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Statistics of turbulence and intermittency enhancement in superfluid 4He counterflow
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We report a detailed analysis of the energy spectra, second- and high-order structure functions of velocity
differences in superfluid 4He counterflow turbulence, measured in a wide range of temperatures and heat fluxes.
We show that the one-dimensional energy spectrum Exz(ky ) (averaged over the xz plane, parallel to the channel
wall), directly measured as a function of the wall-normal wave vector ky , gives more detailed information on the
energy distribution over scales than the corresponding second-order structure function S2(δy ). In particular, we
discover two intervals of ky with different apparent exponents: Exz(ky ) ∝ k−mC

y for k � k× and Exz(ky ) ∝ k−mF
y

for k � k×. Here k× denotes the wave number that separates scales with relatively strong (for k � k×) and
relatively weak (for k � k×) coupling between the normal-fluid and superfluid velocity components. We interpret
these k ranges as cascade-dominated and mutual-friction-dominated intervals, respectively. The general behavior
of the experimental spectra Exz(ky ) agrees well with the predicted spectra [L’vov and Pomyalov, Phys. Rev. B
97, 214513 (2018)]. Analysis of the nth-order structure functions statistics shows that in the energy-containing
interval, the statistics of counterflow turbulence is close to Gaussian, similar to the classical hydrodynamic
turbulence. In the cascade- and mutual-friction-dominated intervals, we found some modest enhancement of
intermittency with respect to its level in classical turbulence. However, at small scales, the intermittency becomes
much stronger than in the classical turbulence.
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I. INTRODUCTION

Below the Bose-Einstein condensation temperature Tλ ≈
2.17 K, liquid 4He becomes a quantum superfluid [1–3] with
the vorticity constrained to vortex-line singularities of core ra-
dius a0 ≈ 10−8 cm and fixed circulation κ = h/M [4]. Here,
h is Planck’s constant and M is the mass of the 4He atom.
The superfluid turbulence is manifested as a complex tangle
of these vortex lines with a typical intervortex distance � ∼
10−4–10−2 cm [5].

Large-scale hydrodynamics of such system is usually de-
scribed by a two-fluid model, interpreting 4He as a mixture
of two coupled fluid components: an inviscid superfluid and
a viscous normal fluid. The temperature-dependent densities
of the components ρs(T ) and ρn(T ) define their contribu-
tions to the mixture. The total density of 4He ρ = ρs(T ) +
ρn(T ) = ρ(T ) weakly depends on the temperature. The tangle
of quantum vortices mediates the interaction between fluid
components via mutual-friction force [2,5–8].

There is a building evidence [9–12] that the large-scale
turbulence in mechanically driven superfluid 4He is similar to
the classical turbulence. In this case, both components move
with close velocities being coupled by the mutual-friction
force at almost all scales. On the contrary, the turbulence
generated in superfluid 4He by a heat flux in a channel has
no classical analogy. Here the two components move in the
opposite directions relative to the channel walls, with respec-
tive mean velocities Un and U s. In this way, the counterflow
velocity Uns = Un − U s �= 0, proportional to the applied heat
flux, is created along the channel. When Uns is above some

small critical velocity, it can trigger the creation of a tangle of
vortex lines.

Systematic experimental studies of counterflow turbulence,
pioneered by classical 1957 papers of Vinen [7], usually
concentrated mostly on global characteristics of the vortex
tangle; cf. Ref. [12] for a review. The statistics of turbulent
fluctuations was not accessible. Recently, the turbulent statis-
tics in the 4He normal component was measured in the form
of the cross-stream second-order structure functions [13,14],

S2(Y ) = 〈|�ux (Y, y, t )|2〉. (1a)

Here, 〈·〉 denotes an ensemble average over many trials and
�ux (Y, y, t ) is the streamwise velocity difference,

�ux (Y, y, t ) = ux (y + Y, t ) − ux (y, t ). (1b)

Other studies [15,16] measured the statistics of the superfluid
component.

Recent theoretical analysis [17] found that the energy spec-
tra in counterflow turbulence are not scale invariant and cannot
be rigorously connected with apparent scaling exponents of
the second-order velocity structure functions measured in
Ref. [13] at modest values of the Reynolds numbers. In this
paper, we suggest an alternative way to analyze the visualiza-
tion data [13] that allows the one-dimensional energy spectra
to be determined so that a direct comparison with theoretical
predictions [17] can be made. In addition, we use higher-
order structure functions to assess the level of intermittency
in counterflow turbulence.
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The paper is organized as follows. The analytical back-
ground of the problem of statistical description of superfluid
counterflow turbulence is covered in Sec. II. It starts with
Sec. II A, which is devoted to the second-order statistical
characteristics of homogeneous turbulence. In Sec. II B, we
suggest a method of velocity data analysis that allows one
to directly extract the one-dimensional energy spectra. The
recent analytic theory of counterflow turbulence [17], required
for our current analysis, is summarized in Sec. II C. The main
result of the theory is the energy balance given by Eq. (9)
that allows one to find the normal-fluid and superfluid energy
spectra in a wide range of the problem parameters.

Our experimental results on the statistics of the normal-
fluid turbulence and their analysis are presented in Sec. III.
In Sec. III A, we briefly describe the experimental techniques.
The important crossover wave numbers for the current prob-
lem are estimated in Sec. III B. Section III C is devoted to the
second-order statistics of counterflow turbulence: the velocity
structure functions S2(δ) (see Sec. III C 1 and left column of
Fig. 1) and the energy spectra E(k) (see Sec. III C 2 and mid-
dle column of Fig. 1). In particular, we demonstrate that the
counterflow energy spectra can be divided in two subintervals:
a cascade-dominated interval and a mutual-friction-dominated
interval, with the apparent scaling exponents mC � 2 and
mF � 3 (see Fig. 1, right column). An important question
about the relationship between S2(δ) and E(k) is discussed
in Sec. III C 3 and illustrated in Fig. 2. We show in Sec. III D
and Fig. 3 that the theoretically predicted energy spectra are
in good agreement with the experimental energy spectra in the
cascade-dominated range of wave numbers.

