
ARTICLES
PUBLISHED ONLINE: 23 OCTOBER 2017 | DOI: 10.1038/NPHYS4295

Fermi surface in the absence of a Fermi liquid in
the Kondo insulator SmB6

M. Hartstein1†, W. H. Toews2†, Y.-T. Hsu1†, B. Zeng3, X. Chen1, M. Ciomaga Hatnean4, Q. R. Zhang3,
S. Nakamura5, A. S. Padgett6, G. Rodway-Gant1,7, J. Berk1, M. K. Kingston1, G. H. Zhang1,8, M. K. Chan9,
S. Yamashita10, T. Sakakibara5, Y. Takano6, J.-H. Park3, L. Balicas3, N. Harrison9, N. Shitsevalova11,
G. Balakrishnan4, G. G. Lonzarich1, R. W. Hill2, M. Sutherland1* and Suchitra E. Sebastian1*

The search for a Fermi surface in the absence of a conventional Fermi liquid has thus far yielded very few potential candidates.
Among promising materials are spin-frustrated Mott insulators near the insulator–metal transition, where theory predicts a
Fermi surface associated with neutral low-energy excitations. Here we reveal another route to experimentally realize a Fermi
surface in the absence of a Fermi liquid by the experimental study of a Kondo insulator SmB6 positioned close to the insulator–
metal transition. We present experimental signatures down to low temperatures (�1 K) associated with a Fermi surface in
the bulk, including a sizeable linear specific heat coe�cient, and on the application of a finite magnetic field, bulk magnetic
quantum oscillations, finite quantum oscillatory entropy, and substantial enhancement in thermal conductivity well below the
charge gap energy scale. Thus, the weight of evidence indicates that despite an extreme instance of Fermi liquid breakdown
in Kondo insulating SmB6, a Fermi surface arises from novel itinerant low-energy excitations that couple to magnetic fields,
but not weak DC electric fields.

The f -electron system SmB6, which has been recently proposed
to be a topological insulator characterized by a conducting
surface1–7, has been long known to exhibit Kondo insulating

behaviour characterized by a collective f –d hybridization charge
gap in the bulk. The bulk charge gap is evidenced in experiments
such as infrared absorption, inelastic neutron scattering, optical
conductivity, electron tunnelling, intermediate-temperature specific
heat capacity, and electrical resistivity8. SmB6 is further positioned
in the close vicinity of the Kondo insulator transition to a metallic
phase, requiring as little as 40 kbar for metallization9–11. The
surprising observation of quantumoscillations in themagnetization
unaccompanied by oscillations in the electrical resistance of SmB6
was reported in refs 12,13. Whereas ref. 12 interpreted these
quantum oscillations in the framework of a two-dimensional
Fermi surface from a conducting surface layer, ref. 13 in contrast
associated them with a three-dimensional Fermi surface from
the insulating bulk. Here we test for three-dimensional bulk
Fermi surface character associated with the measured quantum
oscillations in SmB6, and probe for quantitative correspondence
with an itinerant band of in-gap low-energy excitations using
complementary experimental techniques.

Figure 1a shows a sample of quantumoscillations in themagnetic
torque before any background subtraction, measured in a floating
zone-grown crystal of SmB6, revealing large oscillations dominant
against the measured background, with prominent high-frequency
oscillations at high magnetic fields, as shown by the inset. The
correspondence of the measured quantum oscillations to a three-

dimensional ellipsoidal Fermi surface geometry characteristic of
metallic hexaborides (Fig. 1c, refs 13–16) is seen from the extended
angular dependence of the measured quantum oscillations for tilt
angles spanning both the [011]–[001] and [001]–[111]–[110] planes
(Fig. 1b). Angular-dependent quantum oscillation data are shown
for both floating zone-grown and flux-grown single crystals; the
observed angular dependence is independent of the orientation of
exposed crystal surfaces in both types of samples, in contrast to the
expectation for an origin of quantum oscillations from a surface
layer. We note that the observation of quantum oscillation frequen-
cies that span the entire angular range is inconsistent with a two-
dimensional Fermi surface geometry, for which quantum oscillation
frequencies would be expected to vanish at tilt angles corresponding
to open Fermi surface orbits (Supplementary Figs 4 and 7). We
next establish the three-dimensional Fermi surface we access to
correspond to the bulk volume of the sample by a quantitative
inspection of the observed large amplitude of quantum oscillations
in the magnetization (Fig. 1). We choose for comparison the mea-
sured lowest-frequency quantum oscillations, which are closest to
the zero-phase (infinite field) limit. Given the small size of the Fermi
surface corresponding to the lowest-frequency quantumoscillations
occupying only 0.1%of the Brillouin zone, the corresponding carrier
density is very low. This low carrier density leads to theoretical
predictions of a small magnitude of quantum oscillation amplitude
(in units of µB per unit cell) in the case of a two-dimensional
Fermi surface originating from the surface atomic layer, as well
as in the case of a three-dimensional Fermi surface originating
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Figure 1 | Comparison of quantum oscillations in SmB6 with three-dimensional bulk Fermi surface model. a, Measured oscillations in the magnetic torque
for a floating zone-grown crystal before any background subtraction, with the inset giving a magnified view of the high-frequency oscillations visible at high
magnetic fields. b, Angular-dependent quantum oscillation measurements in the [011]–[001] rotation plane in the field range 8 T<B<35 T on two
crystals, and in the [001]–[111]–[110] rotation plane in the field range 11 T<B<40 T on two other crystals, to complement previous angular-dependent
measurements reported in ref. 13. Open and closed circles represent data from floating zone-grown crystals, open and closed diamonds and squares
represent data from flux-grown crystals. Throughout, B=µ0H, where H is the applied magnetic field. Angular dependence of observed quantum
oscillations is in good agreement with the three-dimensional ellipsoidal model characteristic of rare-earth metallic hexaborides and proposed in ref. 13
(shown by fit lines). c, Twelve ellipsoidal electron pockets along the 〈110〉 directions, corresponding to the fit to the ρ frequencies, and three large ellipsoidal
electron pockets along the 〈100〉 directions, corresponding to the fit to the α frequencies in b. d, The quantum oscillatory magnetic moment (in µB per unit
cell) corresponding to the lowest-frequency oscillations in LaB6, measured using a very similar experimental setup to that used for SmB6. e, The quantum
oscillatory magnetic moment corresponding to the measured lowest-frequency oscillations in SmB6 (labelled ρ also corresponding to small ellipsoids13–16)
yields a value close to LaB6 assuming a bulk origin in both cases. Dashed lines represent magnetic field dependence of the quantum oscillation amplitude
from an exponential damping (Dingle) fit. f, Size of the magnetic moment corresponding to the measured lowest-frequency oscillations in SmB6 were they
to originate from only the surface. g, Theoretical Lifshitz–Kosevich estimate for the quantum oscillatory magnetic moment (in µB per unit cell) including
the angular anisotropy term, Dingle and spin-splitting damping factors (Methods) indicated for a bulk origin (left-hand axis), and for a surface origin
(right-hand axis) of quantum oscillations. Good order of magnitude agreement is seen with experiment assuming a bulk origin (d,e), whereas the predicted
theoretical maximum size is several orders of magnitude smaller than experiment were the quantum oscillations to arise from a surface atomic layer.

