher the retention period
alpha frequency the longer the reaction time. These results were included
in the supplementary material (Supplementary Table S1-S2).

3.1.4. Effect of alpha frequency modulation on stimulus-evoked neural
responses

The functional role of alpha frequency modulation was further tested
by examining the impact of pre-stimulus alpha frequency on stimulus-
evoked responses. For probe-evoked responses, the Global Field Power
(GFP) during 80ms–120ms after probe-onset was calculated for each trial,
and grouped into low response trials (see Fig. 3E for probe-evoked ERP for
low response group) and high response trials (see Fig. 3F for probe-evoked
ERP for high response group) within each memory load and averaged
across memory load. The pre-probe alpha frequency of low response trials
was significantly higher than that of high response trials (p¼ 0.001;
Fig. 3G). Similar results were found for cue-evoked responsewhere the pre-
cue alpha frequency of low cue-evoked response trials was significantly
higher than that of high cue-evoked response trials (p¼ 0.047; Fig. 3G).
These findings give support to the idea that high alpha frequency prior to
stimulus onset impedes sensory processing of the stimulus. During post-
stimulus periods, the low response trials had a higher alpha frequency
compared to the high response trials (p¼ 0.009 for encoding and
p¼ 0.023 for retrieval; Fig. 3G). A full statistical model on the effects of
alpha frequency on early evoked response in which memory load and
alpha powerwere also co-variates showed similar effects for encoding, pre-
probe and retrieval time periods, namely, higher alpha frequency was
associated with lower early stimulus-evoked neural response, but for pre-
cue, the effect was not statistically significant. These results were included
in the supplementary material (Supplementary Table S3-S6).

3.2. Experiment 2

The possible neural substrate underlying alpha frequency modulation



Fig. 2. Memory load modulation of alpha power and alpha frequency during different stages of working memory processing. A–D: encoding. E–H: retention. I-L
retrieval. (The p-values in B, C, F, G, J and K are obtained from the mixed-effects linear model fit on the alpha power and alpha frequency.)
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was investigated by recording simultaneous resting-state EEG and fMRI
from 59 healthy subjects. For this cohort, the mean alpha frequency was
9.976� 0.233Hz, the minimum alpha frequency was 9.208� 0.249Hz
and the maximum alpha frequency was 10.713� 0.222Hz. For 56 out of
59 subjects, alpha frequency fluctuations were normally distributed,
according to the Shapiro test (Shapiro and Wilk, 1965). The alpha power
and alpha frequency time series sampled at the resolution of 1 TR were
then convolved with a hemodynamic response function (HRF) and used
in a generalized linear-regression Model (GLM) with both alpha power
and alpha frequency as regressors to identify voxels in the brain whose
BOLD activity co-varies with the alpha variables. Fig. 4A shows temporal
variation in alpha frequency for a representative subject, and 4B shows
the HRF convolved alpha frequency time series and the BOLD time series
from a visual voxel. Defining visual cortical regions according to a
recently published visuo-topic atlas in Fig. 4C (Wang et al., 2015), the
GLM analysis revealed that alpha power was not correlated with BOLD
activities in the visual ROIs (Fig. 4D), whereas the alpha frequency was
inversely correlated with BOLD activity in V2d, V2v, V3d, V3v, V4 and
IPS ROIs (Fig. 4E), indicating that higher alpha frequency was associated
with lower BOLD activity in these visual areas (p< 0.05 controlling for
multiple comparisons with false discovery rate).

Association between alpha variable fluctuation and BOLD activity
from the whole brain was examined in an exploratory analysis. As shown
Fig. 5A, alpha frequency was positively associated with BOLD activity in
posterior cingulate cortex (PCC), lateral parietal cortex (lateral PC), and
anterior cingulate cortex (ACC), and negatively associated with visual
and sensorimotor areas. In Fig. 5B, alpha power was seen to be negatively
901
associated with BOLD activity in the lateral frontal cortex (lateral FC),
cuneus, sensorimotor areas and medial prefrontal cortex (mPFC).