In Sec. III E, we concentrate on high-order velocity struc-
ture functions,

S4(Y ) = 〈|�ux (Y, y, t )|4〉, S6(Y ) = 〈|�ux (Y, y, t )|6〉.
(1c)

In Fig. 4, we show that the flatness F4(Y ) and hyperflatness
F6(Y ),

F4(Y ) = S4(Y )/S2
2 (Y ), F6(Y ) = S6(Y )/S3

2 (Y ), (2)

have two ranges of power-law behavior with an apparent scal-
ing of F4(Y ) ∝ Y x

(1),(2)
4 and F6(Y ) = ∝Y x

(1),(2)
6 , respectively.

For Y larger than some Y∗ that corresponds to the cascade- and
mutual-friction-dominated subintervals of the energy spectra,
x

(1)
4 � 0.20 and x

(1)
6 � 0.50, which are moderately larger

than the inertial range exponents in classical hydrodynamic
turbulence, i.e., x

HT

4 � 0.14 and x
HT

6 � 0.38. However, as Y

approaches the viscous scales (i.e., Y � Y∗), the small-scale
intermittency becomes stronger: x

(2)
4 � 0.5 and x

(2)
6 � 1.4.

This behavior is similar to the intermittency enhancement
observed in the mechanically driven 4He [18,19].

Finally, Sec. IV briefly summarizes our findings.

II. ANALYTICAL BACKGROUND

A. Second-order statistical characteristics
of homogeneous superfluid turbulence

The most general statistical description of the homoge-
neous superfluid 4He turbulent velocity field uj (r ) at the
level of the second-order statistics can be done in terms of

the three-dimensional (3D) cross-correlation functions of the
normal-fluid and superfluid turbulent velocity fluctuations in
the k representation,

(2π )3δ(k + k′)Fαβ

ij (k) = 〈
vα

i (k)vβ

j (k′)
〉
. (3a)

Here, vj (k) is the Fourier transform of uj (r ),

vi (k) =
∫

ui (r ) exp(ik · r ) d r, (3b)

Fj (k) ≡ Fαα
j (k), α, β = {x, y, z} are vector indexes, sub-

scripts “i,j ” denote the normal-fluid (i, j = n) or the super-
fluid (i, j = s) components, and k is the wave vector. The
inverse Fourier transform is defined as follows:

ui (r ) =
∫

vi (k) exp(−ik · r )
dk

(2π )3
. (3c)

The visualization technique, to be discussed in more detail
in Sec. III A, allows one to measure the streamwise normal-
fluid velocity across a channel, vx

n (y, t ). Henceforth, unless
stated explicitly, we consider only this velocity component,
i.e., i, j = n, α = β = x, and omit these indexes. For exam-
ple, F

αβ

ij (k) ⇒ Fxx
nn (k) ⇒ F (k).

More compact, but less detailed information on the statis-
tics of turbulence is given by one-dimensional (1D) energy
spectra E(k) averaged over all directions of vector k,

Esp(k) = k2

(2π )3

∫
F (k)d cos θ dϕ. (4a)

Here we used spherical coordinates, with polar and azimuth
angles θ and ϕ. The polar angle is measured from the direction
of Uns.

In the isotropic case, F (k) = F (k), i.e., is independent of
θ and ϕ. Thus,

Esp(k) = k2

2π2
F (k) for spherical symmetry. (4b)

Some information about possible anisotropy of the second-
order statistics of turbulence can be obtained by comparison
of the 1D (spherically averaged) function Esp(k), with the
1D functions Exy (kz), Ezx (ky ), and Eyz(kx ) averaged over
the xy, zx, and yz planes. These functions depend only
on the projections of k, orthogonal to the corresponding
planes. Understanding F (k) in the Cartesian coordinates as
F (kx, ky, kz), we define

Exy (kz) =
∫

F (kx, ky, kz)
dkx dky

4π2
,

Ezx (ky ) =
∫

F (kx, ky, kz)
dkx dkz

4π2
,

Eyz(kx ) =
∫

F (kx, ky, kz)
dky dkz

4π2
. (4c)

The total kinetic energy E of the system can be found by
respective integration,

E =
∫

Esp(k)
dk

2π
=

∫
Exy (kz)

dkz

2π
= · · · . (5)

In the case of spherical symmetry, all four 1D functions
given by Eq. (4b) and Eq. (4c) are proportional to each other
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FIG. 1. The second-order statistics for different T and heat fluxes Q. The figures in the rows (top to down) correspond to T = 1.65, 1.85,
2.0, and 2.1 K, respectively. Left column: The second-order structure functions, compensated by K41 scaling, Y−2/3S2(Y ). The colored thin
straight lines denote fits with exponents n (cf. Table I, column 13). The fitting range (according to Ref. [13]) is denoted by black vertical thin
lines. The black vertical dot-dashed line marks the outer scale of turbulence, denoted as Y0. The colored vertical dot-dashed line (collectively
marked as Y∗) denotes the scales, corresponding to the respective crossover wave numbers k∗. Middle column: the energy spectra compensated
by K41 scaling k5/3E(k). Dashed lines of matching colors denote fits E(k) ∝ k−〈m〉10 in the wave-number interval k ∈ [k0–10 k0], shown
by black vertical lines. Right column: the energy spectra, compensated by an individual scaling, kmCE(k), found by fitting each spectrum
in the cascade-dominated range. The compensation is emphasized by horizontal dot-dashed lines. The fits of the mutual-friction-dominated
range, E(k) ∝ k−mF , are shown by black dashed lines. The vertical lines, corresponding to the crossover wave numbers k×(dashed lines)
and k∗(dot-dashed lines), are marked in the same color as the corresponding spectra. The legend indicates the scaling exponents mC for the
cascade-dominated range and mF for the mutual-friction-dominated range. The outer scale of turbulence k0 = 2π/Y0 is marked as a black solid
thin line. Different heat fluxes Q (in mW/cm2) are color coded: green, red, and blue lines denote the largest, the intermediate, and the smallest
Q, respectively. The color code is the same in all panels.
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FIG. 2. (a) Piecewise-linear model of the energy spectra E(k) ∝ k−mC for k < k× in the cascade-dominated interval and E(k) ∝
k−mF , mF = 3 in the mutual-friction-dominated and (b) structure functions S2(Y ), computed using Eq. (7d). The dashed lines of the matching
colors correspond to Y mC−1. The black dot-dashed line corresponds to Y 2.

