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a b s t r a c t 

The muscular dystrophies are made up of a diverse group of rare genetic diseases characterized by pro- 

gressive loss of muscle strength and muscle damage. Since there is no cure for muscular dystrophy and 

clinical outcome measures are limited, it is critical to assess the progression of MD objectively. Imaging 

muscle replacement by fibrofatty tissue has been shown to be a robust biomarker to monitor disease 

progression in DMD. In magnetic resonance imaging (MRI) data, specific texture patterns are found to 

correlate to certain MD subtypes and thus present a potential way for automatic assessment. In this pa- 

per, we first apply state-of-the-art convolutional neural networks (CNNs) to perform accurate MD image 

classification and then propose an effective visualization method to highlight the important image tex- 

tures. With a dystrophic MRI dataset, we found that the best CNN model delivers an 91.7% classification 

accuracy, which significantly outperforms non-deep learning methods, e . g ., > 40% improvement has been 

found over the traditional mean fat fraction (MFF) criterion for DMD and CMD classification. After inves- 

tigating every single neuron at the top layer of CNN model, we found the superior classification ability 

of CNN can be explained by its 91 and 118 neurons were performing better than the MFF criterion under 

the measurements of Euclidean and Chi-square distance, respectively. In order to further interpret CNNs 

predictions, we tested an improved class activation mapping (ICAM) method to visualize the important 

regions in the MRI images. With this ICAM, CNNs are able to locate the most discriminative texture pat- 

terns of DMD in soleus, lateral gastrocnemius, and medial gastrocnemius; for CMD, the critical texture 

patterns are highlighted in soleus, tibialis posterior, and peroneus. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Muscular dystrophies (MD) represents a diverse group of ge-

netic diseases often caused by either the absence or mutation in

key structural proteins. Among the MD diseases, Duchenne mus-

cular dystrophy (DMD) [1] and congenital muscular dystrophies

(CMD) [2] make up a large proportion of the pediatric subtypes.

Since DMD and CMD result from different genetic mutations, it

is anticipated in order to treat these patients, different therapies

will be required. However, DMD and CMD both present with pro-

gressive loss of skeletal muscle and function with similar symp-

tom of muscle weakness but appear different on muscle magnetic

resonance imaging (MRI) [3] . To automatically or objectively differ-
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ntiate CMD from DMD, it is crucial to locate image regions that

ontain specific texture patterns. More importantly, the accurate

exture pattern localization could become the basis for monitoring

ubtle changes over time in both disorders. 

Considerable effort has been devoted to cross-sectional imag-

ng, i . e ., the MRI, to improve the clinical characterization of MD.

RI is sensitive to abnormal fatty infiltration, it has been widely

pplied to assess consistent changes in both DMD and CMD [3,5–

] . Specifically, Sookhoo et al. [5] demonstrated sub-clinical muscle

nvolvement by measuring the fat composition of muscle tissue in

RI scans. In [6] , a three-point Dixon MRI technique [9] is used to

easure the measure the amount of lipid-infiltration in the thigh

uscles, showing that a quantitative measure of muscle adipos-

ty correlates better with disease severity than traditional strength

easurements. To quantify the fat infiltration in pelvic and thigh

uscles, [7] proposed a biomarker, i . e ., mean fat fraction (MFF), to

https://doi.org/10.1016/j.patcog.2018.08.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2018.08.012&domain=pdf
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Fig. 1. Muscular dystrophy MRI images: cross section of low leg acquired with 

the chemical shift-based water-fat separation MRI [3] . The normal, DMD, and CMD 

cases are displayed in columns from left to right, respectively. Images listed from 

top to bottom are the fat-fraction, fat base, and water base signals, respectively. 
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ssess the disease severity of DMD patients. Triplett et al. [3] ap-

lied the MMF of chemical shift-based MRI scans as a voxel level

easurement of disease severity. However, compressing a large 3

imensional MRI volume into a single MFF global value is a signif-

cant data loss as it may overlook some important local informa-

ion. 

Intuitively, implementing texture analysis on medical images

10,11] can make full use of the available information and it has the

otential to provide a more percise assessment of MD progression.

o this end, we have explored advanced texture analysis methods

or MRI image classification and found deep learning model, i . e .,

onvolutional neural networks (CNNs) [12] , delivers the best per-

ormance in comparison to its non-deeplearning counterparts. 