from the insulating bulk (Fig. 1g, Methods). We first compare the
measured quantum oscillation amplitude per unit cell assuming an
origin from the entire bulk with the theoretical prediction. We find
good agreement within an order of magnitude of the measured
quantum oscillation amplitude (in units ofµB per unit cell) with the
theoretical prediction for a three-dimensional bulk Fermi surface

made using the Lifshitz–Kosevich theory (Fig. 1e,g, Methods), and
an experimental comparisonwith the three-dimensional bulk Fermi
surface in metallic LaB6 (Fig. 1d, Methods). In contrast, were the
observed quantum oscillations to originate solely from the surface
atomic layer, these would correspond to a very large amplitude
in µB per surface unit cell, given that surface unit cells constitute
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Figure 2 | Finite linear specific heat coe�cient and quantum oscillatory entropy of SmB6. a, Measured specific heat capacity of SmB6 for a floating
zone-grown single crystal (FZ) down to 63 mK, revealing a finite heat capacity divided by temperature at low temperatures, unexpected for an insulator,
with a surprising steep increase below approximately 1 K (similar to ref. 17). The inset shows the measured specific heat capacity for two floating
zone-grown crystals (blue and green diamonds) and a flux-grown crystal (red circles), demonstrating a finite heat capacity divided by temperature at low
temperatures across all samples, with a more prominent increase below approximately 1 K exhibited by floating zone-grown crystals. b, Steep
non-Lifshitz–Kosevich low-temperature upturn below approximately 1 K in quantum oscillation amplitude for the case of floating zone-grown SmB6
(purple, blue and green diamonds, with the error corresponding to the noise floor of the Fourier transform), with similarities to the low-temperature upturn
in the heat capacity divided by temperature which is most prominent for this type of sample, shown in a. Inset shows the prominent increase in quantum
oscillation amplitude below approximately 1 K that deviates from Lifshitz–Kosevich temperature dependence, which is only observed in the case of floating
zone-grown crystals (three samples shown by purple, blue and green diamonds), and not flux-grown crystals (two samples shown by orange and red
diamonds). c, Measured e�ective mass of the various frequency branches of SmB6 from a Lifshitz–Kosevich fit down to 1 K (star symbols, Supplementary
Fig. 5), seen to be very similar to the metallic rare-earth hexaborides14–16,53, especially nonmagnetic LaB6. d, Derivative with respect to temperature of the
highest frequency (α) magnetic quantum oscillation amplitude remains finite to low temperatures, reflecting a finite quantum oscillatory entropy at
temperatures well below the charge gap scale (see Methods). The inset shows the magnetic quantum oscillation amplitude of the α frequency as a
function of temperature down to approximately 1 K in a floating zone-grown sample.

only a small fraction (approximately 10−6) of the total number of
unit cells (Fig. 1f). We thus show that were quantum oscillations
to originate from a surface atomic layer, the theoretical prediction
of the maximum possible amplitude of quantum oscillations per
surface unit cell would be several orders of magnitude smaller
than the experimentally observed quantum oscillation amplitude
per surface unit cell, ruling out such an origin of quantum os-
cillations reported here. Quantum oscillations in SmB6 are also
observed using capacitive Faraday magnetometry measurements in
superconducting magnetic fields up to 14 T (Supplementary Fig. 2),
and bulk magnetic susceptibility measurements in pulsed magnetic
fields (Supplementary Fig. 3).

We look for experimental evidence for low-energy excitations
within the charge gap of SmB6, which we compare with the Fermi
surface associated with the measured quantum oscillations. The
inset of Fig. 2a shows specific heat capacity measured in multiple
single crystals of SmB6 grown by the floating zone technique and
by the flux growth technique, which are either the same samples
on which quantum oscillations are observed, or from the same
crystal growth. At low temperatures, a finite density of states at
the Fermi energy within the charge gap is revealed by a finite
value of the linear specific heat coefficient, γ ≈ 4(2)mJmol−1 K−2
(seeMethods), which rapidly increases with decreasing temperature
(Fig. 2a). We compare the size of the density of states measured

168

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE PHYSICS | VOL 14 | FEBRUARY 2018 | www.nature.com/naturephysics

http://dx.doi.org/10.1038/nphys4295
www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS4295 ARTICLES

0.00 0.05 0.10

T2 (K2)

T2 (K2)

T2 (K2)

T2 (K2)

0.15
0.00

0.04

0.08

0.12

κ
/T

 (W
 m

−1
 K

−2
)

κ
(B

)/
κ

(0
)

κ
(B

)/
κ

(0
)

κ
(B

)/
κ

(0
)

κ
/T

 (W
 m

−1
 K

−2
)

(κ
 −

 κ
ph

.)/
T 

(W
 m

−1
 K

−2
)

C p/
T 

(m
J m

ol
−1

 K
−2

)

0.16

0.20

a b

c d

0.0

0.4

0.8

1.2

1.6

1.0

1.1

1.2

1.3

1.0

1.2

1.4

1.6

1.8

2.0

0 1 2 3 4
0

50

100

0.00 0.05 0.10 0.15
0.00

0.02

0.04

0.06

FZ
SmB6

SmB6

κph./T

0 T

EtMe3Sb[Pd(dmit)2]2

EtMe3Sb[Pd(dmit)2]2

κ-(BEDT-TTF)2Cu2(CN)3

κ-(BEDT-TTF)2Cu2(CN)3

130 mK

230 mK

B (T)

1.0

1.2

1.4

1.6

235 mK

FZ
243 mK

B (T)

