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Superconductivity at an antiferromagnetic quantum critical point: Role of energy fluctuations
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Motivated by recent experiments reporting superconductivity only at very low temperature in a class of heavy
fermion compounds, we study the impact of energy fluctuations with small momentum transfer on the pairing
instability near an antiferromagnetic quantum critical point. While these fluctuations, formed by composite spin
fluctuations, were proposed to explain the thermodynamic and transport properties near the quantum critical
point of compounds such as YbRh2Si2 and CeCu6−xAux at x ≈ 0.1, here they are found to strongly suppress
Tc of the d-wave pairing of the hot quasiparticles promoted by the spin fluctuations. Interestingly, if energy
fluctuations are strong enough, they can induce triplet pairing involving the quasiparticles of the cold regions of
the Fermi surface. Overall, the opposing effects of energy and spin fluctuations lead to a suppression of Tc.
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I. INTRODUCTION

One of the interesting issues associated with a magnetic
quantum critical point (QCP) is the possibility of supercon-
ductivity induced by the coupling between the associated
quantum critical fluctuations and the electron quasiparticles
[1–8]. There are a number of heavy-fermion compounds [9]
that exhibit antiferromagnetic quantum criticality and super-
conductivity nearby in their phase diagram. Superconductivity
in the cuprate [10] and iron-based [11,12] compounds is often
argued to be a consequence of the presence of strong magnetic
fluctuations. However, there are some prominent cases of
heavy-fermion antiferromagnetic quantum criticality in which
nearby superconductivity is either absent (CeCu1−xAux) or
has a tiny transition temperature Tc, if at all (YbRh2Si2) [13].
Elucidating why superconductivity is absent (or so fragile) in
these cases, despite the presumed presence of strong magnetic
fluctuations, is an important issue in the field of unconven-
tional superconductivity.

Here, we address this issue in the framework of the
recently-developed theory of critical quasiparticles whose
properties are generated by their interaction with critical
antiferromagnetic fluctuations [14–16]. One of the outcomes
of this model is the importance of low-energy, small-
momentum composite spin fluctuations, dubbed energy fluc-
tuations [17,18]. Previously, it was shown that these energy
fluctuations can explain unusual thermodynamic and transport
properties observed in certain heavy fermion compounds near
their magnetic QCP. In this paper, we apply an Eliashberg-
like approach to investigate the interplay between spin and
energy critical fluctuations to the pairing problem in a three-
dimensional system.

*Deceased October 18, 2018.

We find that the contribution of each fluctuation channel
depends strongly on the quasiparticle position on the Fermi
surface (FS). It is well known that antiferromagnetic (AFM)
spin fluctuations with wave-vector Q pair quasiparticles in the
“hot line” regions of the FS, i.e., the regions for which the
quasiparticle energies εk and εk+Q are equal [19–22]. The
quasiparticles in the remaining “cold” parts of the FS are
little affected. Thus, single spin fluctuation exchange can be
attractive for hot quasiparticles and results in a nonzero Tc

for d-wave singlet superconductivity. However, we find that
the exchange of energy fluctuations is in general repulsive
in that channel and may substantially reduce Tc, even to
zero. On the other hand, exchange of energy fluctuations
between cold quasiparticles may induce spin-triplet p-wave
superconductivity, if only at a substantially lower temperature.

The paper is organized as follows: Section II reviews
the strong-coupling theory of critical quasiparticles and the
emergence of energy fluctuations. Section III establishes the
Eliashberg-like equations to study pairing mediated by both
spin and density fluctuations. These equations are then solved
in Sec. IV in both singlet and triplet channels. Section V is
devoted to the conclusions.

II. CRITICAL QUASIPARTICLES: NORMAL
STATE PROPERTIES

In this section, we briefly outline the main results of the
theoretical approach introduced in Refs. [14,15]. The usual
approach for heavy-fermion metals that exhibit an antifer-
romagnetic quantum critical point involves consideration of
the interaction of fermionic quasiparticles with the bosonic
critical spin fluctuations. This may cause the fermionic de-
grees of freedom to also have critical behavior that acts
back on the boson spectrum. This was first analyzed self-
consistently in the theory of critical quasiparticles [14,15],
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FIG. 1. Critical fluctuations: (a) Single spin fluctuation χ peaked
at the AFM ordering vector Q. (b) Structure of the energy fluctuation
χE . A second contribution has the two spin fluctuation lines crossed.
The dashed lines represent the particle and hole excitations at the
Fermi surface to which the fluctuations couple. The full lines are
excitations far from the Fermi surface, and the black dots represent
the vertex function �Q.