. Related work 

Using MRI for MD progression assessment and disease sub-

ype classification has received tremendous attention in the past

ew decades. Mercuri et al. [4,13] proposed a grading system, in

hich image textures that relate to early and late disease stages

re described as “moth-eaten” and “washed-out” appearance, re-

pectively. This grading system relies on radiologists for qualitative

mage interpretation. Duda et al. [14] presented a semi-automated

ethod, which exploits statistical texture analysis in the manu-

lly annotated regions of interest (ROIs) in images. They verified

heir method on golden retriever dogs with muscular dystrophy.

ammoun et al. [15] applied a similar statistical texture analysis

ethod on human subjusts. They also used manual ROIs to locate

exture patterns before the statistical analysis [14,15] . However, the

OIs given by human observers often suffers from inter-observer

ariations. 

CNNs can be applied to image classification without ROI extrac-

ion in advance. To interpret the insight of CNN models, Zeiler and

ergus [16] provided a deconvolutional method and found CNNs

ake predictions based on the content in certain image subre-

ions. Thus, CNNs would implicitly and automatically detect ROIs

hen it processes input images. To verify whether the automatic

OI is aligned with manual ROI, several methods have been pro-

osed for visual saliency detection [17] . For instance, Simonyan

t al. [18] used saliency maps to highlight the important subre-

ions, which are detected by the CNN model. Zhou et al. [19] pro-

osed a classification activation map (CAM) to visualize the regions

hat contain distinctive object parts, but CAM delivers only rough

ocalizations and more detailed ROIs are needed for MD classifica-

ion. 

For CNN-based MD classification, another issue might be that

raining CNNs with full supervision often result in overfitting

ue to limited training data. However, pre-trained CNNs have

een shown to contain general-purpose feature extractors [20–

2] , which are transferable to many other domains. Anthimopou-

os et al. [23] used a natural image pre-trained CNN to detect

exture patterns of interstitial lung diseases in chest CT scans.

he CNN with transfer learning reports better classification perfor-

ance than methods with hand-crafted features. To alleviate the

ffects of overfitting, Wang et al. [24] fine-tuned a pre-trained CNN

or breast mass classification. 

. Methods 

In this section, we first present the collected MRI dataset, which

xhibits different image textures for distinct subtypes of diseases

nd thus potentially enables preliminary diagnosis based on im-

ge textures. We then train CNN models with this dataset for auto-

atic image classification, i . e ., DMD, CMD, and normal. Finally, we

ntroduce the proposed improved class activation mapping (ICAM)
o locate important image sub-regions and extract the learned tex-

ure patterns. 

.1. Dystrophic MRI dataset 

MRI scans from 42 subjects (16 DMD, 13 CMD, and 13 Nor-

al) aging from 5 to 55 years old, which were collected as part

f NIH funded natural history studies of DMD and CMD. From

ach subject, chemical shift-based water-fat separation MR imag-

ng [9] scans of the right lower leg have been acquired on a 3T

hillips scanner. A 16 channel transmit/receive coil was used to ac-

uire unipolar gradient echo images (TE = 8.06; 9.21; 10.36 ms; the

umber of slices: 16–35; slice thickness: 4mm; flip angle: 20 ° )

3] . In total, 68 MRI scans have been collected containing 20 DMD,

5 CMD, and 13 normal scans. For stability analysis, we randomly

plit MRI scans at subject level and ran analysis under 4-fold cross-

alidation protocol. 

Unlike the standard MRI sequences, where the signal intensity

or every voxel (the measurement unit) is jointly determined based

n the fat and water signal intensities within that voxel, the three-

oint Dixon imaging technique [9] allows separation of MRI sig-

al intensity values for individual contributions of fat and water in

ach voxel of tissue. In this scenario, high-resolution water and fat

aps are acquired and enable quantifying the fat fraction of in-

ividual muscles [25] . As shown in Fig. 1 , fat-fraction images are

btained by taking division between the water and fat signals in

orresponding spatial position. We observe that DMD and CMD ex-

ibit fat replacement of muscle tissue in different degrees com-

aring to the normal images. Additionally, DMD and CMD contain

exture patterns that visually differ from each other. 