FZ

Flux
340 mK

0 T

5 T

5 T

0 T

0 T

12 T

12 T

0.0

0.1

0.2

0.3

1.0

1.2

1.4

1.6

0.00 0.05 0.10 0.15

0 2 4 6 8 10 12

0 2 4 6 8
B (T)

10 12

0 2 4 6 8 10

Figure 3 | Low-temperature thermal conductivity of SmB6. a, Thermal conductivity (κ) of a floating zone-grown single crystal of SmB6 plotted as κ/T as a
function of T2. The value of thermal conductivity at the lowest measured temperature shows a nearly fourfold increase in increasing applied magnetic fields
up to 12 T. The zero field data is largely accounted for by the phonon contribution (see Methods) calculated for a Debye temperature ofΘD=373 K (red
line denoted by κph./T), obtained from elastic constants54. The enhancement in a magnetic field is clearly seen in the inset upon subtracting the phonon
contribution. The thermal gradient is applied along the [100] direction, with perpendicular magnetic field applied along [001]. b, Thermal conductivity as a
function of magnetic field shows a significant increase with magnetic field for a floating zone-grown single crystal. The inset shows a similarly large
increase with magnetic field for a second floating zone-grown single crystal, while the enhancement for a flux-grown crystal is subtle36. c, Low-temperature
thermal conductivity measured on two di�erent organic insulating spin liquids, taken from ref. 23, both of them associated with a finite linear specific heat
coe�cient (inset25,26), resembling our findings in SmB6. d, Large magnetic field dependence of the low-temperature thermal conductivity measured in
both organic spin liquids (from refs 23,24), is seen to be remarkably similar to our measurements in floating zone-grown SmB6.

from the linear specific heat coefficient, with the expectation from
the three-dimensional ellipsoidal Fermi surface geometry we fit to
the measured quantum oscillations (shown in Fig. 1b), and effective
masses measured from quantum oscillations (Supplementary Fig. 5
and Fig. 2c). A common origin of in-gap low-energy excitations is
indicated from the good agreement we find between the value of
density of states calculated from the quantum oscillation-extracted
Fermi surface, γ ≈ 4(1)mJmol−1 K−2, on assuming a contribution
from the entire sample volume, and the value measured from the
linear specific heat capacity (Fig. 2c, Methods and ref. 17). Further,
the steep increase at low temperatures of the value of γ closely
resembles the steep increase of quantum oscillation amplitude at
low temperatures observed for the majority of quantum oscillation
frequencies in the case of floating zone-grown SmB6 (Fig. 2a,b
and Supplementary Fig. 5)13. The nuclear contribution to the
specific heat capacity is expected to be negligibly small in the
experimental temperature range below 1K at zeromagnetic field18,19

(see Methods), although an increase in nuclear contribution in
the presence of a magnetic field makes the accurate determination

of low-temperature linear specific heat capacity in finite applied
magnetic fields challenging (see Methods)20.

Another probe of itinerant in-gap low-energy excitations is
provided by an experimental estimate of the low-temperature
quantum oscillatory component of the entropy. We estimate this
low-temperature entropy by measuring dMosc./dT (where Mosc. is
the quantum oscillatory magnetization), which is related to the
entropy by the Maxwell relationV (∂M/∂T )B= (∂S/∂B)T, whereV
is the volume of the crystal, M is the magnetization, and S is the
entropy (see Methods). The value of dMosc./dT (shown in Fig. 2d)
remains finite in amplitude down to temperatures<1K, an order of
magnitude below the charge gap 2–5meV (refs 8,13,20), providing
evidence for a finite density of states within the charge gap.
Importantly, we are able to demonstrate the itinerant character of
the in-gap density of states since the accessed entropy is oscillatory,
derived from the measured oscillatory magnetization.

A further test of the itinerant nature of measured bulk
in-gap low-energy excitations is provided by a measurement
of the thermal conductivity at temperatures �1K, where the
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phonon contribution is strongly suppressed. Figure 3a shows
the measured low-temperature thermal conductivity of a single
crystal of SmB6 grown using the floating zone technique. The
phonon contribution up to high temperatures can be modelled
well by boundary-limited phonons, shown by the red line denoted
by κph./T , accounting for the zero-field thermal conductivity,
and is characteristic of high sample quality (see Methods). On
subtracting the phonon contribution from the measured thermal
conductivity (inset to Fig. 3a), the remainder is seen to be very
small in zero field, but becomes increasingly large in an applied
magnetic field, far exceeding the Wiedemann–Franz expectation
from the surface conducting layer by orders of magnitude (see
Methods). An origin of this additional contribution from phonons
is unlikely, since the phonon thermal conductivity is already at a
maximum in the boundary scattering limit. The possibility of a
conventional magnon contribution is also not supported due to the
absence of static magnetic moments as inferred from muon spin
resonancemeasurements21, neutron scatteringmeasurements22, and
magnetization measurements (Supplementary Fig. 2).

Intriguingly, a similar observation of a substantial enhancement
in low-temperature thermal conductivity with applied magnetic
field has been observed in the Mott insulating organic systems
EtMe3Sb[Pd(dmit)2]2 and κ-(BEDT-TTF)2Cu2(CN)3 (refs 23–26)
(shown in Fig. 3c–d), which have been associated with a theoretical
model of novel spinon low-energy excitations that transport heat
but not charge27–30. Both systems display a finite linear specific
heat capacity coefficient; while in EtMe3Sb[Pd(dmit)2]2 the thermal
conductivity displays a finite linear temperature dependence
at low temperatures, in κ-(BEDT-TTF)2Cu2(CN)3 the thermal
conductivity displays a downturn as a function of temperature at
millikelvin temperatures. These experimental observations were
collectively interpreted in terms of a neutral Fermi surface in
the organic spin liquid materials, potentially evincing a low-
temperature instability in κ-(BEDT-TTF)2Cu2(CN)3. The intriguing
similarity of our observations in SmB6 points to a neutral
Fermi surface comprising itinerant low-energy excitations that
transport heat, but not charge in SmB6. Informing the search for
more examples of similar material systems, we note that such
experimental signatures of neutral low-energy excitations are likely
to be more prominent in materials positioned closer to gaplessness
of the neutral low-energy excitations, potentially tuned by factors
such as an applied magnetic field and materials parameters (Fig. 4).