which was found to have two qualitatively different solutions,
one in the weak-coupling and the other in the strong-coupling
regime. The strong-coupling regime gives the power laws
that govern transport and thermodynamic properties in the
neighborhood of the QCP; it successfully accounts for exper-
imental results in both YbRh2Si2 [16] and CeCu1−xAux [17].
In particular, it was found that the quasiparticle weight factor
Z(ω, T ) ∝ [max(ω, T )]η → 0 has a dimension-dependent
fractional power of max(ω, T ). The exponents η on the cold
and hot parts of the Fermi surface in the case of three-
dimensional spin fluctuations were found to be ηc = 1/4
and ηh = 1/2, respectively. This leads in turn to singular
critical behavior of various interaction vertex functions that
are related to Z−1 by Ward identities [18].

The typical antiferromagnetic ordered phase is usually
characterized by an ordering wave vector Q. As discussed
above, the associated critical fluctuations then connect the
special hot-spot regions of the FS, which follow the condi-
tion εk = εk+Q, where εk is the single-electron dispersion.
In three-dimensional FS, this gives rise to hot lines. As a
consequence, the quasiparticle self energy generated by the
exchange of such fluctuations is highly anisotropic and critical
mainly at the hot spots. However, the exchange of two spin
fluctuations with total momentum near zero [23], which may
be viewed [15] as a spin exchange-energy fluctuation, gives
a critical contribution over the whole FS (see Fig. 1). The
critical enhancements of the interaction vertices mentioned
above make such energy fluctuations important near the QCP,
both for their effect on the quasiparticle self energy and for
their role in superconductive pairing.

The spectrum of critical spin fluctuations is determined by
the dynamical spin susceptibility

χ (q, ν) = N0

r + (q − Q)2ξ 2
0 − i�2

Q(ν/vF Q)
, (1)

where N0 is the bare density of states at the Fermi level, r

is the control parameter tuning the system through the QCP,
ξ0 ≈ k−1

F is a microscopic correlation length, Q is the AFM
ordering vector, vF = kF /m is the bare Fermi velocity, and
�Q = �(k, ω = 0; q, ν) is the vertex function for the anti-
ferromagnetic spin fluctuation-particle-hole interaction, i.e.,
the vertex at frequency transfer ν and nonzero momentum
transfer q ≈ Q. Its presence in the Landau damping term of
Eq. (1) reflects the feedback into the critical bosonic spin
fluctuations by the critical behavior of the quasiparticles. It
may be shown that when Z−1(ω) diverges, then the vertex
�Q ∼ Z−1 will diverge as well. For three-dimensional spin

fluctuations, �Q(ν) ∝ ν−ηc [18]. We note here that the static
susceptibility χ (r, q, ν) diverges at r = 0, q = Q, and ν = 0.
However, at nonzero temperature, r does not diverge, i.e., the
correlation length is finite, following r ∼ T 1−2η.

We define the energy fluctuation propagator χE (q, ν) as
the composite of two spin fluctuations with total momentum
q near zero. The relevant diagram is shown in Fig. 1(b).
Schematically, χE (q, ν) ∼ ∑

q1,ν1
G · G · χ (q1, ν1) · χ (q1 −

q, ν1 − ν), where one χ is peaked near Q, the other near −Q.
The two fermion propagators G, represented by the vertical
lines in the figure are both far from the FS, when the fluc-
tuation couples to particle and hole excitations (represented
by dashed lines) near the FS. The calculation, including both
parallel and crossed contributions to Fig. 1(b) [15] yields

Im χE (q, iνn) ≈ N3
0 �2d−3

Q

|νn/γ |d−1/2

[
r + q2ξ 2

0 + |νn|�2
Q/γ

](d+1)/2 ,

(2)

where γ is an energy scale of order the Fermi energy (e.g.,
vF Q) and d is the dimensionality of the spin fluctuations [24].
In d = 3 dimensions, and on the imaginary frequency axis,
the dependence of χE (q, iνn) on q, iνn is similar to that of
χ (q, iνn), except that χE diverges at q = 0. That is,

χE (q, iνn) ≈ N2
0 �Q|νn/γ |3/2χ (q + Q, iνn). (3)

The role of both χ and χE on the normal-state properties
of the heavy fermion compounds has been investigated in
Refs. [15,17]. Our goal here is to assess their interplay for the
pairing instability that arises near the antiferromagnetic QCP.

