
Articles
https://doi.org/10.1038/s41567-018-0190-0

1Department of Physics, University of California, Santa Barbara, CA, USA. 2California Nanosystems Institute, University of California at Santa Barbara, 
Santa Barbara, CA, USA. 3Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Japan.  4These authors contributed equally:  
A. A. Zibrov, E. M. Spanton. *e-mail: andrea@physics.ucsb.edu

Clean two-dimensional electron systems in the high-magnetic-
field limit host various correlated phenomena, including 
Wigner crystallization of electrons, topologically ordered 

fractional quantum Hall liquids, and quantum Hall ferromagnets. 
Among such systems, monolayer graphene is distinguished by 
its zero-energy Landau level (ZLL), which spans ν ∈​ [−​2,2] with 
ν π≡ ℓ n2 eB

2  the Landau level filling factor. Here, ne is the areal elec-
tron density and ℓ = ℏ∕ eBB

2  is the magnetic length. The fourfold 
degeneracy of the ZLL reflects the near-degeneracy of internal 
spin and sublattice quantum numbers, while the π​-Berry phase of 
the massless Dirac electrons pins the centre of the ZLL to charge 
neutrality at ne =​ 0. Within the ZLL, the dominant long-ranged 
Coulomb interaction does not distinguish between different spin 
or sublattice flavours, but favours breaking the approximate SU(4) 
isospin symmetry by polarizing the ground state into a single iso-
spin component1. Broken isospin symmetry manifests principally as 
additional gapped states2,3 at integer fillings ν =​ 0, ±​1.

Of particular interest is the case of the charge neutral state at 
ν =​ 0, corresponding to half-filling of the ZLL, where Pauli exclu-
sion prevents, for example, simultaneous spin and sublattice polar-
ization. In this case, the direction of polarization is set by competing 
isospin anisotropies, including both single-particle effects and the 
anisotropy of the Coulomb interactions at the scale of the honey-
comb lattice. Candidate ν =​ 0 ground states are sketched in Fig. 1a  
and characterized by either spin or sublattice order, including a 
canted antiferromagnetic (CAF) state that breaks spin rotation 
symmetry4 and a partially sublattice polarized (PSP) density wave 
featuring a Kekulé distortion that triples the size of the unit cell5.

The CAF and PSP states are direct analogs of the Néel and 
valence bond solid (VBS) states that arise in studies of two-dimen-
sional quantum magnetism, as noted in a series of recent theoretical 
works6–8. Within conventional Landau–Ginzburg–Wilson theory, 
incompatible symmetry breaking between the VBS and Néel phases 
(real-space and spin, respectively) requires a first-order transition. 

However, unusual critical phases allowing for a continuous tran-
sition have been proposed9, as well as first-order transitions with 
emergent symmetry at the critical point7. Realizing the PSP–CAF 
transition in monolayer graphene could thus allow direct experi-
mental probes of this unconventional quantum phase transition.

Here we report the observation of anomalous fractional quan-
tum Hall features at low |ν|, consistent with proximity to a PSP–CAF 
phase transition at ν =​ 0. The transition is marked by the appear-
ance—and subsequent disappearance—of even-denominator frac-
tional quantum Hall (EDFQH) states at ν =​ ±​1/2 and ν =​ ±​1/4 in 
the vicinity of charge neutrality, coincident in magnetic field with 
weakening of nearby odd-denominator fractional quantum Hall 
(ODFQH) states across the range −​2/3 <​ ν <​ 2/3. We observe a similar 
phenomenology in three monolayer graphene samples (A, B and C)  
fabricated by encapsulating the graphene flake between single-crys-
tal hexagonal boron nitride gate dielectrics and single-crystal graph-
ite electrostatic gates10,11. The magnetic field at which the anomalous 
FQH features are observed is directly correlated with the strength of 
an observed zero-field insulating state associated with a substrate-
induced sublattice splitting Δ​AB, with the ν =​ ±​1/2 states appearing 
for a narrow range of magnetic field centred on 28.3 T, 27.5 T and 
5.6 T in the three devices. We interpret the observed features within 
a model in which a magnetic field-dependent antiferromagnetic 
interaction anisotropy12 competes with a fixed substrate-induced 
sublattice-symmetry-breaking gap13,14, leading to a transition 
between sublattice- and spin-ordered phases at both neutrality15,16 
and nearby fractional fillings17.