.2. Learning CNN for image classification 

A CNN is a feed-forward deep learning architecture of stacked

ayers with different functions, typically convolutional, activation,

ooling, and dense (or fully-connected) layers. In order to resem-

le the receptive field in the human visual system, each neuron in

he convolutional layer is connected to only a small local area of

he input. Outputs of convolutional layers are then fed into an ac-

ivation layer to introduce model nonlinearity. A pooling layer is

sed to subsample the output from its previous layer so that the

ize of the receptive field would increases gradually from bottom

o top layers. Finally, several dense layers are used to produce clas-

ification results. Thus, neurons from the top layers of a network

ould have very large receptive fields ( e . g ., fc7 in VGG-16 [26] has

 404 × 404 receptive field), which is sufficient to capture useful
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Fig. 2. The architecture of the proposed improved class activation mapping (ICAM). 

In the network part, feature maps with high ( i . e . 14 × 14) and low ( i . e . 7 × 7) reso- 

lutions are fed into the global average pooling (GAP) and classification layers with 

parameter matrix W . In the generator part, low-resolution feature maps are first 

upsampled with bilinear interpolation to have the same size as the high resolu- 

tion feature maps, and then combined with the weights learned in the classification 

layer to generate activation maps. 
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contextual (texture) information in the MRI inputs. Here we fine-

tune pre-trained CNNs of various model architectures for MRI im-

age classification. Once a promising classification performance is

achieved, e . g ., greater than 90% accuracy, the corresponding struc-

ture will then enable us to have a direct analysis of neurons in the

top layers with respect to different types of muscular textures. 

Data augmentation: Typically, in order to generalize well for un-

seen images, CNN model training would require a large amount of

annotated images. Thus, we implement data augmentation for the

collected MRI images. Specifically, we first augment the images by

resizing them with a size-factor, which is randomly generated from

the range of [1.0,1.2]. We then randomly rotate the images with an

angle in the range of [ −5 , 5] degree. To augment image contrast,

we scale image intensities in pixel-wise by a scale-factor, which

is randomly selected in the range of [0.8, 1.2]. Finally, a 224 × 224

sub-region is cropped for model training. In addition, to take ad-

vantage of context information of the 3D MRI scans, 3-consecutive

axial slices from an MRI volume are stacked as a unified input im-

age. 

3.3. Key region localization 

It is critical to know what and where in the input images enable

the CNN to make correct predictions. Therefore, we propose to lo-

cate the key regions in MRI images. Our method, is mainly inspired

by the classification activation map (CAM) approach [19] , which is

designed to identify discriminative regions inside the input images.

The CAM for an image category highlights discriminative image re-

gions for identifying the corresponding category. For example, the

CAM of a cat would highlight the image region that contains a cat.

The region localization in the original CAM is coarse, because

the heatmap is first obtained at a low resolution ( i . e ., 7 × 7) and

then upsampled to have the same size as the input image. In our

case, the input is 224 × 224, and thus significant spatial details are

lost in CAMs. The first column of Fig. 4 shows some exemplar

heatmaps where too large areas have been covered to locate the

specific texture patterns in individual muscles. In order to obtain

heatmaps with a higher spatial resolution, [19] removed top layers

from the original CNN architecture, but this in turn degrades the

CNN’s classification performance. 

We can simply remove the top layers of the network, i . e .,

ResNet18 [27] , to improve the CAM resolution from 7 × 7 to

28 × 28. However, this clipping will lead to a significant perfor-

mance drop in the image classification accuracy. Given the CNN as

a hierarchically layered architecture, filters in its lower layers op-

erate in small image regions to detect local image features such as

edges and boundaries. With the image information forward prop-

agated, filters in top layers operate on combinations of the local

image features to detect semantic object parts, e . g ., muscle texture

and the conjunction area between muscles. In other words, the ac-

tivation maps from lower layers highlight fine-grained image fea-

tures that benefit accurate texture localization. The activation maps

from the top layers highlight semantic information that is critical

to image classification. Instead of removing top layers, it is intu-

itive to combine activation maps from both lower and top CNN

layers to generate fine-grained CAMs and preserve the classifica-

tion accuracy. To this end, we propose an improved CAM (denoted

by ICAM), which is able to deliver detailed heatmaps without a no-

ticeable sacrifice in classification performance. We graphically il-

lustrate the network architecture of ICAM in Fig. 2 . 