III. ELIASHBERG EQUATIONS: SUPERCONDUCTING
STATE PROPERTIES

To analyze the contributions of the critical fluctuations to
pairing, we consider the Eliashberg-like gap equation:

�αβ (k, iωn) = −T
∑

ωmp,γ δ

Vαβ,γ δ (k − p, iωnm)�γ δ (p, iωm)

ω2
mZ−2

m + ε2
p + |�(p, iωm)|2 ,

(4)

where Z−1
m = 1 − �(iωm)/iωm is the quasiparticle weight

factor determined by the “second” Eliashberg equation. In
this work, we will not solve the second Eliashberg equation,
and instead will use the previously published results for the
frequency dependence of Z in the strong-coupling regime of
the model discussed above [14,15]. Here, ωn, ωm and ωnm =
ωn − ωm are fermionic and bosonic Matsubara frequencies,
α, β, γ, δ are spin indices and the summation over momentum
p extends over the first Brillouin zone. As we shall only
discuss the superconducting Tc, we may drop |�|2 in the
denominator (“linearized gap equation”) and eventually take
Z to be the normal state quasiparticle weight. As mentioned
above, Z has been calculated in Ref. [15] as Z = (ω/EF )η,
where ηc = 1/4 on the cold part of the Fermi surface and
ηh = 1/2 at the hot spots.

The pairing interaction V (k − q, iωn − iωm) has two con-
tributions: one from the exchange of a single spin fluctuation,
Eq. (1), the other from exchange of an energy fluctuation,
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Eq. (3). Both interactions are of the spin exchange type,

Vαβ,γ δ = V τ αγ · τ βδ

= Vs

(
iτ

y

αβ

)(
iτ

y

γ δ

) + Vt (iτ
yτ )αβ · (iτ yτ )γ δ, (5)

where τ = (τ x, τ y, τ z) is the vector of Pauli matrices. The last
equation displays the spin dependence in the particle-particle
channel. The singlet and the triplet parts are given by Vs = 3V

and Vt = −V , where

V (q, iνn) = α2χ (q, iνn) + 4h(νn)α2
EχE (q, iνn). (6)

Here, we shall approximate the coupling constants α as
α ≈ �Q/N0 and αE ≈ �v (�Q/N0)2. The vertex function
�Q at each end of a spin fluctuation was introduced below
Eq. (1) and �v ≈ Z−1 is the vertex at each end of an en-
ergy fluctuation. We have introduced the function h(νn) =
[exp(5(|νn|/νc − 1)) + 1]−1 which gives a soft cutoff at νc �
εF for the energy fluctuations. As for the spin fluctuations, we
include the hard cutoff �cut = εf .

As argued in Ref. [17], for a quantum critical system to
enter the strong coupling regime, as we have assumed, it is
necessary that some additional quantum fluctuations, such as
ferromagnetic fluctuations, should increase Z−1 sufficiently
and actually dominate the AFM spin energy contributions
when νn > νc. In the case of YbRh2Si2 , the crossover from
the low temperature regime, characterized by power-law be-
havior (e.g., specific heat coefficient C/T ∝ T −ηc to the high-
T behavior C/T ∝ ln(T0/T )) occurs at T ≈ 0.3 K. If we take
the characteristic Fermi temperature at 10 K, we deduce a
frequency cutoff νc ≈ 0.03εF .

Although the singlet interaction is repulsive (Vs > 0), as is
well known, the exchange of a single AF spin fluctuation that
is peaked at Q connects quasiparticles at hot spots kh and kh +
Q, which are usually far apart on the FS. This mechanism
often leads to unconventional pairing of quasiparticles at the
hot regions of the FS, characterized by a gap function �

whose sign changes between these two hot spots (as would
be the case for a suitable d-wave gap symmetry) [25]. Since
cold quasiparticles are boosted off the FS by scattering from
a single spin fluctuation, the cold regions do not contribute
substantially to pairing via single spin fluctuation exchange in
our scenario (see also Ref. [26]). It will be seen that exchange
of energy fluctuations (peaked at q ∼ 0) gives a repulsive
contribution to the pairing kernel, as it connects kh + q ≈ kh

for which the gap function has the same sign. Therefore, we
investigate below the suppression, by energy fluctuations, of
d-wave singlet superconductivity from the hot regions.