A sufficiently large effective mean free path of itinerant low-
energy excitations is important for the observation of magnetic
quantum oscillations, thermal conductivity, and quantum oscilla-
tory entropy, in contrast to the measured specific heat capacity. A
comparison between measured quantities into which the effective
mean free path enters is most meaningful at high magnetic fields,
where high-frequency quantum oscillations corresponding to the
largest ellipsoidal (α) Fermi surface that dominates the density
of states at the Fermi energy are observable. Using assumptions
relevant to a conventional metal with electronic excitations, the
value of excess thermal conductivity we measure in floating zone-
grown samples of SmB6 in an applied magnetic field of 12 T and at
temperatures of approximately 200mK corresponds to a mean free
path estimate of the dominant large Fermi surface of approximately
10−8 m. This estimate is similar to the estimated mean free path of
a few times 10−8 m obtained from the measured cyclotron radius
and exponential damping (Dingle) term from quantum oscillations
in magnetic fields of 35–45 T in floating zone-grown samples (see
Methods). The significantly larger exponential damping term that
renders the high-frequency oscillations considerably smaller in size
for the flux-grown samples compared to the floating zone-grown
samples (see Methods) is consistent with the lower magnetic field
enhancement of the thermal conductivity seen for these samples
(Fig. 3b inset). A three-dimensional Fermi surface associated with
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excitation
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Te
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re

Kondo exchange coupling
 (      lattice density) 

Figure 4 | Schematic phase diagram adapted from numerical simulations.
Phase diagram adapted from Monte Carlo simulations of a magnetic Kondo
lattice model55, which indicate a collapse of the neutral low-energy gap in
the region where the charge gap is still finite. Our measurements suggest
the location of SmB6 in the region of a small finite charge gap, but on the
brink of gapless neutral low-energy excitations. More prominent
experimental signatures of neutral low-energy excitations are likely to be
observed in materials positioned even closer to gaplessness, potentially
tuned by external variables such as applied magnetic field, or for
SmB6—increasing lattice density, as well as other materials parameters.

bulk in-gap itinerant low-energy excitations in SmB6 is thus sup-
ported by our collective measurements down to low temperatures
of specific heat, magnetic quantum oscillations, thermal conduc-
tivity, and quantum oscillatory entropy. Recent nuclear magnetic
resonance (NMR)measurements also reveal consistent signatures of
an NMR relaxation rate divided by temperature which is constant
as a function of temperature at low temperature, instead of expo-
nentially vanishing, as would be expected for a gapped density of
states (ref. 18 and unpublished).

Our experimental results appear inconsistent with theoretical
models that do not involve a bulk in-gap density of states, such as
those that invoke, for instance, surface states, quenched disorder
or interband tunnelling phenomena12,31–36. We consider various
proposed alternative theoretical models that invoke novel itinerant
low-energy excitations within the charge gap in SmB6 (refs 27–30,
37–43), includingmagnetic excitons37, neutral quasiparticles such as
spinons27–30, composite excitons40 and Majorana fermions41–43, and
compare them with our key experimental observations. A more
extensive compilation of theoretical models proposed to explain
quantum oscillations in SmB6 is provided in Methods.

A spinon model27–30 was earlier proposed for a single-band
Mott insulating organic spin liquid, in which case a spinon Fermi
surface arises from these neutral fermionic particles. In this model,
diamagnetism arises from the effects of non-bilinear terms in the
spin Hamiltonian that depend on the applied magnetic field. The
meaning of such field-dependent terms can be understood in a
higher-energy description that includes virtual charge fluctuations
over an extended range of sites30,44, the amplitude of which is
enhanced close to the insulator–metal phase boundary. Coupling
to the electric field vanishes in the DC limit, but is predicted to
be finite in the finite frequency limit. This prediction is consistent
with the observation of substantial bulk conductivity in SmB6 at a
frequency of a few hundred gigahertz evidenced by time-domain
terahertz spectroscopic experiments45. Caveats to thismodel include
the suggestion that quantum oscillations might not be observed
in practice in the case of a single-band Mott insulator due to the
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formation of Condon domains29. It is also unclear as to the quantum
oscillation frequencies that would be observed, given the potential
difference between the effective and applied magnetic field in this
model29. To further probe such a scenario, experiments to search for
low-energy spin excitations are indicated to complement the high-
energy collective mode at 14meV seen through inelastic neutron
scattering22, which is at too high an energy scale to be directly related
to the phenomena we observe.

More recently a magnetic exciton model37 has been proposed,
within which the low-energy excitations are bosonic in character.
Instead, fermionic excitations are associated with a composite
exciton model40, which has recently been proposed for a strongly
correlated three-dimensional mixed valence insulator in the limit of
strong Coulomb interaction. Under suitable conditions a collective
state of neutral fermionic composite excitons is predicted, which
would yield a Fermi surface of the same volume as the original
conduction d-electron Fermi surface, similar to our observations.
A finite linear specific heat coefficient, a finite thermal conductivity
divided by temperature, a constant NMR relaxation rate divided
by temperature at low temperatures, and appreciable frequency-
dependent optical conductivity are predicted, in agreement with
our findings and other experiments18,45. Quantum oscillations of
the free energy periodic in the inverse internal magnetic field
are also predicted46, although it is not clear as to the size of the
effective magnetic field that would be felt by the composite excitons
compared to the size of the physical applied magnetic field. In
addition to quantum oscillations in the magnetization, quantum
oscillations in the electrical resistivity are also predicted to appear
for materials positioned closer to the insulator–metal transition46.
The observation of a finite bulk thermal Hall effect would further
establish a strong correspondence between the effective magnetic
field felt by the composite exciton, and the physical appliedmagnetic
field within this model.

We next consider the Majorana fermion model41–43, where in
contrast to the better known slave-boson mean field model, the
coupling of doubly degenerate conduction and f -electron bands
leads to four Majorana bands, one of which coincides in energy
with the starting conduction band but represents the spectrum
of neutral rather than charged excitations. Within this model,
a Fermi surface of Majorana fermions therefore corresponds to
the conduction electron Fermi surface (that is, the same as the
Fermi surface of RB6), in agreement with experiment. While the
electric current vanishes to lowest order in an applied electric
field in this model, it is expected to be finite to second order,
yielding a diamagnetic response. A frequency-dependent optical
conductivity response is further predicted, in agreement with time-
domain terahertz spectroscopic experiments45. The ground state of
this model is predicted to be a triplet superconductor in which long-
range order is destroyed by fluctuations43, the amplitude of which is
predicted to be magnetic field dependent, yielding a linear increase
in low-temperature thermal conductivity in qualitative agreement
with our experimental observation (Fig. 3b). Further predictions of
this model, such as the appearance of a superconducting Meissner
effect at low temperatures and low magnetic fields, remain to be
further experimentally investigated43.