To formally describe the proposed ICAM, we denote f n 
k 
(x, y ) 

the activation of k th unit in the n th convolutional layer at spatial

location ( x , y ). Note that the spatial resolutions could be different

among convolutional layers. Similarly, the result of performing a

global average pooling (GAP) is defined as F n 
k 

= 

∑ 

x,y f 
n 
k 
(x, y ) . As-

sume that there have M and N output channels in layer m and n
espectively. For a given image category c , the input to soft-max

ayer S c is, 

 

c = 

M ∑ 

k =1 

w 

c 
k F 

m 

k + 

N ∑ 

k =1 

w 

c 
(k + M) F 

n 
k , (1)

here w 

c 
k 

is an entry from the k th row and the c th column of a

arameter matrix W ∈ R (M+ N) ×C in the softmax layer. Thus, ICAM

or class c is defined as, 

 

c (x, y ) = 

M ∑ 

k =1 

w 

c 
k f 

m 

k + 

N ∑ 

k =1 

w 

c 
(k + M) U( f n k , 2) , (2)

here U ( · , 2) is the function to upsamples featuremap f n 
k 

by a

actor of 2 to have the same resolution as f m 

k 
via bilinear interpo-

ation. 

.4. Network architecture and training details 

We use the VGG16 network [26] with 16 layers, which has

emonstrated its effectiveness on the natural image classification

ask, as the baseline of our automatic MRI images classification.

he VGG16 network is pre-trained on the ImageNet dataset [28] .

hen, the original dense layers are replaced with a GAP [29] layer

ollowed by a fully-connected layer where the output dimension is

et to 3. We fine-tune the modified network on our MRI dataset

sing Tensorflow [30] . During model training, VGG16 is updated

ia stochastic gradient descent (SGD) and the mini-batch size is 8.

he learning rate is set as 10 −4 for the first 40 0 0 iterations and

hen decreases to 10 −5 for the later 10 0 0 iterations. 

Meanwhile, residual networks [27] , which is a recent deep

earning model that produces the state-of-the-art performance in

any challenging applications, are also used for MRI image clas-

ification. Since the depth of residual networks is flexible, the op-

imal model size needs to be adjusted for the specific task. Intu-

tively, an easy task would require a small-sized network and a

omplicated one would need a larger model. In our experiments,

e test residual networks with 18, 34, and 50 layers [27] , namely

esNet18, ResNet34, and ResNet50, aiming to seek the best archi-

ecture for our application. Each of the residual network variations

s pre-trained on ImageNet and fine-tuned for 3-category classifi-

ation. The same training hyperparameters as those of VGG16 are

pplied. 
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Table 1 

Image classification comparison: classification re- 

sults are represented in the form of testing er- 

ror. With 4-fold cross validation, the mean, maxi- 

mum, and minimum of testing errors are reported. 

For non-deep learning methods, classifiers kNN and 

SVM are implemented. 

Method 

Test accuracy (%) 

Mean Max. Min. 

MFF (kNN) 48.6 55.4 39.6 

STP (kNN) 50.1 57.4 45.0 

K-Means (SVM) 53.2 58.4 47.3 

STP (SVM) 54.9 61.8 45.6 

VGG16-FC7 (SVM) 80.6 86.7 54.7 

ResNet18-GAP (SVM) 83.7 93.2 76.5 

VGG16 84.1 91.2 76.5 

ResNet50 88.6 91.6 83.5 

ResNet34 89.2 93.9 84.6 

ResNet18 90.7 94.2 86.1 

3

 

M  

[  

c

 

a  

g  

t  

w  

t  

m  

o  

c  

c  

b  

a  

1  

p

 

t  

o  

[  

(  

s  

S  

t

 

C  

l  

v  

a  

S  

f

4

4

 

m  

i  

b  

R  

R  

fi  

t  

d  

R  

d  

R  

t  

R  

d  

e

4

 

f  

i  

d  

t  

l  

s  

e  

r  

i  

t  

a  

c  

t  

o  

s

 

e  

C  

a  

i  

i  

E  

s  

d

�  

w  

t

χ  

w  

p  

t  

w  

s  

c  

d  

r  

m

 

m  

o  

h  

c  

n  

w  

u  

h

 

N  
.5. Implementation of non-deep learning counterparts 

To compare with non-deep learning methods, we apply the K-

eans-based texture analysis [31] , the statistical texture analysis

15] , and the mean fat factor (MFF) [7] for the MRI image classifi-

ation. 