Figure 1b shows the penetration field capacitance (CP) for sample 
A, where CP is defined as the differential capacitance between the 
top and bottom gates with the graphene held at constant electro-
chemical potential18. Data are plotted over a range spanning the ZLL 
as a function of magnetic field B and nominal charge carrier den-
sity n0 =​ c(vt +​ vb−​2vs), where c is the average gate-to-sample geo-
metric capacitance of the two (nearly symmetric) gates and vt, vb 
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and vs are the voltages applied to top gate, bottom gate and sample, 
respectively. We observe gapped quantum Hall states, which appear 
as peaks in the measured signal at constant ν (see Methods), at inte-
ger fillings ν =​ ±​2, ±​1 and 0, as well as at fractional filling factors 
ν ν∣ −⌊ ⌋∣ =

±
p

mp 1
, where ν⌊ ⌋ is the greatest integer less than or equal 

to ν. We observe states with m =​ 2,4 and p large as 7 (Fig. 1a,b and 
Supplementary Fig. 1). In the absence of four-terminal measure-
ments we extract the Hall conductivity of the high-CP gapped states 
using the Strĕda formula19, which states that gaps following a linear 
trajectory in the density–magnetic field plane carry quantized Hall 
conductivity equivalent to their slope.

Incompressible EDFQH states appear at ν =​ ±​1/2, but only in 
a narrow range of magnetic fields. Similar phenomenology is also 
observed at ν =​ ±​1/4, with EDFQH appearing only for a small range 
of B (Fig. 2 and Supplementary Fig. 1). The appearance of EDFQH 
states is accompanied by weakening or disappearance of adjacent 
ODFQH states. This is evident both near ±​1/4 (Fig. 2) and ±​1/2 
(Fig. 3a,c and Supplementary Figs. 2 and 4), with weakening most 
evident at temperatures comparable to the ODFQH energy gaps (see 

Supplementary Fig. 14). In sample C, an EDFQH state at ν =​ ±​1/2 
and weakening/disappearance of nearby ODFQH states also occur, 
but at much lower B (Fig. 3b,d). Both the appearance of the EDFQH 
states and the weakening of the ODFQH states occur only for fill-
ings near charge neutrality, ν ∈​ [−​2/3, 2/3]; for example, no EDFQH 
is observed at ν =​ ±​3/4, ±​5/4, ±​3/2 or ±​7/4 throughout the experi-
mental range of B. The magnetic field for both ODFQH weakening 
and EDFQH emergence occurs at lower fields for transitions closer 
to ν =​ 0, but remains constant for 2/3 >​ |ν| >​ 1/2 (Fig. 3e,f).

EDFQH states have not been previously reported among the 
many FQH states observed in monolayer graphene20–25, nor have 
they been predicted26–33. However, previous experiments on other 
quantum Hall systems have revealed a variety of behaviours at 
even-denominator fractional filling. In single-layer semiconduc-
tor quantum wells, the two-dimensional electron system is com-
pressible at filling factors ν =​ 1/2 and 3/2 in the lowest Landau 
level (corresponding to orbital quantum number N =​ 0) but forms 
incompressible FQH states at ν =​ 5/2 and 7/2 in the first excited LL 
(orbital quantum number N =​ 1)34. Other single-component FQH 

n0/c (V)
0 1–1 2–2 3–3 4–4

34

30

26

22

0.5

0

0.25

Cp/c
ν = 0 1 2–2 –5/3

–5/3 –8/5 –3/2 –7/5 –4/3 –2/3 –3/5 –1/2 1/2–2/5 2/5 3/5 2/3 4/3 7/5 3/2 8/5 5/3–1/3 1/3

–4/3 –2/3 –1/2 –1/3 1/3 1/2 2/3 4/3 5/3

B
 (

T
)