4. Discussion

4.1. Main findings

We performed two experiments to examine the task-dependent
modulation of alpha frequency and its functional significance as well as
its neural substrate. In the first experiment, the analysis of EEG recorded
from healthy subjects performing a Sternberg working memory task
shows that: (1) alpha power decreased with memory load during
encoding, increased with memory load during retention, and had no
systematic relationship with memory load during retrieval, (2) alpha
frequency decreased with increasing memory load during encoding, and
increased with memory load during both retention and retrieval, (3)
alpha power modulation by memory load and alpha frequency modula-
tion by memory load were not correlated, (4) higher alpha frequency
during retention was associated with slower reaction time, and (5) higher
alpha frequency prior to cue onset and prior to probe onset was associ-
ated with smaller cue-evoked and probe-evoked neural responses. In the
second experiment, analysis of simultaneous EEG-fMRI recordings from
subjects in an eyes-closed resting state condition shows that: (1) alpha
frequency fluctuations but not alpha power fluctuations were negatively
associated with BOLD activity in the visual cortex and (2) the alpha
power and alpha frequency fluctuations were associated with BOLD from
different cortical structures. Collectively, these results suggested that (1)



Fig. 3. Functional significance of alpha frequency modulation.
Association of alpha frequency with RT during retention and
retrieval (A-D): (A) Power spectra of fast RT and slow RT trials
during retention time period and (B) alpha frequency differ-
ence between fast RT and slow RT trials during retention time
period; (C) power spectra of fast RT and slow RT trials during
retrieval and (D) alpha frequency difference between fast RT
and slow RT trials during retrieval. Relation between alpha
frequency and early stimulus-evoked responses (E-G): (E) and
(F) Probe-evoked ERPs of low response trials and high
response trials; (G) alpha frequency difference between high
response trials and low response trials during pre-cue, encod-
ing, pre-probe and retrieval period. Note: For pre-cue and
encoding, the cue-evoked responses were considered.
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alpha frequency was task-dependent and modulated by memory load in
distinct fashions in different stages of the working memory task, (2)
alpha frequency were inversely related to visual cortical excitability and
could be modulated by higher-order brain networks in a goal-oriented
fashion to enhance or suppress sensory processing, (3) alpha frequency
and alpha power may be modulated by different brain structures, and (4)
alpha frequency, along with alpha power, provides a more comprehen-
sive indexing of task-dependent sensory gating.
902
4.2. Alpha frequency as a trait variable

Historically, alpha frequency has been mainly studied as a trait var-
iable (Klimesch et al., 1990). Higher individual alpha frequency (IAF)
correlates with better memory performance (Angelakis et al., 2004; Clark
et al., 2004; Klimesch et al., 1993; Lebedev, 1994; Saletu and Grünberger,
1985), larger vocabulary (Angelakis et al., 2004), faster reaction time
(Klimesch et al., 1996), better temporal resolution in visual perception



Fig. 4. Alpha variable fluctuations and BOLD activity. (A) Alpha frequency time series for a representative subject during resting state. (B) HRF-convolved alpha
frequency time series and BOLD time series from a voxel in visual cortex (18, �79, �10) of a representative subject. (C) Regions of interest (ROIs) in the visual cortex.
(D) Association between alpha power fluctuation and BOLD activity from different visual ROIs at the group level. (E) Association between alpha frequency fluctuation
and BOLD activity from different visual ROIs at the group level. FDR-corrected p-values were given.
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(Samaha and Postle, 2015), and stronger response control (Angelakis
et al., 2004). Further, higher IAF is associated with better cognitive
abilities in the realm of fluid intelligence and working memory capacity
(Klimesch et al., 1990). Additionally, IAF decreases in normal aging
(K€opruner et al., 1984; Li et al., 1996; Roubicek, 1977), and is lower in
patients suffering from disorders such as mild traumatic brain injury
(Lewine et al., 2007; Lewine et al., 1999; Tarapore et al., 2013), Par-
kinson's disease (Soikkeli et al., 1991), dementia (Soikkeli et al., 1991),
and Alzheimer's disease (Penttil€a et al., 1985). Since many of these brain
disorders are coupled with declined cognition, lower alpha frequency is
seen as an indicator of reduced cognitive functioning. Theoretical models
explain these associations by positing that alpha frequency is a measure
of the speed of the brain's internal clock (Treisman et al., 1990); in-
dividuals with higher alpha frequency have faster speed of neural in-
formation processing.

4.3. Task-dependent modulation of alpha frequency

Osaka (1984) was among the first to investigate whether alpha fre-
quency is task-dependent and showed that alpha frequency increased
when human subjects performed a complex addition task relative to a
simple addition task (Osaka, 1984). Earle (1988) later found that in
certain tasks alpha frequency increased with increase in task difficulty,
but in other tasks, alpha frequency decreased when task difficulty was
increased (Earle, 1988). A more recent study using an N-back task (N¼ 0
and N¼ 2) reexamined this issue and showed that the more difficult
2-back condition has higher alpha frequency relative to the easier 0-back
condition (Haegens et al., 2014). Because in the N-back task, encoding,
retention and retrieval may be overlapped in time, it is difficult to relate
alpha frequency modulation to a specific working-memory related
cognitive operation. In addition, how alpha frequency modulation im-
pacts behavior or other neural variables remains unclear. Klimesch et al.
(1996), noting the lack of any relationship between reaction time and
alpha frequency within individuals, argued that task-dependent changes
in alpha frequency are not real.