As well as being repulsive in the singlet channel, the
exchange of energy fluctuations in the triplet channel will be
attractive provided it couples close regions of the FS (as it
does, since q ≈ 0) for which the gap function does not change
sign

Vt = −4h(νn)α2
EχE (q, iνn). (7)

This pairing interaction is equally strong over the whole FS
and so could lead to triplet pairing of cold quasiparticles. The
orbital symmetry of the resulting gap function will likely be
the most symmetric form compatible with the requirement of
odd parity imposed by the Pauli principle, e.g., p-wave pairing
in the present case.

 

kh + Q

kh

α

FIG. 2. Schematic plot of the hot lines (red) on the Fermi surface.
The hot lines satisfy the condition εkh

= εkh+Q = 0, where Q is the
antiferromagnetic wave vector. Note that the hot lines have a finite
width.

IV. CALCULATION OF Tc

For the actual solution of the linearized gap equation,
we take a simple isotropic model of a three-dimensional
metal with dispersion εk ≈ vF (k − kF ) and three-dimensional
antiferromagnetic fluctuations as is appropriate for YbRh2Si2.
The spherical FS has lines of hot spots kh, where εkh

=
εkh+Q = 0. Figure 2 shows the two hot lines on the FS (in
red) that are connected by the AFM vector Q taken here to be
parallel to the z axis. The hot lines are located at polar angle
θ0 = cos−1(Q/2kF ) and at π − θ0. The width of the hot lines
[15] depends on the temperature as δθ ≈ �Q

√
T/εF sin α,

where α = π − 2θ0 is the angle between the quasiparticle
velocities vkh

and vkh+Q, see Fig. 2.

A. Hot quasiparticles

As explained earlier, we will restrict the analysis of singlet
pairing to the neighborhood of the hot lines. The linearized
gap equation has the form

�(k, iωn) = −3T
∑

ωm;p;γ,δ

V (k − p, iωnm)�(p, iωm)

ω2
mZ−2

m + ε2
p

, (8)

where

V (q, iνn) = α2χ (q, iνn)

+ 4h(νn)α2
EN2

0 �Q|νn|3/2χ (q + Q, iνn) , (9)

where the second term comes from χE in Eq. (3). Neglecting
the dependence of the gap function on |p|, its dependence is
only on the polar angle θ and the azimuthal angle φ since p
is on the FS, i.e., |p| = kF . On one hand, the Pauli principle
requires the gap function on the hot lines (θ = θ0 and θ = π −
θ0) to obey �(θ0, φ, iωm) = �(π − θ0, π + φ, iωm). On the
other hand, as explained above, the gap must change sign
between the two hot lines in order to solve the gap equa-
tion, �(p, iωm) ≈ −�(p + Q, iωm). Combining these two
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conditions yields �(θ0, φ, iωm) = −�(θ0, π + φ, iωm). We
therefore look for a solution of the form �(θ, φ, iωm) =
�s

m cos θ cos φ defined along the hot lines.
In the first term of the effective interaction in Eq. (9),

we may shift p → p − Q, which leaves the factor (ω2
mZ−2

m +
ε2

p )−1 invariant, since εp−Q = εp on the hot lines, while the
sign of � changes. We choose the proper sign of Q, depending
on whether p is on the upper or lower hot line (see Fig. 2).
Therefore, the interaction function simplifies to V (q, iνn) →
[−α2 + 4hnmα2

EN2
0 �Q|ν/γ |3/2]χ (q + Q, iνn).

The linearized gap equation then takes the form

�s
n cos θk cos φk

= 3T
∑
ωm;p

N0

r + (k − p)2/k2
F + �2

Q,nm|ωnm|
× [

α2
nm − 4hnmα2

E;nmN2
0 �Q,nm|ωnm|3/2

]

× �s
m cos θp cos φp

ω2
mZ−2

m + ε2
p

, (10)

Here, the momentum integration is restricted to the hot
lines. For not too large |ωm| � εF the factor [ω2

mZ−2
m +

ε2
p]−1 is sharply peaked at p = kF , so that one may write

(k − p)2 = 2k2
F (1 − cos θkp ), where θkp is the angle en-

closed by (k, p). If we take k = kF (sin θ0, 0,− cos θ0) on the
lower hot line, we have (k − p)2 = 2k2

F [1 + cos θ0 cos θp −
sin θ0 sin θp cos φp].