(i.e., differ only by numerical prefactors). If the angular dis-
tribution of energy is not symmetric, the behavior of different
energy spectra will differ.

B. A different way of statistical analysis of the visualization data

As we mentioned, the visualization technique allows one
to measure the streamwise velocity across a channel as a
function of a wall-normal coordinate y for fixed values of the
time t0 and the spanwise and streamwise positions z0 and x0,

u(y) ≡ ux (x0, y, z0, t0). (6)

For simplicity, we choose t0 = 0 and z0 = x0 = 0, i.e.,
ux (0, y, 0, 0).

So far, the way to statistically analyze the data, i.e., Eq. (6),
was to find the velocity differences �ux (Y, y, t ) defined in
Eq. (1b) and calculate the structure functions Sn(Y ) using
Eqs. (1a) and (1c). The theoretical analysis of homogeneous
turbulence is traditionally done in the Fourier space, where
different Fourier components are statistically independent:
〈vα (k)vβ (k′)〉 = 0 if k �= k′. We will demonstrate in this
paper that a similar approach (in the ky space) to the data
analysis of the visualization data allows one to get additional
information on the statistics of counterflow turbulence that is
hidden in the approach based on S2(δ).

To this end, we define a 1D Fourier transform v(ky ) similar
to its 3D version given by Eq. (3b):

v(ky ) =
∫ D/2

−D/2
u(y) exp(ikyy)dy. (7a)

Here, y = 0 is the position of the centerline and D is the
channel width. Similarly to Eq. (3a), we define next the 1D
energy spectrum,

2π δ(ky + k′
y )E(ky ) = 〈

v(ky )v(k′
y )

〉
, (7b)

which is simply Exz(ky ), defined by Eq. (4c). To see this, no-
tice that integration over dkx/(2π ) and dkz/(2π ) in Eq. (4c),
according to Eq. (3c), results in ui (x = 0, y, z = 0).

Our expectation is that v(ky ) [and, respectively, E(ky )]
better separates turbulent fluctuations with different scales
than �u(Y, y) [and, respectively, S2(Y )]. To see this, one may
consider the relation between E(ky ) and S2(Y ). Using the
inverse Fourier transform of Eq. (7a),

u(y) =
∫

v(ky ) exp(−ikyy) dy, (7c)

in the definition of S2(Y ) [i.e., Eq. (1a)] and applying Eq. (7b),
one gets

S2(Y ) = 2

π

∫
sin2

(
kyY

2

)
Exz(ky ) dky. (7d)

FIG. 3. Comparison of the experimental compensated energy spectra k5/3E(k) with the theoretical predictions [17] (dashed lines) for
different temperatures T K and heat fluxes Q (in mW/s2). Vertical solid lines denote the outer scale k0.
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FIG. 4. Second- and higher-order statistics at different temperatures. The flow parameters are shown in the legend of (a). (a) The structure
functions S2(Y ). The dot-dashed black line denotes the asymptotic viscous behavior for S2(Y ) ∝ Y 2. (b) Flatness F4(Y ) = S4(Y )/S2

2 (Y ).
(c) Hyperflatness F6(Y ) = S6(Y )/S3

2 (Y ). The horizontal dot-dashed lines in (b) and (c) denote the Gaussian values of F4(Y ) and F6(Y ). The
approximate Y dependencies of the flatness and hyperflatness for Y � Y∗ are shown by dashed lines, marked Y −0.2 and Y −0.5, respectively.
These values are slightly larger than typical for the classical hydrodynamic turbulence, i.e., δ−0.14 and δ−0.38 in Ref. [27]. However, for Y � Y∗,
the effective slopes of F4(Y ) and F6(Y ) strongly increase and become much larger than the classical values; see the dashed lines marked as
Y −0.5 and Y −1.4, respectively. The vertical thin lines in all panels denote positions of the outer scale Y0 and the crossover scale Y∗.

If this integral converges, it is dominated by the range
k ∼ 1/Y . Therefore, for the infinite extent of the inertial
interval, S2(Y ) ∼ F2(1/Y )Y−1. For example, if F (k) ∝ k−m,
then S2(Y ) ∝ Yn with n = m − 1. It is important to note that
the integral in Eq. (7d) also has a contribution from a wide
range of k around 1/Y . Therefore, in a realistic situation with
a finite extent of available k space, the relation between Fn(ky )
and Sn(Y ) is not so simple.

In any case, as one expects and we demonstrate in this
paper, that direct measurement of the integrand Exz(ky ) gives
more detailed information about the statistics of counterflow
turbulence than the measurements of the integral [Eq. (7d)]
for S2(Y ).