b

c
0.5

0

0.25

–0.25

C
p/
c

ν

ν 
=

 0

ν 
=

 1

ν 
=

 –
1

1

a

Sample A T = 0.3 K

A B

A BA B A B

PSP CAFCDW

ν = –2
A B
ν = –1 ν = 1

A B A B

ν = 2

Fig. 1 | Incompressible FQH states at ν = ±1/2. a, Sketches of ground state spin and sublattice polarizations at integer filling within the ZLL. At ν =​ −​2 
the ZLL is empty while at ν =​ +​2 it is fully filled. At ν =​ ±​1, single or triple occupation permits full spin and sublattice polarization. At ν =​ 0, however, 
corresponding to half filling, a variety of ground states are predicted4,5,15,16,45, including charge density wave (CDW), partially sublattice polarized (PSP) 
and canted antiferromagnetic (CAF) phases. b, False-colour plot of the penetration field capacitance CP/c measured (see Methods) in sample A at 
T =​ 300 mK as a function of the magnetic field, B, and the nominal charge density n0≡​c(vt +​ vb−​2vs), where vt, vb and vs are the top gate, bottom gate and 
sample voltages, respectively. c is the average geometric capacitance of the two gates. Fractional quantum Hall states appear as lines of high CP with a 
slope proportional to their quantized Hall conductivity19. The dataset spans filling factors ν =​ [−​2,2], encompassing the zero-energy Landau level. b, CP 
trace taken at constant B =​ 28.3 T between filling factors ν =​ −​2 and ν =​ 2, corresponding to the black arrows in a. Incompressible states occur at ν =​ ±​
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systems, including ZnO35 and bilayer graphene10,11,36, show EDFQH 
at different ν but always in a regime corresponding to occupation 
of N =​ 1 orbital wavefunctions. In the monolayer graphene ZLL, 
orbital wavefunctions are identical to the N =​ 0 LL of conventional 
semiconductor systems, and so no single-component EDFQH states 
are anticipated26,27,32,33,37. Multicomponent systems, however, can 
host a wider variety of FQH states38, including at even-denominator 
filling factors. Indeed, EDFQH states at ν =​ 1/239–42 and ν =​ 1/443,44 
have been observed in the N =​ 0 LL for structures where electrons 
are confined to two spatially separated layers or electronic sub-
bands. By analogy with such systems, it seems likely that the mono-
layer graphene EDFQH states are multicomponent in nature, with 
the role of the layer/subband quantum number replaced by isospin 
components within the ZLL. In this scenario, the ODFHQ weaken-
ing is similarly associated with transitions between ODFQH states 
constructed from different isospin components24.

The high symmetry of the ZLL permits many possible isospin 
polarizations at fractional filling, complicating the task of deter-
mining the components relevant for forming multicomponent 
FQH states. However, recent theoretical work has suggested that 
the isospin phase diagram of low-|ν| FQH states closely mimics 
that of the nearby ν =​ 0 integer quantum Hall state17, which can be 
analysed within a Hartree–Fock framework15,16. The ν =​ 0 ground 
state is obtained by optimizing the energy of competing isospin 
anisotropies constrained by the Pauli exclusion principle, which 
prohibits double occupation of a spin or valley component. These 
anisotropies include the Zeeman effect (with characteristic energy 
EZ =​ gμBB ≈​ 1.34K ×​ B [tesla], where g =​ 2 and μB are the g-factor 
of the electron and the Bohr magneton, respectively), the intrin-
sic sublattice-anisotropy of the Coulomb interactions themselves45 
(with characteristic energy = ≈ . ×

εℓ ℓ
E B98K [tesla]a e

V
B

2

B
) and sub-

strate-induced sublattice splitting (with characteristic energy ΔAB).
A clue to the origin of the observed FQH features is provided 

by the observation that all the devices showing EDFQH states and 
ODFQH features are gapped at zero magnetic field and zero charge 
density—a phenomenology associated with finite ΔAB. Figure 4a,b 
shows low-magnetic-field Landau fan plots for samples A and C. 
The electron system remains incompressible at ν =​ 0 for all mag-
netic fields, consistent with a single-particle ΔAB (refs 13,14). The 
insulating nature of samples B and C is confirmed by transport 
measurements at zero field (Supplementary Fig. 8; sample A did not 

have transport contacts). In a fourth sample showing no measurable 
sublattice gap, no EDFQH states were observed (Supplementary 
Figs. 9,10). Crucially, the magnetic field at which EDFQH states 
appear is directly correlated with the measured ΔAB (see Fig. 4c and 
Supplementary Fig. 11), with large ΔAB corresponding to devices 
with a large appearance field for the FQH features.