The K-Means-based method is proposed in [31] , which presents

n effective descriptor for texture patterns to differentiate the fore-

round from the background. We implement this method for tex-

ure classification. We first crop image patches from image ROIs

hich are manually drawn from the soleus, lateral and medial gas-

rocnemius muscles. We then cluster them by K-Means clustering

ethod. Each of the MRI images is then represented as a histogram

f the learned K centroids. Finally, we apply Support vector ma-

hine with rbf kernel (RBF-SVM) on these histograms for image

lassification. We use the implementation of [31] and the num-

er of centroids is set to K = 900 for 18 × 18 image patches (We

lso test different image patch sizes and find patches smaller than

8 × 18 would not contain enough context information and larger

atches would significantly reduce the amount of training data). 

For the second non-deep learning method, we extract the sta-

istical texture patterns (STP) from image ROIs as the combination

f intensity gray scale histogram and co-occurence matrix used in

15] . Support vector machine (SVM) [32] and k-nearest-neighbor

kNN) [33] are used to classify the statistical texture patterns. We

earch over different hyperparameters, e . g ., the panelty value in

VM and the number of neighbors k in kNN, to find the best set-

ings for classification. 

Finally, we use CNN features that extracted from pre-trained

NN models for additional comparisons. We first use the dense

ayer of the pre-trained VGG16 to represent each MRI image as a

ector of 4096 dimensions, denoted as VGG16-F7. We then train

n RBF-SVM on the extracted CNN features for image classification.

imilarly, ResNet18 coverts each MRI image into a 512-dimensional

eature vector, denoted as ResNet18-GAP. 

. Results and analysis 

.1. Image classification 

Table 1 shows the image classification results with different

odels and ResNet18 achieves the best performance. In compar-

son with non-deep learning methods ( e . g ., K-Means), ResNet18

oosts the testing accuracy by greater than 30%. Meanwhile, both

esNet18 and VGG16 outperforms their pre-trained counterpars,

esNet18-GAP and VGG16-FC7, respectively, proving that model

ne-tuning is important to transfer the pre-trained model towards
he medical domain. However, ResNet18 outperforms the baseline

eep learning model VGG16 by 6.5%. Compared with ResNet18,

esNet34 and ResNet50 are observed with slight performance

egradations. The number of model parameters for ResNet34 and

esNet50 are about 22 and 25 millions respectively, which are two

imes as many as ResNet18. This may explains that ResNet34 and

esNet50 are more easily over-fitted to training images. We thus

esign ResNet18 to be the backbone architecture for the following

xperiments. 

.2. Network analysis 

To investigate the reason for ResNet18 to achieve the best per-

ormance, we proceed to analyzing the GAP layer. The GAP layer

n ResNet18 locates between the last convolutional layer and the

ense classification layers that transform 7 × 7 feature maps into

he averaged pixel values [29] . A high value in the output of GAP

ayer indicates its corresponding network path has a strong re-

ponse to textures in the input image. In ResNet18, we define each

ntry in the GAP layer as a neuron and in total there are 512 neu-

ons. Each neuron, like a “weak classifier”, has its own discrim-

native ability to differentiate input images. For instance, a well-

rained neuron may have positive responses for CMD images, neg-

tive for DMD images, and nearly zero responses for the normal

ases as demonstrated in the box-plot B of Fig. 3 . We then analyze

he neuron responses from two aspects, namely a single neuron’s

utputs to all input images and all of the neurons reacting to the

ame input image. 