C. Overview of the theory of counterflow turbulence

Analytical theory of counterflow superfluid turbulence,
developed in Ref. [17], describes the energy spectra of the
normal-fluid and superfluid components of superfluid 4He
at scales r exceeding intervortex distance � = 1/

√
L, where

L is the vortex density, i.e., total length of vortex lines per
unit volume. The theory is based on the gradually damped
version [20] of the coarse-grained Hall-Vinen-Bekarevich-
Khalatnikov (HVBK) equations, generalized in Ref. [21] for
the counterflow turbulence. These equations have a form of
two Navier-Stokes equations for the turbulent velocity fluctu-
ations un(r, t ) and us(r, t ), coupled by a simplified version of
the mutual-friction force [22],

f ns � �s [un(r, t ) − us(r, t )], �s = α(T )κL. (8)

Here, α(T ) is the temperature-dependent parameter of the
mutual friction, listed in Table I, column 3.

These equations served as a starting point for the derivation
of the stationary balance equations for the 1D energy spectra
En(k) and Es(k) of the normal and superfluid components,

dεj (k)

dk
= �j [Ens(k) − Ej (k)] − 2 νjk

2Ej (k), (9)

using a simplifying assumption of the spatial homogeneity
and isotropy of the counterflow turbulence statistics. Here,
εj (k) is the energy flux over scales 1/k in the normal-fluid

(j = n) and superfluid (j = s) velocity components, �n =
�sρs/ρn, νn is the normal-fluid kinematic viscosity (normal-
ized by the ρn), and νs is the Vinen’s effective superfluid
viscosity [5]. The viscouslike energy sink term was added
to HVBK equations in Ref. [20] to account for the energy
dissipation at the intervortex scale � due to vortex recon-
nections, the energy transfer to Kelvin waves, and similar
effects. In Eq. (9), En(k) and Es(k) are the 1D spherically
averaged energy spectra [cf. Eq. (4a)] of the normal-fluid
and superfluid subsystems and the cross-correlation function
Ens(k) is related similarly to Fns(k).

Equations (9) are exact (in the framework of HVBK equa-
tions), but not closed. To make them practically useful, the
closure approximations for εj (k) in terms of Ej (k) were used.

The role of long-range (in the k space) energy-transfer
terms was analyzed [17], based on the integral closure for ε(k)
[23], and a new self-consistent closure was suggested:

ε(k) = C(k)k5/2E3/2(k), C(k) = 4 C

3 [3 − m(k)]
, (10a)

in which m(k) should be understood as a local scaling expo-
nent of E(k),

m(k) = d ln E(k)

d ln(k)
, (10b)

and the prefactor C(k) is chosen to reproduce the Kolmogorov
constant C for the K41 scaling exponent m(k) = 5/3.

To complete the closure of Eqs. (9), the closure [21] for
the cross-correlation function Ens was adopted. In a simplified
form, suitable for conditions of the visualization experiments
[13,14], it reads

Ens(k) = D(k)E(0)
ns (k), D(k) = arctan[ξ (k)]

ξ (k)
, (11a)

ξ (k) = k

k×
, k× = �ns

Uns
, �ns = �n + �s = ακL ρ

ρn
,

(11b)

E(0)
ns (k) = [ρnEn(k) + ρsEs(k)]/ρ. (11c)
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TABLE I. Columns 1–3: the temperature and temperature-dependent material parameters of 4He. Columns 4–7: the experimental
parameters of the flow. Column 8: the estimates of the normal-fluid Reynolds number, defined by Eq. (14b). Columns 7–12: the estimates
of the characteristic wave numbers k×, kν , k∗, and k�; cf. Sec. III B. Column 13: the estimates of the scaling exponents of the energy spectra via
apparent scaling exponents of S2(Y ). Column 14: the mean-over-decade scaling exponents of the energy spectra 〈m〉10. Columns 15 and 16: the
apparent scaling exponents of the energy spectra in the cascade-dominated subinterval mC and in the mutual-friction-dominated subinterval mF.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T , ρn
ρ

α Q, Un, Uns, L, Ren k× kν k∗ k� n + 1 〈m〉10 mC mF

K
mW

cm2

cm

s

cm

s

1

cm2

1

cm

1

cm

1

cm

1

cm

150 1.87 2.32 86300 37.9 37.2 149 294 1846 1.89 2.00 1.7 3.0
1.65 0.11 0.11 200 2.23 2.76 16200 46.2 58.8 224 402 2529 2.14 2.10 1.8 3.0

300 3.27 4.04 38200 84.9 94.5 354 618 3883 2.18 2.20 1.9 2.9
200 1.18 1.85 81100 53.2 43.8 249 322 1788 1.88 1.88 1.7 3.0

1.85 0.19 0.18 300 1.78 2.80 19800 94.2 70.1 539 502 2796 2.23 1.95 1.8 2.8
497 3.03 4.76 58500 165 123 755 863 4806 2.35 2.20 1.9 2.8
233 0.86 1.92 14100 84.7 73.3 455 418 2359 2.3 2.20 1.7 3.0

2.00 0.55 0.28 386 1.34 3.00 47300 131 158 690 765 4321 2.31 2.30 1.9 2.8
586 2.09 4.67 112000 223 240 1102 1178 6650 2.36 2.30 2.2 3.0
200 0.57 2.20 37300 107 170 588 612 3837 2.30 2.25 1.7 2.9

2.10 0.74 0.48 300 0.88 3.40 89800 159 264 958 951 5951 2.30 2.30 2.1 3.0
350 0.99 3.83 114000 211 298 1142 1071 6705 2.30 2.35 2.2 3.0

Here, D(k) is the Uns-dependent decoupling function and
En(k) and Es(k) are the Uns-dependent energy spectra, found
self-consistently by solving Eqs. (9) with Ens(k) given by
Eqs. (11).