The integration over the angles φp and θp as well as the
integration over εp can all be done analytically. This results in
a matrix equation in frequency space:

�s
n = 3πTc

2

∑
m

Ws
nm

�s
m

|ωm|/Zm

, (11)

where

Ws
nm = [

�2
c,nm − 4hnm�5

c,nm�2
h,nm|�nm|3/2]I s

nm (12)

with

I s
nm = 1 + Bs

nm√
1 + Bs

nm/2
sinh−1 δθ√

2 sin2 θ0Bs
nm

− δθ

sin θ0
,

Bs
nm = �2

c,nm|�nm|/2 sin2 θ0 (13)

and hnm = h(ωn − ωm) is the soft cutoff function introduced
earlier. It is convenient to define f s

m = �s
mZm/|ωm| and to re-

express the gap equation as the matrix eigenvalue equation
[27]

∑
m

Ks
n,mf s

m = 0, (14)

where the kernel is given by

Ks
n�=m = 3

2Ws
nm,

Ks
n,n = −(2n + 1)Z−1

n + 1
2

(
Ks

n,n−1 + Ks
n−1,n

)
. (15)

Here, the subscript nm stands for the frequency differ-
ence ωn − ωm. We have regularized the weak singularity
of Ks

n,m in the limit n → m, which is cutoff by tempera-
ture as noted in the text below Eq. (1), by setting Ks

n,n ≈

–4.0

–3.5

–3.0

–2.5

0.16 0.18 0.20 0.22 0.24

FIG. 3. Suppression of Tc by energy fluctuations. The pairing
channel considered here is the singlet channel, promoted by the ex-
change of spin fluctuations between hot quasiparticles. �

(0)
h denotes

the strength of the energy-fluctuation vertex for the hot quasiparti-
cles. Here, εF is the Fermi energy.

1
2 (Ks

n,n−1 + Ks
n−1,n). The subscripts c, h label cold or hot

quasiparticle quantities. Following Ref. [15], we set �Q =
�c,nm = Z−1

c,nm = 1 + �(0)
c |ωn − ωm|−1/4 and �v = �h,nm =

Z−1
h,nm = 1 + �

(0)
h |ωn − ωm|−1/2 on the hot lines, but �v =

�c,nm on the cold parts of the Fermi surface. The parameters
�(0)

c ,�
(0)
h will be considered as tuning parameters controlling

the strength of the fluctuations.
To assess the impact of energy fluctuations on the Tc for

singlet pairing of the hot quasiparticles, we tune the hot vertex
prefactor �

(0)
h , a measure of the strength of hot pairing, from

�
(0)
h ≈ 0.15 up to 0.24. These particular values are chosen be-

cause for �
(0)
h < 0.15, 2πTc is above the energy cutoff of the

energy fluctuation, whereas for �
(0)
h > 0.24, Tc is below our

numerical precision. Note that, because �
(0)
h only affects �v ,

and because the contribution to the pairing interaction arising
from the energy fluctuations has an overall �v prefactor [see
the αE term in Eq. (6)], by changing �

(0)
h we are effectively

changing the relative strength of the energy fluctuations over
the spin fluctuations. The strength of the cold vertex is kept
fixed as �(0)

c = 0.5. In addition, the AFM vector Q = √
2kf

and thus θ0 = π/4.
The resulting Tc is plotted in Fig. 3. When the energy

fluctuations contribution is weaker (�(0)
h = 0.15), a nonzero

Tc of order 0.004εF is found at the QCP (r = 0). However,
when the energy fluctuations contribution becomes stronger,
Tc suffers a substantial suppression. This is in agreement
with experiments in YbRh2Si2, where superconductivity ap-
pears to be absent in the expected temperature range of
several hundreds of mK. Another compound for which energy
fluctuations are thought to exist is CeCu6−xAux at x ≈ 0.1,
where again superconductivity has not been observed. In the
latter, two-dimensional antiferromagnetic spin fluctuations are
thought to dominate and a model calculation analogous to the
one presented above applies. It is also interesting to study
Tc without the contribution of the energy fluctuations, i.e.,
Zh = 1, which removes the Tc suppression arising from the
energy fluctuations from Eq. (10). In this case, we found
that Tc/εf ≈ 0.024, or Tc ≈ 0.24 K, suggesting that a strong
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suppression of Tc by energy fluctuations is present in these
compounds.