The salient findings that identify a Fermi surface of neutral
low-energy excitations within the charge gap are common to
classes of samples grown by different techniques, as these exhibit
essentially the same specific heat capacities and bulk quantum
oscillations in the magnetization above 1K (Fig. 1, insets to
Fig. 2a,b). The Fermi surface and quasiparticle effective masses
inferred from these oscillations are consistent with the measured
coefficient of the linear heat capacity (Figs 1 and 2a–c). Moreover,
the oscillatory entropy inferred from the temperature derivative
of the oscillatory magnetization (Fig. 2d) confirms the itinerant
nature of the excitations within the charge gap. Differences below

1K in observed quantities (seen in insets to Figs 2a,b and to 3b)
do not affect our above key conclusions, and are likely to be due
to subtle materials property differences due to different growth
conditions47. Similar sensitivity to preparation technique has been
reported, for example, in the classic heavy fermion superconductor
CeCu2Si2, in which case the sensitivity has been interpreted in terms
of effects such as differing lattice density in samples prepared by
different techniques48.

Theoreticalmodels of a Fermi surface fromneutral quasiparticles
are suggested as an explanation for the breadth of surprising
experimental observations in Kondo insulating SmB6, although
quantitative comparisons, especially with the size of measured
quantum oscillations, remain outstanding. The physics captured
by these mean-field models may be similar to a dynamic model
invoking slow fluctuations between a collectively hybridized
insulating state and an unhybridized dynamic state with a Fermi
surface of conduction electrons13. We note that our analysis of
the experimental data and theoretical models proposed thus far
assume a description in terms of low-energy excitations. An
outstanding possibility is the need for a description that transcends
quasiparticles, such as new classes of topological models49 and
holographic models50. Our work has identified a new route for the
realization of the landmark paradigm of a Fermi surface in the
absence of a Fermi liquid in the class of Kondo insulators positioned
at the brink of a Kondo-insulator-to-metal transition. Similar
experiments are indicated to search for clues in other families
of Kondo insulators, including YbB12 (ref. 51), the system most
similar to SmB6 with a comparable size of charge gap and a finite
measured linear specific heat capacity, and SmS52, which provides
tuning possibilities to approach the insulator–metal transition via
applied pressure.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Conversion of measured quantum oscillations into bulk magnetic moment per
unit cell.Magnetic torque was measured via the capacitive torque technique, with a
typical oscillation size of approximately 4×10−4 pF in the measured capacitance at
a magnetic field of 15 T (Supplementary Fig. 1). Using the dimensions and Young’s
modulus of our cantilever, we obtained a spring constant k=28(8)Nm−1. Similar
values were found by estimation from displacement under gravity, and
displacement under a magnetic field gradient (Faraday balance). The torque τ on
the cantilever is proportional to its deflection, given by τ=Lkδ, where L is the
length of the cantilever and δ is the deflection, which is in turn proportional to the
change in capacitance by δ=d01C/C , with d0 being the distance between the
opposing faces of the cantilever and the bottom plate. The torque is related to the
total magnetic moment µ via τ=µB sinθM, where θM is the angle between the
magnetic field B and the total magnetic moment µ. We express the magnetic
moment ps in units of Bohr magnetons per unit cell, by writing µ= (s/au.c.)3psµB,
where s3 is the volume of the crystal, and au.c. is the lattice constant. Our final
expression is therefore

1ps=
d0Lka3u.c.

s3µBBC sinθM
1C (1)

Using d0=0.1mm, L=3.8mm, k=28Nm−1, au.c.=0.413nm,
s3=0.5×0.8×0.4mm3, this becomes

1ps=
0.51

B sinθM
1C TpF−1µB per unit cell (2)

for the SmB6 measurements. From Fig. 1e we estimate the amplitude (zero to peak)
of the oscillations to be approximately (1.1×10−5/sinθM) µB per unit cell at
B=18 T. Here, 0.1. sinθM.1, depending on the orientation of the
magnetic moment (the angle is taken to be positive throughout).

For LaB6, using a cantilever with slightly different dimensions, we have
d0=0.1mm, L=3.8mm k=17(5)Nm−1, au.c.=0.416nm,
s3=1.0×1.0×0.25 mm3, and therefore

1ps=
0.20

B sinθM
1C TpF−1µB per unit cell (3)

From Fig. 1d we find the amplitude of the oscillations to be approximately
(1.3×10−5/sinθM) µB per unit cell at B=9 T. Here, 0.1. sinθM.1 depending on
the orientation of the magnetic moment.

Calculation of the theoretical amplitude of bulk de Haas–van Alphen
oscillations. The fundamental oscillatory magnetizationM in the
Lifshitz–Kosevich theory is given by

M=DRTRDRS sin(2πF/B+φ) (4)

where RT, RD, and RS are the usual damping terms due to finite temperature,
scattering, and spin-splitting (see, for example, refs 56,57). The exponential
damping term RD is expressed as RD=exp(−B0/B), where B0 reflects the strength
of damping of the quantum oscillation amplitude for each sample and frequency. D
is the infinite-field, zero-spin-splitting amplitude given by

D=−
µBA3/2

F me

2π4m∗

√
B

F |A′′|
(5)

where µB is the Bohr magneton, AF is the Fermi surface area normal to the
magnetic field B,m∗ is the effective mass in absolute units, F is the oscillation
frequency, and |A′′| is the second derivative of the Fermi surface area with
respect to the effective wavevector along B. We can define the moment per
unit cell in units of Bohr magnetons as Dv/µB, where v=a3u.c. is the volume of the
unit cell, so that the peak amplitude in the infinite-field and zero-spin-splitting
limit is

ps=
|D|v
µB
=

√
2π
|A′′|

me

m∗

( au.c.kF
π

)3
√

B
8F

(6)

where we define kF, the effective Fermi wavevector, via AF=πk2F. The anisotropy
term,
√
2π/|A′′| , is dependent on the eccentricity r of the ellipsoidal Fermi

surface, and hereafter will be written as f (r).