Further simplification of the balance equations (9)–(11)
for the experimental conditions results in decoupled balance
equations for the normal-fluid and the superfluid energy spec-
tra,

C(k)
d

dk
k5/2E

3/2
j (k) = Ej (k){�j [D(k) − 1] − 2νj k

2}, (12)

in which C(k) and D(k) are defined by Eqs. (10a) and
(11a). The solutions of these equations are compared with the
experimental spectra in Fig. 3.

To summarize this overview, we note that analytical theory
[17] describes the main features of the large-scale normal-
fluid energy spectra of counterflow turbulence, observed in the
visualization experiments, although it does not account for the
inhomogeneity and anisotropy of the flow.

III. EXPERIMENTAL RESULTS AND THEIR ANALYSIS

In this section, we analyze the experimental data of the
normal-fluid turbulent velocity fluctuations u(y), obtained for
T = 1.65, 1.85, 2.00, and 2.10 K with three values of heat
fluxes Q at each temperature. The main parameters of these
experiments are given in Table I. This table also collects the
values of important characteristic wave numbers, estimated
below in Sec. III B. The second-order statistics [i.e., the
structure functions and the spectra Ezx (ky )] are discussed
in Sec. III C and the higher-order statistics of the structure
functions in Sec. III E.

A. Experimental techniques

The experimental apparatus is identical to that described
in Refs. [13,14]. A stainless-steel channel of 9.5-mm-square

cross section with a total length of 300 mm is attached to
a pumped helium bath whose temperature can be controlled
within 0.1 mK by regulating the vapor pressure. A planar
heater (around 400 �) at the lower end of the channel was
used to drive a thermal counterflow. When the heat flux is
sufficiently large, both the superfluid and the normal-fluid
components can become turbulent. To probe the normal-fluid
turbulence, our recently developed He2

∗ molecular tracer-line
tracking technique [24] was adopted. A 35 fs pulsed laser with
a repetition rate of 5 kHz and a pulse energy of about 60 μJ
was focused into the channel to produce a thin line of He2

∗
molecular tracers. This tracer line can be driven to produce
640 nm fluorescent light by a pulse train from an imaging
laser at 905 nm (i.e., 5–6 pulses at a repetition rate of 500 Hz).
The fluorescence was captured by an intensified CCD (ICCD)
camera, mounted perpendicular to both the flow direction and
the laser-beam path, to produce the images of the tracer line.
In a typical experiment, a straight baseline image is acquired
to serve as a reference. Then, the heater is turned on for at least
20 s so that a fully developed counterflow can establish in the
channel. After that, we produce a tracer line and let the tracer
line move with the normal fluid by a drift time �t before the
drifted line is imaged.

In order to extract quantitative velocity field information,
the center location of every line segment needs to be accu-
rately determined. In our previous research [13,14], a simple
Gaussian fit method was adopted. First, the image of a tracer
line was cut into many small segments (i.e., typically 40–60
segments). Then, the fluorescence intensity profile of each
line segment was fit by a Gaussian function such that both
the center location and the width of the line segment can be
determined. The streamwise velocity of the normal fluid at
position y can be calculated as the displacement of the line
segment divided by the drift time �t . This method works well
only when the tracer-line image has good quality and high
signal-to-noise ratio. However, as the normal-fluid velocity
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increases, some line segments can distort and smear, which
can result in significant uncertainty in locating the center of
these segments using the Gaussian fit method. In this research,
we utilized a more sophisticated approach, which is based
on the algorithm proposed by Pulkkinen et al. for finding
curvilinear structures in noisy data [25]. There are two steps
involved in the image analysis. First, a tracer-line image is
noise filtered based on the intensity of bright pixels using
numerically inexpensive nearest-neighbor searches. The basic
idea is to remove those bright pixels that are surrounded
all by dark pixels and hence are more likely created due to
instrument or environmental noises [26]. Subsequently, the
algorithm of Ref. [25] is applied to determine the ridge line
of the entire fluorescence intensity profile. The displacement
of the ridge line then allows us to calculate the streamwise
normal-fluid velocity regardless of the bad quality of some
local line segments.

Based on the obtained streamwise normal-fluid velocity
ux (y), we can evaluate the velocity difference �ux (Y, y) =
ux (y + Y ) − ux (y) between two line segments that are sepa-
rated by a distance Y . Then, the transverse structure functions
of the normal-fluid turbulence can be easily computed as
Sn(Y ) = 〈|�uy (y, Y )|n〉, where the angle brackets 〈·〉 denote
an ensemble average over all the images obtained under
the same experimental conditions (typically 30–100 images).
The calculated structure function profiles are found to be
insensitive to the reference location y. The 1D energy spectra,
averaged over the x-z plane and parallel to the channel wall,
can also be determined. In Fig. 1, we show the obtained
structure function and energy spectra curves at various tem-
peratures and heat fluxes. It should be noted that the results for
separation distance Y smaller than the thickness of the tracer
line (i.e., about 100–200 μm) can have large uncertainties.

B. Estimates of the crossover wave numbers

1. Decoupling wave number k×

According to Ref. [21], the decoupling wave number k×,
for which the decoupling function D(k) = 1

2 , is estimated as

k× � 2 �ns/Uns � κL/Uns. (13)

For typical values L � 105 cm−2, Uns � 1 cm/s and with κ �
10−3 cm2/s, this gives k× � 100 cm−1. The particular values
of k× for each of the 12 experimental sets are presented in
Table I, column 9.

2. Viscous wave number kν

The viscous wave number kν , for which the viscous damp-
ing becomes comparable with the energy transfer over scales,
can be estimated by comparison of the viscous damping
frequency νk2 with the eddy-turnover frequency

√
k3E(k),

kν � E(kν )/ν2. (14a)

Using the K41 estimate for the energy spectrum EK41(k) �
u2

Tk
2/3
0 k−5/3, we get

kν

k0
�

[
E(kν )

EK41(kν )

]3/8

Re3/4, Re = uT

k0ν
. (14b)

Here uT is the rms velocity fluctuations and k0 � 30 cm−1,
estimated in Ref. [13] from the behavior of S2(Y ). Our esti-
mates of kν are given in Table I, column 10.