First, we analyze each individual neuron by measuring differ-

nces of the neuron’s outputs to all input images from the DMD,

MD, and normal subjects. For quantitative measurements, we sep-

rate the neuron outputs into three groups corresponding to the

mage categories. From each response group, we extract a normal-

zed histogram with n ( e . g ., n = 20 in our implementation) bins.

uclidean � 2 -distance and Chi-square χ2 -distance are used to mea-

ure similarities between the histograms. More specifically, the � 2 -

istance between DMD ( h d ) and CMD ( h c ) is: 

 

2 (h d , h c ) = 

√ 

N ∑ 

i =1 

( h d (i ) − h c (i ) ) 
2 
. (3)

here h · ( i ) represents the i th bin value in the histogram. Similarly,

he χ2 -distance is: 

2 (h d , h c ) = 

1 

2 

N ∑ 

i =1 

[
(h d (i ) − h c (i )) 2 

h d ( i ) + h c (i ) 

]
. (4)

here χ2 ( h d , h c ) is weighted by variables and sample units. Com-

ared with � 2 -distance, χ2 -distance is more sensitive to small his-

ogram values. Thus, they are complementary to each other. Mean-

hile, the mean fat-fractions (MFF) [7] is calculated inside the

oleus muscle from selected keyframes as the output of a spacial

lassifier (human annotation), and we compare it with all the other

eep learning neurons. We observe that there are 91 and 118 neu-

ons performing better than the MFF criterion under the distance

easurements � 2 and χ2 , respectively. 

We then study the responses across all neurons for the com-

on input image and the overview of neuron activations is shown

n the left panel of Fig. 3 . As we can see, more network neurons

ave the negative responses ( i . e ., blue columns) to DMD inputs

ompared with CMD and the normal subjects. Meanwhile, for the

ormal cases, most of the columns are displayed in white color,

hich means most of the neurons give near zero responses to the

naffected cases. In fact, inside the muscle of normal cases, there

ave very little textured regions. 

In particular, the right panel of Fig. 3 indicates that neurons

o.1, No.156, and No.382 serve as markers to differentiate DMD,
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Fig. 3. CNN output analysis. left , each heatmap contains 512 columns corresponding to the 512 “neurons” from the GAP layer of ResNet18. The cross-validation fold with 9% 

testing error is selected to report. The 1 st , 2 nd , and 3 rd rows are activation maps for CMD, DMD, and normal cases, respectively. The last row displays the color bar that 

maps the normalized neuron activations in [ −1 , 1] to different colors. Activations of network “neurons” No.1, No.156, and No.382 are compared with the mean fat-fraction 

(MFF) as displayed on the right panel. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Comparison of ROI localization. Importance of image regions from high to 

low is represented with colors ranging from red to blue. The proposed ICAM with 

a 28 × 28 map resolution has more fine-grained region localization than baselines. 

The white circle indicates irrelevant regions incorrectly highlighted by the baseline 

with a 28 × 28 resolution. (For interpretation of the references to colour in this fig- 

ure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Image classification comparison: to obtain higher map size (MS), it re- 

quires change of the original network architecture ( e . g ., removing the 

top convolutional layers); however, this might degrade classification 

performance. Here we compare the proposed method ( i . e . ICAM) with 

those simply removing top layers ( i . e . ResNet). Details for model archi- 

tecture can be found in Section 4.3 . 

MS Method 

Testing Accuracy (%) 

Fold-1 Fold-2 Fold-3 Fold-4 Mean 

28x28 ResNet 88.7 94.5 87.8 75.6 86.6 

ICAM 88.4 90.3 90.3 77.9 86.7 

14x14 ResNet 83.2 94.5 88.4 80.8 86.7 

ICAM 93.3 96.8 93.4 84.6 91.7 
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CMD, and normal cases. For example, neuron No.156 outputs pos-

itive values for CMD, negative for DMD, and almost zero values

for the normal cases. In comparison, we plot MFF values in the

bottom-right panel. Each of No.1, No.156, and No.382 has better

discriminative power to distinguish different subtypes of disease

than the MFF. In practice, an ensemble of many neurons would de-

liver a strong classifier for dystrophic image classification, which is

verified by its 90.7% accuracy on evaluation cases. 