Comparison of quantum oscillation amplitude in SmB6 and LaB6 with
theoretical amplitude. The comparable size of quantum oscillations in the
infinite-field quantum limit measured in SmB6 and LaB6 is shown in Fig. 1 as a

function of the phase F/B. For the lowest-frequency ρ ′ branch in SmB6, the
experimentally measured values correspond to F=31 T,m∗/me=0.12,
au.c.=0.413nm, and RD=exp(−30T/B), as inferred from Fig. 1e. Estimating
f (r)≈1–2, RS=0.5–1, and taking into account a degeneracy factor of 2–8,
the expectation for the theoretical amplitude of the magnetic moment for the
ρ ′ frequency branch of SmB6 is of the order of approximately 10−5–10−4µB

per unit cell at B=16.7 T, including the angular anisotropy term f (r),
Dingle RD and spin-splitting RS damping factors. This is consistent in order
of magnitude with the experimentally measured amplitude of quantum
oscillations shown below equation (2). Similarly for LaB6, the low-frequency
oscillations correspond to experimentally measured values F=5.9 T,
m∗/me=0.05, au.c.=0.416nm, RD=exp(−1T/B) as inferred from Fig. 1d.
Estimating f (r)≈1–2, RS=0.5–1, and taking into account a degeneracy factor of 2
(from ref. 15), we find the theoretical amplitude to be approximately of order of
10−4µB per unit cell at B=6.2 T, including the angular anisotropy term f (r),
Dingle RD and spin-splitting RS factors, again consistent with the measured value
shown below equation (3).

In Fig. 1g, the theoretically predicted amplitude of quantum oscillations in
magnetic torque (M×B, where θM is the angle betweenM and B) rather than
magnetization (M) is plotted, whereM is in units of µB per unit cell, and B is in
units of tesla. Given the range of 0.1. sinθM.1, we use an intermediate value of
sinθM≈0.5 for the simulation in Fig. 1g. Intermediate values are also used of
RD≈0.166, RS≈0.75 for both the three-dimensional and two-dimensional
simulation, as well as f (r)≈4, and a degeneracy factor of 4 for the
three-dimensional simulation in Fig. 1g.

The exponential damping term in the case of SmB6 is considerably higher than
in LaB6, as indicated from the magnetic field dependence shown in Supplementary
Fig. 1, which reveals a higher onset in magnetic field of observable quantum
oscillations in SmB6 compared to metallic LaB6. Both high magnetic fields and
extremely high experimental sensitivity are thus required to access especially high
frequencies in SmB6. We note that while samples of SmB6 prepared by different
techniques yield the same quantum oscillation frequencies, sizeable variations can
occur in the measured quantum oscillation amplitude; samples with the largest
quantum oscillation amplitude are selected for study on account of their high
inverse residual resistivity ratio and low finite specific heat coefficient, and by
extensive screening in high magnetic fields.

Comparison with surface quantum oscillation model for SmB6. The theoretical
quantum oscillation size is obtained from the carrier density corresponding to a
two-dimensional cylindrical Fermi surface. In the two-dimensional limit, the
carrier density is directly related to the Fermi surface area. Hence for the small
ellipsoidal pockets that occupy a tiny fraction of the Brillouin zone (the volume of
the ρ ′ pockets constitute 0.1% of the Brillouin zone), the theoretical amplitude of
quantum oscillations is expected to be very small. The carrier density per unit
surface area is given by

n=
2

(2π)2
πk2F (7)

including a factor of 2 for spin degeneracy. For the lowest observed quantum
oscillation frequency of F=31 T, we find n=1.5×1016 m−2. Defining the moment
per unit cell in units of the Bohr magneton, the peak amplitude in the infinite-field
and zero spin-splitting limit is

ps=na2u.c.
2me

πm∗
=

4me

m∗

( kF
kBZ

)2

(8)

where kBZ=2π/au.c., andm∗ is the effective mass in absolute units. The
peak amplitude of the quantum oscillations is found to have a theoretical
maximum value of approximately 10−2µB per surface unit cell in the
infinite-field limit prior to including Dingle and spin-splitting damping terms,
which would reduce the theoretically predicted value to approximately 10−3µB

per surface unit cell at 18 T. In contrast, the measured quantum oscillations
would correspond to an extremely large magnetic moment per surface unit cell
were they to arise from the surface, given that the surface unit cells constitute
only a tiny fraction∼10−6 of the total number of unit cells. The measured
peak amplitude of the quantum oscillations on considering a surface origin
would correspond to a magnetic moment per surface unit cell of at least
approximately 10µB per surface unit cell at 18 T, a value which would be even larger
on accounting for the orientation of the magnetic moment sinθM (equation (2)).
Such a large value is several orders of magnitude larger than the theoretical
maximum quantum oscillation size predicted for a surface atomic layer origin,
ruling out such an origin as an explanation for the quantum oscillations
reported here. The high values reported for the low-frequency quantum oscillation
amplitude in ref. 12 are also at least an order of magnitude larger than the
theoretical maximum.
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Quantitative comparison of the density of states at the Fermi energy from
measured linear specific heat coefficient and frommeasured quantum
oscillations.Within the traditional Fermi liquid theory, the quasiparticle density
of states at the Fermi energy is directly related to the linear specific heat
coefficient γ by

N (EF)=
3γ
π2k2B

(9)

We compare the quasiparticle density of states corresponding to the measured
linear specific heat capacity coefficient with that corresponding to the Fermi
surface measured from quantum oscillations. For a known Fermi surface geometry
and quasiparticle velocity, the quasiparticle density of states at the Fermi energy is
given by

N (EF)=
1

4π3~

∫
S

dS
|v∗|

(10)

After Fig. 1, the main Fermi surface features in SmB6 can be described by
ellipsoidal electron sheets, similar to other rare-earth hexaborides. Ellipsoids with
semi-principal axes ak0, bk0 and ck0 can be parametrized by

EF=
~2k2x
2a2m∗

+
~2k2y
2b2m∗

+
~2k2z
2c2m∗

(11)

with kx=ak0 cosφ sinθ , ky=bk0 cosφ cosθ and kz= ck0 sinφ, k0 is a constant, and
a, b and c represent the relative ratios of the semi-principal axes. The area element
in the integral becomes that of an ellipsoid:

dS=k0 ·cosφ
√

a2b2 sin2 φ+ c2 cos2 φ(a2 sin2 θ+b2 cos2 θ)dφ dθ (12)

A full description of the quasiparticle velocity v∗ can be obtained for the Fermi
surface described by equation (11), via

|v∗|=|(1/~)∇kEF|=
~k0

abcm∗

√
a2b2 sin2 φ+ c2 cos2 φ(b2 sin2 θ+a2 cos2 θ) (13)

These allow the integral in equation (10) to be carried out over φ from−π/2 to
π/2, and θ from 0 to 2π, to obtain the density of states, which can be computed for
known semi-principal axes and effective mass. In the special case of prolate
ellipsoids this would lead to the result obtained in ref. 58. Here we assume
contributions from both spin-up and spin-down Fermi surfaces.