Equation (14b) is a generalization of the well-known K41
relationship kν � k0Re3/4 for the spectra that differ signifi-
cantly from the K41 scaling EK41(k) ∝ k−5/3.

3. Mutual friction—viscous crossover wave number k∗

We know that the characteristic frequency responsible
for the rate of energy dissipation by mutual friction in the

normal-fluid component is α
ρs

ρn
κL, while the corresponding

frequency for the viscous dissipation is νnk
2. Comparing these

two frequencies, one finds a crossover wave number k∗ for
which the efficiencies of these two dissipation mechanisms
are equal,

k∗ =
√

α
ρs

ρn

κ

νn
L. (15)

Substituting the particular temperature-dependent values of α,
ρn, and νn, we get the values shown in Table I, rows 11. As we
see, for T = 1.65 and T = 2.10 K, k∗ ≈ 1.0

√
L, while for

T = 1.85 and T = 2.00 K, k∗ ≈ 1.1
√
L. This is smaller than

the wave number

k� ≈ 2π
√
L (16)

(cf. Table I, column 12), which separates the quasiclassical
and ultraquantum regimes of superfluid turbulence.

C. Second-order statistics of counterflow turbulence

Figure 1 summarizes the second-order statistics of the
velocity fluctuations for different temperatures and flow pa-
rameters. Both the structure functions (left column) and the
1D energy spectra (middle column) are compensated by the
K41 scaling: Y 2/3S2(Y ), k

5/3
y Exz(ky ). In the right column, we

plot the energy spectra compensated in the cascade-dominated
range; see below.

1. Second-order structure functions

The structure functions in the counterflow share simi-
larity with the velocity structure functions in the classical
hydrodynamic turbulence. The expected inertial interval of
scales δmin ≈ 0.02 to δmax � 0.2 cm are marked by black thin
vertical lines and correspond to that in Ref. [13]. Clearly, the
structure functions are steeper than their classical counter-
parts. The apparent scaling behavior in this interval of scales
may be characterized by exponents n. These exponents were
found in Ref. [13] and are reproduced in Table I, column
13. The values of n for T = 2.1 K are slightly larger than
in Ref. [13], likely due to the improved image analysis and
the fitting procedure. Note that the values of n vary widely,
depending on the flow parameters: the temperature and the
heat flux.

The dot-dashed vertical lines, colored as the structure func-
tions and collectively marked Y∗, denote the scale that delin-
eates the ranges of dominance of two dissipative mechanisms:
the mutual friction (for Y > Y∗) and the viscous dissipation
(for Y < Y∗).
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We should also note that simple analysis of Eq. (7d)
shows that the small-scale behavior S2(Y ) ∝ Y 2 appears if
the energy spectrum E(k) decays as k−3 or faster (including
the exponential decay). Therefore, the apparent Y 2 scaling
cannot be uniquely connected with the viscous dissipation
of turbulent kinetic energy, as in the classical turbulence.
Moreover, the asymptotic slope S2(Y ) ∝ Y 2 at Y � Y∗ is not
reached in our experiments due the limited spatial resolution
[cf. Fig. 4(a)].

2. Energy spectra of counterflow turbulence

One-dimensional energy spectra, compensated by K41
scaling k5/3E(k), are shown in Fig. 1, middle column. We can
easily identify several k ranges with different k dependence
of the spectra. The small wave-number (k � k0) behavior is
clearly different from the rest of the spectrum. A relatively
short part of the spectra is close to compensation by K41 while
remaining steeper. The large-k part of the spectra has a much
larger slope, extending over all remaining interval of scales.
We will now try to relate between these different types of
behavior and various crossover wave numbers introduced in
Sec. III B.

(a) Energy-containing interval. The outer scale of turbu-
lence, k0 � 30 cm−1, was taken according to Ref. [13], where
it was estimated as 2π/r0 with r0 � 0.2 cm close to the
maximum of the structure functions. The positions of k0 are
marked in Fig. 1, middle and right columns, by vertical black
thin solid lines. The range k � k0 can be interpreted as an
energy-containing interval, where energy is pumped into the
system due to instabilities of mean flow in the channel and
in which most of the flow energy is localized. As we see,
this value corresponds well to a boundary between the large-
scale behavior and the inertial-like scaling behavior of the
spectra for large heat fluxes, while for low heat fluxes and low
temperature, the energy-containing interval seems to extend
to higher wave numbers.

(b) Cascade-dominated interval. The next characteristic
scale k× (cf. Table I, column 9) estimates the wave number
for which the decoupling function D(k×) = 1

2 . For k � k×,
D(k) > 1

2 , and the energy dissipation by the mutual fric-
tion is relatively weak. In this k range, the main mecha-
nism responsible for the energy transfer over scales is the
Richardson-Kolmogorov energy cascade, similar to that in
classical turbulence. Nevertheless, the energy dissipation by
the mutual friction cannot be fully ignored. Therefore, the
energy spectra in this range of scales are steeper than the K41
scaling, as is clearly seen in Fig. 1, middle column. All these
motivate us to name the wave-number range k0 � k � k× as
cascade-dominated interval.