A similar correlation between B and ΔAB arises from analysing 
the phase diagram of the ν =​ 0 state, where ΔAB controls the mag-
netic field of isospin transitions. To investigate this connection 
quantitatively, we analyse a mean-field model for the charge neu-
tral state that accounts for the sublattice symmetry breaking ΔAB 
observed in our devices. Such a model has already been studied in 
the literature for bilayer graphene15, where sublattice splitting can 
be actuated with an applied electric field, but is equally applicable 
in the present scenario. Symmetry considerations permit two com-
peting interaction anisotropies, parameterized by dimensionless 
couplings gz and g⊥ which we take to be ΔAB- and B-independent 
constants. The resulting phase diagram15,16 includes both the PSP 
and CAF phases mentioned above as well as a fully sublattice polar-
ized charge density wave (CDW) state and fully spin polarized fer-
romagnetic (FM) state.

Among the competing isospin anisotropies, both EV and EZ 
grow with B while ΔAB is independent of B. Thus the CDW phase is 
favoured in the low-B limit for ΔAB ≠​ 0, with phase transitions to EV- 
or EZ-driven states possible at higher B. The values of gz and g⊥ are 
constrained to g⊥ ≈​ −​10 and gz >​ −​g⊥ from previous experiments2,12 
on devices with ΔAB =​ 0 (see Supplementary Information). Figure 4d 
shows the calculated phase diagram as a function of ΔAB and B for 
fixed g⊥ =​ −​10 and gz =​ 15. Two phase transitions are evident within 
this model: a second-order transition from the CDW to PSP phase, 
corresponding to the canting of the sublattice order parameter into 
the plane, and a first-order transition from the PSP to CAF phase.

Associating the EDFQH states with a particular phase or phase 
transition of the ν =​ 0 ground state imposes two requirements. First, 
effective interactions and available components at ν =​ ±​1/2 (and ±​1/4)  
should favour formation of an incompressible state. Second, these 
favourable conditions should persist only for a narrow range of 
magnetic fields. We propose that these requirements can be satisfied 
at the PSP–CAF phase transition. In this scenario, EDFQH states 
are made up of two isospin components with opposite sublattice 
occupation, which become degenerate in energy near the transition, 
thus favouring multicomponent states. Furthermore, the anisotropy 
of Coulomb interactions between wavefunctions on different sub-
lattices is reminiscent of double-layer systems, where asymmetry 
between inter- and intralayer interactions leads to the formation 
of a multicomponent EDFQH state38–40. The PSP–CAF phase tran-
sition also provides a mechanism for the concomitant weakening 
of ODFQH states, which are predicted to undergo isospin transi-
tions17. We note that some other experimental systems have been 
successfully described using a picture of Zeeman-driven transitions 
of non-interacting composite fermion LLs24,35,46. However, such 
a naive picture fails to explain a number of qualitative features of 
our data, most notably the observed weakening of ODFQH states 
at ν =​ ±​1/3, ±​1/5. It thus appears empirically necessary to consider 
the full range of multicomponent FQH states allowed in the ZLL to 
qualitatively understand the FQH physics17,47.

We illustrate the mechanism for forming a multi-component 
incompressible state at the CAF–PSP phase transition by ignoring 
both the canting of spin in the CAF phase (making it a collinear 
antiferromagnet, denoted AF) and canting of sublattice polariza-
tion in the PSP (making it equivalent to the CDW). In this limit, 
the CDW–AF phase transition is direct, with increasing magnetic 
field leading to a level crossing between single-electron LLs with 
identical spin but opposite sublattice polarizations, depicted sche-
matically in Fig. 5. On both sides of the transition, the ν =​ −​1 state 
is fully spin and sublattice polarized. Additional electrons, however, 
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populate different sublattice orbitals in the low- and high-B 
regimes: in the CDW, electrons populate the same sublattice, while 
in the AF regime they populate the opposite sublattice. Far from 
the transition, additional electrons occupy the lower-energy sublat-
tice branch of the LL, resulting in a compressible state as observed 
in experiment. Near the transition, however, the two sublattice 
orbitals are degenerate, making inter-sublattice correlated states-
--which reduce the energy cost of Coulomb repulsion---energeti-
cally favourable. We interpret EDFQH at ν =​ ±​1/2 and ν =​ ±​1/4 as 
multicomponent states38 incorporating intersublattice correlations. 
We note, however, that within this class of states a variety of mul-
ticomponent wavefunctions are possible17. Definitive resolution of 
the nature of the EDFQH will thus require more detailed numerical 
and experimental studies.