Supplementary Table 1 shows the effective masses and semi-principal axes
obtained for each Fermi surface sheet. Their contribution to the linear specific heat
coefficient γ adds up to γ =4(1)mJmol−1 K−2, with the large α sheet contributing
3mJmol−1 K−2. LaB6 has a comparable α sheet14, giving γ =2.6mJmol−1 K−2
following this calculation, the same value as found by ref. 58. This is smaller than
the contribution from the α sheet found for SmB6 due to the smaller eccentricity
and effective mass.

Specific heat capacity measured for multiple samples and in a magnetic field.
The measured linear specific heat coefficient is found to be similar for all samples
studied in this work. The range of values of the linear specific heat coefficient
presented in the main text (γ ≈4(2)mJmol−1 K−2) reflects three different samples
(two floating zone- and one flux-grown) after phonon subtraction. The larger
linear specific heat capacity reported in refs 6,59 is most likely to be due to an
additional contribution from a small fraction of Sm vacancies, as inferred from
Raman spectroscopy measurements60.

Supplementary Fig. 8 shows specific heat measured in magnetic fields up to
14 T and down to 700mK for floating zone-grown SmB6. We find that the specific
heat in an applied magnetic field retains the features seen at zero magnetic field.
We note, however, as also observed in ref. 20, that the increase in nuclear
contribution with magnetic field at low temperatures can make the extraction of
linear specific heat in a magnetic field challenging, as the nuclear contribution to
the specific heat is proportional to the square of the magnetic field and inversely
proportional to the square of the temperature61.

Negligible nuclear contribution to the heat capacity in zero magnetic field.
In SmB6, only boron contributes to the nuclear quadrupole specific heat CQ,
because the samarium site in the crystal has a cubic symmetry and hence the
electric field gradient is zero. Boron has two isotopes, 10B (natural abundance
x10=19.9%, nuclear spin I10=3, nuclear electric quadrupole moment
Q10=84.6millibarn) and 11B (x11=80.1%, I11=3/2, Q11=40.6millibarn).
In zero magnetic field, the 10B spin has four energy levels owing to the electric
field gradient62, resulting in a four-level scheme that gives the expression
C10=12R(hν10/kBT )2 per mole of 10B for the specific heat for kBT�hν10.

The 11B spin has two energy levels in zero magnetic field, with a specific heat
of C11=R/4(hν11/kBT )2 per mole at kBT�hν11. Here, ν10 and ν11 represent
the nuclear quadrupole resonance frequencies of 10B and 11B. The nuclear
quadrupole resonance frequency of 11B has been measured in SmB6 by several
groups18,62, giving ν11=0.570MHz. ν10 can be estimated from ν11, as the
nuclear quadrupole resonance frequency is given by νQ=3eQVzz/[2hI(2I−1)],
where Vzz is the largest principal axis component of the electric field gradient
tensor19. Therefore,

ν10=
Q10

Q11

I11(2I11−1)
I10(2I10−1)

ν11 (14)

and hence ν10=0.24MHz. Finally, the total nuclear quadrupole specific heat
is the combination of C10 and C11, weighted according to their respective
natural abundance, given by CQ=6(x10C10+x11C11). By using the nuclear
quadrupole resonance frequencies from above, the nuclear quadrupole specific
heat is found to be CQ=2.30×10−8/T 2 (Jmol−1 K−1), far too small to account
for the observed upturn at low temperatures. At T=60mK, this would
correspond to only 6.38 µJmol−1 K−1, two orders of magnitude smaller than the
measured value.

Low-temperature thermal conductivity measurements. Thermal
conductivity of three SmB6 crystals—two floating zone-grown, and one
flux-grown—was measured at temperatures down to approximately 150mK
and in magnetic fields up to 12 T (shown in Supplementary Fig. 9). A significant
magnetic field enhancement in the low-temperature thermal conductivity is
seen especially in the floating zone-grown single crystals. The enhancement
of the low-temperature value of thermal conductivity in an applied magnetic
field is a few orders of magnitude higher than the expectation associated with the
electrical conductivity within a traditional Fermi liquid model, calculated
using the Wiedemann–Franz relation and shown in Supplementary Fig. 10.
An increase in nuclear contribution to the specific heat capacity in a
magnetic field would not be expected to contribute to the enhanced thermal
conductivity, as it does not correspond to mobile excitations capable of
carrying heat.

The enhancement of the low-temperature thermal conductivity in
finite magnetic fields in flux-grown crystals of SmB6 is subtle compared to
the magnetic-field-induced enhancement in floating zone-grown crystals
of SmB6. A similarly low enhancement has also been reported in ref. 36,
as shown in Supplementary Fig. 9. Subtle differences in materials properties
between crystals prepared by the floating zone method and the flux growth
technique are likely to be responsible for the observed difference below
1K in thermal conductivity, the upturn at low temperatures in the quantum
oscillation amplitude13 and the linear specific heat coefficient (Fig. 2a).
The smaller value of total thermal conductivity reported for flux-grown
crystals of SmB6 in ref. 36 is consistent with the smaller sample thickness
and hence a shorter mean free path compared to those of the samples
measured here.

Very small disorder effects would also play a role in the suppression of the
low-temperature thermal conductivity. The high quality of our measured crystals is
reflected in the large peak in high-temperature thermal conductivity shown in
Supplementary Fig. 11, which is considerably larger than those of previous
generation samples63. Insulating materials exhibit a peak in the thermal
conductivity where the phonon mean free path transitions from being limited by
the sample boundaries at low temperatures, to being dominated by
phonon–phonon scattering (Umklapp processes) at higher temperatures. The
magnitude of this high-temperature peak is strongly suppressed by lattice defects
such as point defects, dislocations and stacking faults, and consequently it is a good
indicator of sample quality64.

Low-temperature measurements of the thermal conductivity in this material
are challenging because of the insulating character of this material, yielding large
contact resistances. The large contact resistance between the sample and the
thermal link results in a small temperature gradient across the sample.
Measurements are hence very sensitive to factors such as thermometer calibration,
particularly at low temperatures where the settling time for thermal equilibrium is
rendered very long due to the high contact resistance. Another detrimental
consequence of the high contact resistance is the tendency of phonons to thermally
decouple due to the high contact resistance, as has been found for instance in the
cuprate high-temperature superconductors65. These effects impose a
low-temperature limit on the data, and we are careful with our measurements to
only report results within the low-temperature limit where such effects
are minimized.