4.3. Texture pattern localization 

In order to demonstrate the effectiveness of the proposed ICAM,

we list the image classification results in Table 2 and show quali-

tative analysis in Fig. 4 . Comparing with the original CAM frame-

work, ICAM produces better classification performance and more

fine-grained localization. In Table 2 , ResNet18-14 2 is created by re-

moving layers between the last MaxPooling and GAP layer (includ-

ing the MaxPooing layer), which delivers heatmaps at a 14 × 14

resolution. Similarly, ResNet-28 2 is obtained by removing layers

between the second last MaxPooing and GAP layer. Meanwhile,

ICAM-14 2 has the same number of layers as ResNet18-7 2 but dou-

bles heatmap resolutions. It is achieved by combining feature maps

(map resolution is 14 × 14) before its last MaxPooing and feature

maps (map resolution is 7 × 7) before the GAP layers, as visu-

ally depicted in Fig. 2 . Similarly, ICAM-28 2 is modified from the

ResNet18-14 2 architecture. Both of the ICAM models perform bet-
er than their counterparts while delivering doubled heatmap map

esolutions (see Table 2 ). 

Fig. 4 shows the visual comparison of region localization be-

ween ResNet18-7 2 , ResNet18-14 2 , ResNet18-28 2 , and the proposed

CAM-28 2 on example DMD and CMD cases. Both ResNet18-28 2 

nd ICAM-28 2 generate more detailed heatmaps than ResNet18-

 

2 and ResNet18-14 2 , where fine-grained inner muscle areas are

ighlighted with red. Meanwhile, ICAM-28 2 achieves better clas-

ification performance than ResNet18-28 2 , which is evidenced by

he example that ResNet18-28 2 highlights the wrong muscle area

n the white circle in Fig. 4 and the highlighted regions by other

odels are consistent with each other. In addition, Fig. 5 shows

RI images from CMD, DMD and normal cases and the highlighted

egions are consistent across the entire MRI volume. 

.4. Texture pattern understanding 

In order to answer the following two questions, what kind of

exture patterns are related to differentiate subtypes of disease and

here these texture patterns appear in affected subjects , we visualize

he low-dimensional embedding of detected discriminative regions

n Fig. 6 and quantify the muscle texture score in Table 3 and Fig. 7 .

he detected texture regions are cropped as k × k image patches

rom MRI images and then embedded into 2-dimension with t-SNE

34] for better visualization, as shown in Fig. 6 . We set k = 24 so

hat image patches could be large enough to cover highlighted re-

ions. The most representative image regions are listed at the bot-

om of Fig. 6 , 4 from DMD and 4 from CMD cases. These patches
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Fig. 5. Consistency of discriminative region localization. Exemplar MRI sequences from the normal, DMD, and CMD subjects. In each row, the discriminative regions high- 

lighted by ICAM evolve continuously across the consecutive MRI images. In the second row, muscle areas with thick fat tissues are presented as the most discriminative 

texture in the DMD case. In the last row, the highlighted regions exhibit rich fat textures that are very different from the regions presented in the normal and DMD cases. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Visualization of 2-dimensional embedding of the learned discriminative regions. top center depicts discriminative texture regions learned from the DMD and CMD 

training images projected into a 2D space by t-SNE [34] . Top sides presents local details of the 2D embedding. The most representative image patches are shown in the 

bottom row . Cropped subregions from the DMD and CMD images are marked with red and blue color, respectively. Best viewed in color with zooming. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ndicate what image textures are utilized the most by our ICAM-

8 2 model to achieve accurate disease subtype classification. 

We align the detected texture areas with the lower leg mus-

les, e . g ., lateral gastrocnemius (LG), medial gastrocnemius (MG),

oleus (Sol), tibialis posterior (TP), peroneus (Per), extensor digi-

orium longus (EDL), and tibialis anterior (TA). Since the lengths of
uscles are different, some axial MRI slice may contain only a sub-

roup of the lower leg muscle. However, for ease of illustration,

ig. 7 presents a cross-section with all of the lower leg muscles.

he corresponding ICAM emphasizes regions in the EDL, Per, LG

uscle area. It indicates that the texture patterns presented in EDL,

er, and LG are critical for CNN models to make the correct pre-
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Table 3 

Muscle texture scores in CMD and DMD cases. The testing set from the 1 st fold of 

the cross-validation is reported. 