In this work we employed a working memory task where encoding,
retention and retrieval are temporally separated to examine the task-
dependent modulation alpha frequency (Jensen and Lisman, 1998;
Sternberg, 1969). During encoding, higher memory load was associated
with lower alpha power and alpha frequency, whereas during retention,
higher memory load was associated with higher alpha power and alpha
frequency. For alpha power, it is well-established that its decrease
903
following stimulus onset reflects the opening of the sensory space for
information processing, and higher memory load trials have increased
demand for sensory processing, leading to more decrease of alpha power
(Stipacek et al., 2003). Alpha frequency decrease with increasing mem-
ory load during encoding suggests that it plays a similar role of indexing
sensory processing demand considering that higher memory load is
associated with a larger array of digits in the present paradigm.

During retention, alpha power increases with increasing memory
load, a highly replicated finding which has been interpreted as reflecting
sensory inhibition to protect information held online from sensory
interference (Jensen et al., 2002; Worden et al., 2000). Alpha frequency
similarly increased with memory load during retention. For retrieval,
while there was no systematic relationship between alpha power and
memory load, alpha frequency was again systematically increased with
increasing memory load. In both retention and retrieval, a parsimonious
interpretation of the alpha frequency increase with memory load is that
it, like alpha power increase during retention, is a marker of increased
sensory inhibition (see below).

While associations between memory load and alpha power have been
shown across the different temporal stages previously (Jensen et al.,
2002; Klimesch et al., 2005; Meltzer et al., 2007), the present findings of
alpha frequency modulation by memory load during different stages of
working memory have not been demonstrated before, and may lead to
novel hypotheses. In particular, given that increased alpha frequency is
thought to facilitate top-down modulated inter-regional coupling of
alpha rhythm (Sauseng et al., 2005), one may predict that during
retention and retrieval, higher memory load is associated with stronger
alpha-mediated posterior functional connectivity. In this manner, the
modulation of the alpha frequency during each stage namely encoding,
retention and retrieval, is consistent with the corresponding goals of each
working memory stage.

It is worth noting that the aforementioned internal clock theory of
alpha frequency developed to explain the relation between cognitive
ability and individual alpha frequency appears to be not applicable to
explain the findings on the task modulation of alpha frequency. Specif-
ically, according to the internal clock theory, encoding of higher memory
load cues should be associated with increase in alpha frequency to better
meet the demand of increased sensory information processing, whereas
during retention, the higher memory loads, requiring reduced processing
of sensory information processing to prevent interference, should be
accompanied by reduced alpha frequency; in both cases, these predictions
are not compatible with the empirical observations reported here.



Fig. 5. Exploratory whole brain analysis. (A) Low-threshold maps of alpha frequency - BOLD coupling. (B) Low-threshold maps of alpha power - BOLD coupling. ACC –

anterior cingulate cortex, FC - frontal cortex, mPFC - medial pre-frontal cortex, PC – parietal cortex, PCC - posterior cingulate cortex.
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4.4. Functional role of alpha frequency modulation

In the foregoing we interpreted alpha frequency increase and
decrease as reflecting sensory inhibition and facilitation (disinhibition).
The potential function of alpha frequency modulation was further tested
by analyzing the effect of alpha frequency variation on reaction time and
stimulus-evoked brain responses. Dividing the trials into fast reaction
time trials and slow reaction time trials within each memory load, it was
shown that when subjects responded slower, the alpha frequency during
retention was higher. Furthermore, higher pre-cue alpha frequency and
pre-probe alpha frequency was associated with lower early cue-evoked
and probe-evoked responses, respectively. Along with decreasing alpha
frequency with increasing demand of sensory processing during encod-
ing, these results suggest that alpha frequency may provide an index of
cortical excitability, namely, increased alpha frequency reflects
decreased cortical excitability and reduced sensory information pro-
cessing and vice versa. In addition, lower probe-evoked responses were
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followed by higher alpha frequency during the retrieval period. This
result, along with the finding that alpha frequency during retrieval in-
creases with memory load, supports the notion that sensory cortex is
inhibited in this time period to guard the retrieval process taking place in
higher-order structures against sensory interference (Pinal et al., 2014).
Interestingly, in the same time period, alpha power is not systematically
associated with memory load, highlighting the important contribution of
alpha frequency modulation during retrieval. It is worth noting that
similar increase in alpha frequency following smaller early cue-evoked
neural responses were observed, indicating that within a given memory
load, the same interpretation given above to the relation between
retrieval period alpha frequency and probe-evoked neural response ap-
plies to the relation between encoding period alpha frequency and
cue-evoked neural response.