It was suggested in Ref. [17] to characterize the apparent
scaling of the otherwise non-scale-invariant spectra by cal-
culating a mean exponent over some interval of scales. The
theoretical mean exponents over a first decade 〈m〉10 were
found to agree with the experimental exponents [13] of the
structure functions [17]. We calculate the mean exponents
over a k range k ∈ [30–300] (a decade in k/k0) and collect
them in Table I, column 14. These values are close to n + 1,
where n is the apparent scaling exponent of S2(Y ) ∝ Yn,
defined by Eq. (7d). This means that the idea to estimate 〈m〉10

via n + 1 indeed works reasonably well. The corresponding
fits are shown in Fig. 1, middle column, as dashed colored
lines. However, although the values of the mean exponents
agree with the scaling of the structure functions, the actual
scaling of the spectra is different.

To estimate the apparent scaling exponents mC of the en-
ergy spectra E(k) ∝ k−mC in the cascade-dominated interval,
we plot the experimental spectra, compensated by kmC , and
choose the value of mC so as to maximize the k range where
kmCE(k) ≈ const. The resulting plots are shown in Fig. 1,
right column, where the crossover scales k× are shown by ver-
tical dashed colored lines. It is remarkable that except for the
low heat fluxes at T = 1.65 and 1.85 K, the crossover between
different scaling regimes of the energy spectra coincides well
with k×.

(c) Mutual-friction-dominated interval. For k � k×,
where the decoupling function is small and mutual friction
becomes important in the energy balance [17], the slope of the
energy spectra increases significantly from mC ≈ 2.0 ± 0.2
to mF ≈ 2.9 ± 0.1. The transition between the two types
of behavior is not sharp, especially for low-heat fluxes, but
clearly visible.

The power-law-like behavior E(k) ∝ k−mF qualitatively
differs from the exponential decay of E(k), typical for the
viscous interval of k in the classical hydrodynamic turbulence.
Therefore, we consider this behavior as an evidence that for
k � k×, the main mechanism of the energy dissipation is the
mutual friction. Upper limits of the mutual-friction-dominated
interval k∗ are shown in Fig. 1, right column, by vertical dot-
dashed lines of the corresponding colors. As a rule, the values
of k∗ are about or above the largest available values of k. This
means that the viscous interval of wave numbers is beyond
our spectral resolution. The corresponding Y∗ are shown in
Fig. 1, left column, and are mostly smaller than the implied
boundary between the inertial and viscous behavior [13] (i.e.,
black vertical thin solid lines). Therefore, only at the smallest
scales does the viscous dissipation become important, but it is
still not dominant, as we show below.

3. More about connection between S2(Y ) and E(k)

To clarify the relation between the energy spectra in a
finite k range and the structure functions, we plot in Fig. 2(a)
a piecewise-linear model of the energy spectra, consisting
of E(k) = k−mC in the cascade-dominated interval k0 < k <

k×, continuously connected with the E(k) ∝ k−mF part in
the mutual-friction-dominated interval k× < k < k∗. We used
the typical values of mC, and the same values of mF = 3.0,
k× = 200 cm−1, and k∗ = 1300 for all spectra. For simplicity,
we adopt for the energy-containing interval the same behav-
ior E(k) = k−mC as in the cascade-dominated interval. The
structure functions, computed using Eq. (7d), are shown in
Fig. 2(b) together with the expected slope S2(Y ) ∝ Yn with
n = mC − 1, shown by the dashed lines. As we see, the actual
range of scales, over which the original scaling is recovered,
is very narrow.

The slope S2(Y ) ∝ Y 2, typical for viscous exponential
decay of E(k) in the classical hydrodynamic turbulence,
and E(k) ∝ k−3, typical for the mutual-friction-dominated
interval in counterflow turbulence, are shown by a black
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dot-dashed line. As expected, for the finite-scaling inter-
val of a modest extent, the resulting Y dependence of
S2(Y ) demonstrates a very smooth transition between these
regimes and does not reach the genuine asymptotic behavior
S2(Y ) ∝ Y 2.

D. Comparison of analytically predicted
and experimental energy spectra

It is instructive to directly compare the experimental spec-
tra with the spectra predicted by theory [17]. The theory
does not describe the largest scales motion in the energy-
containing interval (for k < k0) and has the energy influx
for k = k0 [or the boundary condition E0 = Eth(k0)] as an
external parameter of the theory.

The theory was developed for an idealized situation of
fully developed, space-homogeneous turbulence. Naturally,
the real physical situation in the experiments (i.e., wall-
bounded, spatially inhomogeneous channel flow for relatively
low Reynolds numbers) is more complicated than assumed
by the theory. Therefore, the comparison is meaningful only
for the experiment with relevant flow conditions. In our case,
we may take the Ren > 100 as a tentative criterion for the
well-developed turbulence in the channel. This leaves out the
low-temperature data (T = 1.65 K), as well as the lowest
heat fluxes for T = 1.85 and 2.0 K. However, we keep for
completeness all the data for T = 1.85 and 2.0 K.

In Fig. 3, we compare the experimental (K41-
compensated) energy spectra for T = 1.85, 2.0, and 2.1 K
(plotted as solid colored lines) with the predicted energy
spectra (denoted by dashed lines of the same color),
calculated for the same temperatures and the same heat
fluxes. The theoretical spectra were made dimensional and
Eth(k0) was taken to ensure overlap in the cascade-dominated
k range. For high-heat fluxes, these values agree well with
Eexp(k0).

The immediate observation is a qualitative agreement be-
tween the experimental and theoretical spectra over a large
range of wave numbers, covering most of the cascade-
dominated range. The deviations are mostly limited to the
spectra with the lowest-heat fluxes for T = 2.0 and T =
2.1 K. At T = 1.85 K, the agreement is recovered for wave
numbers larger than k0, which may indicate that the turbulence
in these experiments is not yet fully developed and the outer
scale is smaller than expected.

As mentioned above, the overall suppression of the spectra
compared to the classical behavior is well captured by the
mean scaling exponents 〈m〉10; cf. Table I, column 14.