B. Cold quasiparticles

As discussed in Eq. (7), a triplet pairing interaction is also
generated by the exchange of energy fluctuations. We assume
p-wave symmetry as discussed above and consider the gap
function of the form �(k, iωn) = �t

n cos θ , where θ is the
angle between k and the z axis. The linearized gap equation
becomes

�t
n cos θk = T

∑
ωm;p

4N3
0 hnmα2

E,nm�Q,nm|ωnm|3/2

r + (k − p)2 + �2
Q,nm|ωnm| (16)

× �t
m cos θp

ω2
mZ−2

m + ε2
p

. (17)

In contrast to the case of hot quasiparticles, the vertex function
for the cold quasiparticles is λv = �c, resulting in the cou-
pling constant αE ≈ �c(�Q/N0)2. Performing the momen-
tum integral in a similar way as in the singlet pairing case and
again defining f t

m = �t
mZm/|ωm|, the following eigenvalue

problem in Matsubara frequency space is found:
∑
ωm

Kt
n,mf t

m = 0. (18)

The kernel is given by

Kt
n�=m = 1

2Wt
nm,

Kt
n,n = −(2n + 1)Z−1

n + 1
2

(
Kt

n,n−1 + Kt
n−1,n

)
, (19)

where

Wt
nm = 4hnm�7

c,nm|�nm|3/2I t
nm (20)

and

I t
nm = (

2 + Bt
nm

)
ln

(
1 + 4/Bt

nm

) − 4,

Bt
nm = �2

c,nm|�nm|. (21)

Again, hnm = h(ωn − ωm) is the soft cutoff function intro-
duced above.

–4.5

–4.0

–3.5

–3.0

–2.5

0.52 0.54 0.56 0.58 0.60 0.62

FIG. 4. Superconducting transition temperature T t
c in the triplet

pairing channel. This pairing is mediated by the exchange of energy
fluctuations by cold quasiparticles. �(0)

c denotes the strength of the
energy fluctuation vertex for cold quasiparticles.

The Tc values for triplet pairing obtained by numerical
solution of Eq. (18) are shown in Fig. 4 as a function of
the bare vertex strength �(0)

c . To keep Tc in the numerically
accessible range, i.e., above our numerical resolution and
below the cutoff, we constrain �(0)

c to the range plotted
in the figure. A strong dependence on �(0)

c is found. In
particular, for the value �(0)

c = 0.5 that we chose for the
singlet pairing solution, we find Tc/εF ≈ 1.5 × 10−5, corre-
sponding to Tc ≈ 0.15 mK, as compared to the singlet pairing
Tc ≈ 0.24 K found in the absence of energy fluctuations.
It remains to be seen whether the superconducting phase
observed [13] in YbRh2Si2 at mili-Kelvin temperatures is of
spin-triplet symmetry, which our calculations suggest to be a
possibility.

V. CONCLUSIONS

Motivated by recent experimental evidence [13] for su-
perconductivity at extremely low temperature in YbRh2Si2 ,
we have used the recently-developed theory of critical quasi-
particles [14,15] to discuss the superconductivity generated
by pairing mediated by critical fluctuations in the neighbor-
hood of an antiferromagnetic quantum critical point, which
is often present in the phase diagram of heavy-fermion com-
pounds. In these materials, critical antiferromagnetic spin
fluctuations are dominant and are responsible for many of
the observed properties near the critical region. Since these
fluctuations have a nonzero wave vector Q, usually of order
kF , they divide the Fermi surface into hot regions, which
are connected by Q, and cold regions, which are not. This
usually leads to unconventional pairing (e.g., d-wave) of hot
quasiparticles as is seen in cuprates and some heavy-fermion
superconductors.

However, as emphasized in Refs. [15,17,23], composite
critical spin fluctuations induce energy fluctuations at small
momentum, leading to a diverging quasiparticle effective
mass over the whole Fermi surface. This contribution is
essential to achieve the excellent agreement between the
critical quasiparticle theory with the experimental results for
thermodynamic and transport quantities on CeCu1−xAux and
YbRh2Si2. In this paper, we studied the impact of these
energy fluctuations on the pairing channel by employing an
Eliashberg-like approach. Our main results are that, while the
exchange of energy fluctuations suppresses the d-wave Tc of
hot quasiparticles, they can at the same time mediate spin-
triplet (e.g., p-wave) superconductivity of cold quasiparticles,
a possibility that can be probed experimentally, for example
using NMR.
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