The above hypothesis that alpha frequency reflected cortical inhibi-
tion was further tested in the second experiment in which simultaneous
EEG and fMRI was recorded during resting state. Correlating the
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naturally occurring fluctuations of alpha frequency and alpha power with
BOLD signals using a general linear model approach with both alpha
frequency and alpha power as regressors, we found that alpha frequency
and BOLD in visual cortex were inversely associated, indicating that
BOLD activity is lower during the time period where alpha frequency is
higher. While the exact neurophysiological meaning of the BOLD is still
under investigation (Ekstrom, 2010; Heeger et al., 1999; Logothetis and
Wandell, 2004), the general consensus is that higher BOLD level in-
dicates stronger neural activity (Ko�os and Tepper, 1999). Following this
understanding, higher alpha frequency is associated with a state of lower
activity in the visual cortex, whereas lower alpha frequency is associated
with a state of higher activity in the visual cortex, which is consistent
with our interpretation of alpha frequency modulation during different
stages of the working memory task in the first experiment. The fact that
alpha power was not associated with BOLD activity in the visual areas in
our analysis appears to run counter to previous reports that alpha power
is negatively correlated with BOLD from visual cortex (Gonçalves et al.,
2006; Laufs et al., 2006; Mo et al., 2013). This may be due to the fact that
these studies do not use alpha frequency as a co-variate. Without
considering this factor the GLM model may be underdetermined.

From Fig. 4E, alpha frequency-BOLD coupling is stronger in the extra-
striate cortex (V3, V4, IPS), but weaker in V1. One possible reason could
be the difference in cell types across the different visual ROIs with higher
order regions containing larger neurons responsible for integrating in-
formation from early visual areas (Collins et al., 2016); larger cells may
produce stronger fields. Another reason could be the difference in how
anterior higher-order (frontal and parietal) brain regions project to
different visual ROIs. Extra-striate areas such as V2, V3 and V4 receive
stronger projections from higher order areas and consequently may be
more susceptible to top-down inhibitory control signals leading to
stronger BOLD deactivation (Stanton et al., 1995). Thirdly, the role of
acetylcholine in modulating alpha frequency is intriguing. Prior research
has shown that increased cholinergic concentration is related to increase
in oscillation frequency (Fellous and Sejnowski, 2000). It is known that
cholinergic input has inhibitory functions (Gulledge and Stuart, 2005;
Phillis and York, 1967). Higher order visual areas like V2 are suggested to
have more evident cholinergic modulation than V1 (Disney et al., 2006).
We recognize that these ideas are quite speculative. Much more research
is needed to better understand the relationships we report here.

4.5. Relationship between alpha power and alpha frequency

Memory load modulation of alpha power and alpha frequency is
quantified by their respective load modulation indices. As seen in Fig. 2,
across subjects, the two indices are not correlated with one another,
suggesting that each alpha variable can be independently tuned func-
tionally. This appears to be supported by the alpha-BOLD coupling
analysis in Experiment 2 where alpha power and alpha frequency fluc-
tuations are shown to be correlated with BOLD from different brain
networks. As seen in Fig. 5, whereas alpha frequency is positively
coupled with regions of DMN, alpha power is negatively coupled with
lateral prefrontal cortex. At first glance, these findings appear to be
incompatible with the finding that alpha power and alpha frequency are
related within a subject (Nelli et al., 2017). The following considerations
may reconcile the diverse findings. At the single trial level, there is no
straightforward relationship between alpha power and alpha frequency
(see Figure S1 for an illustration). Even if there is, one can understand the
independent modulation of alpha power and alpha frequency by exam-
ining a simple statistical model in which at the individual subject level:
AF ¼ a� Loadþ e1 and AP ¼ b� Loadþ e2, where alpha frequency (AF)
and alpha power (AP) vary from trial to trial, driven by the random
variables e1 and e2. Each subject has constant modulation indices a and b
which vary from subject to subject. AF and AP being correlated at the
single trial level implies that e1 and e2 are correlated random variables.
Across subjects, variations of the random variables a and b can be inde-
pendent from each other, as we reported here.
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