A number of experimental observations, however, are not 
explained even qualitatively in the simple picture described above, 
and warrant further study. For example, the counting of ODFQH 
phases is not well understood: the presence of three phases at ν =​ 1/5 
(Fig. 2), and differences in the number of phases observed at ν =​ ±​3/5  
for samples with differing ΔAB (Fig. 3a,b), suggest a complex inter-
play of symmetry breaking and FQH physics. The nature of the 
transitions between ODFQH states are also open to further inves-
tigation. Some filling factors show a full closing of the gap (Fig. 2),  
while others exhibit only a weakening (for example, Fig. 3a). Finally, 
the ν dependence of the value of B at which anomalous FQH 

features appear is strongly dependent on ν for |ν| <​ 1/2 but appears 
to completely flatten when |ν| >​ 1/2 (Fig. 3e,f), a phenomenon that 
must be accounted for quantitatively in any definitive description of 
the FQH transitions.

In summary, we have reported the observation of a number of 
sublattice-splitting tuned FQH phase transitions in monolayer gra-
phene, as well as the observation of EDFQH states at ν =​ ±​1/2 and  
±​1/4. Athough existing theoretical work has pointed out the possi-
bility of new filling-factor-dependent isospin phases17,48 arising from 
the interplay of symmetry breaking and FQH physics, the EDFQH 
was not predicted and remains to be definitively explained. We 
expect that future theoretical and experimental work—for example, 
measurements of tunnelling exponents of EDFQH edge states—will 
be able to resolve the nature of these new phases.

In addition to the obvious puzzle concerning the precise nature 
of the FQH states, our analysis suggests the possible existence of pre-
viously unexplored isospin phase transitions at ν =​ 0. The PSP–CAF 
transition, in particular, remains the subject of continued study. 
Some authors have proposed that quantum fluctuations destroy the 
first-order phase transition, leading to a deconfined critical point 
between the two phases6,8, while others suggest the first-order phase 
transition survives but with an enlarged symmetry of low-energy 
isospin rotations7. The most spectacular experimental manifesta-
tions of these transitions are likely to occur in the neutral sector, to 
which the current experiment is blind. However, future experiments 
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can access this physics directly—for instance, by probing thermal49 
or magnetic50 transport.

Methods
We used the van der Waals dry transfer method to assemble graph-
ite/hBN/MLG/hBN/graphite heterostructures, where hBN is hex-
agonal boron nitride and MLG is monolayer graphene. Graphite 
contact(s) were incorporated in the stack to contact the dual-gated 
monolayer. hBN thicknesses of 40–60 nm were used, while graphite 
contacts and gates were between 3 nm and 10 nm thick. In samples 
A–C, windows to the graphite contacts and gates were etched in a 
Xetch-X3 xenon difluoride etching system, a selective hBN etch, 
and defluorinated with a 400 °C anneal in the forming gas. The gates 
and contacts were then contacted Ti/Au (5 nm/100 nm) contacts. In 
sample D, edge contacts51 to the graphite were made with Cr/Pd/Au 
(3 nm/15 nm/80 nm). Optical images of the four measured devices 
are shown in Supplementary Fig. 16 Measurements below B =​ 14 T 
were performed in a top-loading Bluefors dry dilution refrigerator. 
Reported temperatures were measured using a ruthenium oxide 
thermometer attached to the cold finger. Measurements at higher 
magnetic field were performed at the National High Magnetic Field 
Lab in Tallahassee in a 35 T resistive magnet and 45 T hybrid mag-
net, in He-3 fridges with a nominal base temperature of 0.3 K. We 
performed measurements of the penetration field capacitance (CP) 
as a function of magnetic field and gate voltages to probe incom-
pressible/insulating states. This measurement technique is outlined 

in Supplementary Fig. 15 and described in detail in ref. 10 and ref-
erences therein. Unless otherwise noted, measurements were per-
formed above the low-frequency limit (at f =​ 60–100 kHz)—that is, 
there is an out-of-phase dissipative signal associated with many of 
the observed gapped states. In this frequency regime, an elevated 
CP indicates a combination of incompressibility and bulk insulating 
behaviour, both of which are an indication of gapped states52. We 
focus on gapped states at fixed filling factor, which, by arguments 
first proven by Strĕda19, have a quantized Hall conductance equal to 
their slope in the n–B plane.

In. Fig. 2a, a fixed filling factor running average of three pixels 
was used to remove line noise which obscured some weaker fea-
tures. In Fig. 3c,d, a fixed filling factor running average of five pixels 
was used to remove line noise.

Data availability. The data that support the findings of this study are 
available from the corresponding author upon reasonable request.
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Methods, including statements of data availability and any asso-
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