Calculation of the thermal conductivity contribution from phonon transport.
Supplementary Fig. 12 shows the thermal conductivity of a single crystal of floating
zone-grown SmB6 in zero magnetic field, compared with the phonon contribution
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of the thermal conductivity calculated from kinetic theory, which relates the
thermal conductivity κ to the heat capacity CV via the equation

κ=
1
3
CV dvs (15)

Here, CV is the heat capacity per unit volume, d is the average sample dimension,
and vs is the sound velocity of the material. The phonon contribution of the heat
capacity at low temperatures is given by

CV=
12π4

5
kB
a3u.c.

( T
ΘD

)3

(16)

We calculate the average sample dimension using d=
√
4tw/π, where t is the

thickness, and w is the width of the sample. The sound velocity is given by

vs=
2kB
h
ΘD

(
π

6n

)1/3

(17)

where h is the Planck constant, and n is the number density of SmB6,
given by n=a−3u.c.. For a Debye temperature ofΘD=373K (ref. 54), we obtain
a sound velocity of vs=5,179m s−1. Expressing κ/T as a function of T 2, we
arrive at

κ/T=αT 2 (18)

where the gradient α is found to be α=0.4772Wm−1 K−4 for the floating
zone-grown crystal shown in Fig. 3b (t=0.43mm, w=0.23mm), and
α=0.5395Wm−1 K−4 for the floating zone-grown crystal shown in the inset of
Fig. 3b (t=0.34mm, w=0.37mm). We find the total low-temperature thermal
conductivity in zero magnetic field to be described well by the calculated
phonon contribution.

Estimate of the effective mean free path. Even for the best samples of SmB6,
quantum oscillations become observable only at significantly higher magnetic
fields compared to metallic LaB6, especially for the highest measured frequency,
due to the much larger exponential damping term. The exponential damping term
of the quantum oscillations, RD, can be expressed in terms of the effective mean
free path l as

RD=exp(−B0/B)=exp(−π~kF/(eBl)) (19)

where B0 is given by the Dingle temperature, TD, via B0= (2π2kBm∗)/(e~)TD, and
kF is the average Fermi wavevector, such that the effective mean free path is
obtained as

l=
π~kF
eB0

(20)

At temperatures of approximately 1 K and magnetic fields in the range 35–45 T,
we find that for the 11 kT frequency we have kF=

√
2eF/~=5.8×109 m−1 and

B0≈200 T for floating zone-grown samples. This gives a mean free path of
l≈5×10−8 m in the magnetic field range 35T≤B≤45 T for floating zone-grown
samples. In the case of flux-grown samples, we find that the high-frequency
oscillations are significantly more suppressed in amplitude than for floating
zone-grown samples due to a considerably higher exponential damping factor as
revealed by their magnetic field dependence, making them much more challenging
to observe.

To estimate the effective mean free path from the thermal conductivity, we use
the formula presented in ref. 66, relating the thermal conductivity κ to the
scattering time τ

κ

T
=

k2Bτ
m∗a3u.c.

(21)

where au.c. is the lattice constant of SmB6,m∗ is the effective mass in absolute units,
and the scattering time is given by τ= l/vF, where vF is the Fermi velocity. We
express vF in terms of the Fermi wavevector kF viam∗vF=~kF. This results in an
expression for the mean free path

l=
κ

T
~kFa3u.c.
k2B

(22)

where kF=
√
2eF/~=5.8×109 m−1 for the 11 kT frequency, and au.c.=0.413 nm.

At temperatures of approximately 0.2 K and magnetic fields of approximately 12 T,
we find a value of κ/T=0.04Wm−1 K−2 for floating zone-grown samples from

Fig. 3, giving a mean free path of l≈9×10−9 m in an applied magnetic field of
12 T. The lower value of the mean free path corresponding to thermal conductivity
compared to the mean free path from quantum oscillations potentially reflects
factors including a group velocity that is lower than the Fermi velocity due to a
gapped charged sector, different itinerant length scales relevant to the two
measurements, the effect of the lower magnetic fields at which the thermal
conductivity measurements are performed, and the effect of thermal decoupling
of phonons65.

Quantum oscillations in magnetization. Quantum oscillations in the
magnetization measured using capacitive Faraday magnetometry at the University
of Tokyo are shown in Supplementary Fig. 2 in a field range from 7 to 14 T.
Quantum oscillations in the magnetic susceptibility measured using extraction
magnetometry in pulsed magnetic fields at the NHMFL Los Alamos are shown in
Supplementary Fig. 3 in a field range from 29 to 65 T.

Effective mass from quantum oscillations. The effective mass of each of the Fermi
surface orbits is obtained by mapping the temperature dependence down to 1K, in
which regime the temperature dependence is found to adhere to the
Lifshitz–Kosevich form (Supplementary Fig. 5). Below temperatures of
approximately 1 K, an anomalous increase in quantum oscillation amplitude that
displays a marked departure from Lifshitz–Kosevich form is observed in the
majority of observed quantum oscillation frequencies in floating zone-grown
samples (Supplementary Fig. 5). A Lifshitz–Kosevich fit performed to the
temperature dependence down to 1K yields an effective mass which is in the range
0.1≤m∗/me≤1 for the observed frequencies.

Supplementary Fig. 6 shows the derivative of the oscillatory magnetization with
respect to the temperature for the highest frequency which dominates the effective
mass. The Maxwell relation for the Helmholtz free energy is

V
(
∂M
∂T

)
B
=

(
∂S
∂B

)
T

(23)

where V is the volume of the crystal,M is the magnetization, and S is the entropy.
The finite value of the temperature derivative of the oscillatory magnetization, and
therefore of the entropy at low temperatures, reveals the presence of the low-lying
itinerant elementary excitations despite the charge gap in SmB6.

Theoretical models for quantum oscillations. Encouragingly, the challenge to
develop a complete theoretical model to capture the unconventional ground state of
Kondo insulating SmB6 as revealed by the entire suite of experimental results
presented here, has led to the exploration of new avenues including magnetic
excitons, Majorana fermions, composite excitons, quantum oscillations arising
from inside a filled band, quantum oscillations arising from open Fermi surfaces,
an accompany-type valence fluctuation state, gapped charge quasiparticles and
others37,38,40,42,43,67–78.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon
reasonable request.
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