On the other hand, the theory does not describe the sharp
drop of the spectra in the mutual-friction-dominated k range,
demonstrating only smooth decrease of the current slope m(k)
of the spectra for large k. A possible reason is that the theory
[17] does not take into account the energy exchange between
components that is most efficient in this range of scale. Other
flow conditions, which are not accounted for by the theory,
may contribute to this discrepancy. Also the experimental data
in the high-k regime may not be very reliable indeed. This is
because the corresponding separation scale is comparable or
even smaller than the width of the tracer line, which leads to
large uncertainty.

E. Flatness, hyperflatness, and intermittency

To analyze higher-order statistics and possible intermit-
tency effects, we select one example at each temperature,
having similar Y∗, and plot in Fig. 4 the structure functions
Y−2/3S2(Y ), the flatness F4(Y ) = S4(Y )/S2

2 (Y ), and the hy-
perflatness F6(Y ) = S6(Y )/S3

2 (Y ).
In all panels, we mark the positions of the outer scale of

turbulence Y0 and the crossover scale Y∗. As is clearly seen in
Fig. 4(a), the asymptotic behavior Y 2 is not reached with our
spatial resolution. However, Y∗ delineates different types of
behavior of the S2(Y ). These different regimes are even better
exhibited by flatness and hyperflatness in Figs. 4(b) and 4(c).

For Gaussian statistics, F4 = 3 and F6 = 15, shown in
Figs. 4(b) and 4(c) as horizontal dashed lines. Clearly, for
large scales Y � Y0 , F4(Y ) and F6(Y ) are close to the
Gaussian values, indicating that the statistics of the turbulent
velocity field in the energy-containing interval is indeed close
to Gaussian. This is a common property of classical hydrody-
namic turbulence, independent of the way of its excitation.

In a wide interval of scales Y∗ � Y � Y0, covering scales
corresponding to both the cascade-dominated and mutual-
friction-dominated spectral ranges, both F4(Y ) [Fig. 4(b)] and
F6(Y ) [Fig. 4(c)] have a power-law-like behavior Fn(Y ) ∝
Y−x

(1)
n , with exponents x

(1)
4 � 0.20 ± 0.02 and x

(1)
6 � 0.5 ±

0.03. To compare these exponents with their counterparts x
HT

n

in the classical hydrodynamic turbulence, recall that x
HT

n =
ζ

HT

n − nζ
HT

2 /2, where ζ
HT

n is the scaling exponent of the n-
order structure function in classical hydrodynamic turbulence.
With the most recent experimental values [27] ζ

HT

2 ≈ 0.72,
ζ

HT

4 ≈ 1.30, and ζ
HT

6 ≈ 1.78, this gives x
HT

4 ≈ 0.14 and x
HT

6 ≈
0.38. We conclude that the values x

(1)
4,6 are moderately, but

distinctly, larger than ζ
HT

n . Notably, the structure functions
and higher-order statistics are not sensitive to the peculiarities
of the energy spectra, in particular to the existence of two
significantly different scaling ranges.

However, at smaller scales Y � Y∗, the effective slopes of
F4(Y ) and F6(Y ) increase dramatically. The estimates, shown
in Figs. 4(b) and 4(c), give x

(2)
4 � 0.5 ± 0.1 and x

(2)
6 � 1.4 ±

0.1 at these scales, which correspond to the dissipative range
with mixed contributions of the mutual-friction and viscous
dissipations. The statistics become very intermittent. The fact
that we do not observe saturation of F4(Y ) and F6(Y ), typical
for the viscous range in the classical turbulence, supports
our conjecture that the viscous dissipation-dominant range is
beyond our resolution.

IV. CONCLUSION

In this paper, we report a detailed analysis of the energy
spectra, second- and high-order structure functions of veloc-
ity differences in the superfluid 4He counterflow turbulence,
measured in a wide range of temperatures and heat fluxes.
In particular, we discover two ranges of wave numbers ky

with very different apparent exponents of the one-dimensional
energy spectra in the cascade-dominated (for relatively small
ky) and the mutual-friction-dominated subintervals (for rel-
atively large ky), respectively. The general behavior of the
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experimental spectra Exz(ky ) in the cascade-dominated range
agrees well with the energy spectra, predicted in Ref. [17].

The analysis of the statistics of the high-order structure
functions shows that in the energy-containing interval, the
statistics of counterflow turbulence is close to Gaussian, sim-
ilar to the classical hydrodynamic turbulence. In the cascade-
and mutual-friction-dominated intervals, we found some mod-
est enhancement of intermittency with respect to its level in
classical turbulence. However, at small scales (but not yet
viscous scales), the intermittency becomes much stronger than
that in the classical turbulence.

In conclusion, we should remember that the theory, de-
veloped in Ref. [17], does not describe the experimental
observations reported here in all details. Besides the obvi-
ous reason of spatial inhomogeneity, especially important for
modest available Reynolds numbers Ren, there is one more
possible reason for some disagreement even in the Ren →
∞ limit. This is the anisotropy of statistics of counterflow
turbulence. Although we do not yet have experimental in-
formation regarding how strong the anisotropy of turbulent
statistics is, this effect is definitely there due to presence of
preferred Uns direction and strong dependence of the cross-

correlation function Ens(k) (between the normal-fluid and
superfluid velocity components) on the angle between Uns and
k, predicted in Ref. [21]. The study of the effect of anisotropy
on the statistics of counterflow turbulence is on our nearest
agenda. Nevertheless, the reasonable agreement between our
observations and the theory [17] is encouraging. In particular,
the crossover scales between different regimes, predicted by
the theory using macroscopic parameters of the flow and
clearly observed in the spectra and structure functions, make
us believe that what we know so far contains an essential part
of the basic physics of the problem.
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