Cases Muscle Regions 

TA EDL Per TP Sol LG MG 

DMD 

Case No.1 0.300 0.050 0.0 0 0 0.100 0.900 0.688 0.250 

Case No.2 0.188 0.625 0.625 0.375 0.688 0.750 0.750 

Case No.3 0.050 0.100 0.500 0.182 0.545 0.526 0.667 

Case No.4 0.348 0.087 0.087 0.043 0.435 0.947 0.316 

DMD Mean 0.222 0.216 0.303 0.175 0.642 0.728 0.496 

CMD 

Case No.1 0.0 0 0 0.050 0.363 0.055 0.406 0.154 0.146 

Case No.2 0.031 0.062 0.719 0.375 0.031 0.063 0.063 

Case No.3 0.034 0.074 0.804 0.239 0.875 0.278 0.147 

Case No.4 0.215 0.421 0.479 0.596 0.685 0.238 0.551 

CMD Mean 0.074 0.151 0.591 0.316 0.499 0.183 0.226 

Fig. 7. ROI context. One representative fat-fraction MRI image of the lower leg from 

a DMD subject is displayed on the left. This MRI image is utilized to present fat re- 

placement in lower leg muscles. The CNN model predicts this image as DMD based 

on multiple highlighted regions including EDL, Per, LG, and MG, which is displayed 

on the right. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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dictions. Thus, by producing ICAMs for the MRI scan, we can mea-

sure the importance of each lower leg muscle for MD sub-disease

classification. Formally, we refer to the “muscle importance” as the

muscle texture score that is defined as, 

s i = n i /m i , (5)

where i presents the index of a muscle in the lower leg,and m i 

is the number of MRI slices that contain the i th muscle, where n i 
of them are highlighted by ICAM. s i ranges from 0 to 1, where 1

means the i th muscle has full textures and 0 represents no tex-

ture patterns. The muscle texture scores for selected MD cases are

displayed in Table 3 . The top-3 textured muscles in DMD are the

soleus, the lateral gastrocnemius, and the medial gastrocnemius.

For the CMD cases, the peroneus, the tibialis posterior, and the

soleus are mostly highlighted. This indicates the locations of useful

texture patterns could be utilized to differentiate disease subtypes.

These textured muscles could lead to a dystrophic study for fur-

ther investigation of physiological significance and determine lon-

gitudinal changes as a course of disease progression and following

therapeutic intervention. 

5. Discussion 

Apart from the progress reported in this work, the localization

results of ICAM still require further validations. We present exam-

ples of the ICAM’s results for qualitative analysis. We observe the

ICAM achieves better classification performance than ResNets be-

cause the former is able to locate more discriminative texture re-

gions. We also embed the located image regions for visualization.
owever, all of these analyses are not a direct quantitative evalu-

tion for the whole MRI dataset. In future work, we will further

mprove the metric of muscle texture score based on the ROIs an-

otated in the MRI images and measure the consistency between

he CNN highlighted regions and human annotations. 

. Conclusion 

MRI provides a powerful tool for noninvasive observation of fat-

issue replacement in muscular dystrophy population. In this work,

e proposed to fully automate the analysis of dystrophic MRI by

sing convolutional neural networks (CNNs) for image classifica-

ion and texture understanding. We tested multiple state-of-the-

rt CNN variations on the top of 68 MRI scans. Comparing with the

onventional mean fat factor (MFF) and non-deep learning counter-

arts, CNN models produced superior classification results, among

hich the best performance is 91.7% mean accuracy over 4-fold-

ross-validation. The CNN-based deep learning models are often

emarked as data-driven methods, and the current performance

s possibly limited by the small amount of data. It is of high po-

ential for CNN models to achieve better results if a larger-sized

raining dataset is available. Thus one important aspect of our fu-

ure work is to extend the current data collection with many more

tudy cases for deep model learning. 

In this work, we also proposed an effective CNN visualization

ethod, i . e ., the improved class activation mapping (ICAM), to vi-

ualize the textural regions that are discriminative for disease sub-

ype classification. By visualizing and clustering the highlighted

ub-image regions, we verified the hypothesis that there have cer-

ain common visual patterns shared by MRI scans of the same dis-

ase subtype. These visual patterns are also found to be aligned

ith lower leg muscles that exhibit high muscle texture scores . The

roposed ICAM provides an efficient way to understand CNN’s pre-

ictions and also helps to convince users in terms of the correct-

ess of the automatic classification. However, the validity of cur-

ent localization results would require further quantitative evalua-

ions. Manual ROI annotations will be acquired and applied to an-

lyze the localization results in our future work. 
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