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Chiral spin order in some purported Kitaev spin-liquid compounds
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We examine recent magnetic torque measurements in two compounds, γ -Li2IrO3 and RuCl3, which have been
discussed as possible realizations of the Kitaev model. The analysis of the reported discontinuity in torque, as
an external magnetic field is rotated across the c axis in both crystals, suggests that they have a translationally
invariant chiral spin order of the form 〈Si · (Sj × Sk )〉 �= 0 in the ground state and persisting over a very wide
range of magnetic field and temperature. An extraordinary |B|B2 dependence of the torque for small fields,
beside the usual B2 part, is predicted by the chiral spin order. Data for small fields are available for γ -Li2IrO3

and are found to be consistent with the prediction upon further analysis. Other experiments such as inelastic
scattering and thermal Hall effect and several questions raised by the discovery of chiral spin order, including its
topological consequences, are discussed.
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I. INTRODUCTION

In the past few decades, there has been much discussion
of the possibility of insulators with magnetic ions which do
not order down to the lowest temperatures due to quantum
fluctuations [1]. Such states have been given the name spin
liquids. The interest in such problems is high in view of
their possible connection to emergent quantum numbers, frac-
tionalization of excitations, etc. The theory, calculations, and
experimental realizations have been clear in one dimension.
In two dimensions, Kitaev [2] has provided exact results
on some models, while there have been many approximate
discussions on several related models. The models are rather
special and not easily realizable, although impressive crystal
symmetry analysis [3] has led to the search for materials
with the requisite anisotropic exchange. The fact that several
such compounds show no customary magnetic order down
to temperatures an order of magnitude or more below their
magnetic interaction energies, and are not spin glasses, speaks
for quantum fluctuations in a general way. But specific exper-
imental signatures have been murky.

We analyze clear and anomalous results from magnetic
torque measurements in two compounds, γ -Li2IrO3 [4,5] and
RuCl3, which due to their structure and quantum-chemistry
may host Kitaev-like exchange anisotropy between effective
S = 1/2 ions on hexagonal networks [3] together with ad-
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ditional interactions. These compounds exhibit antiferromag-
netic (AFM) order [6,7] at low temperatures and small applied
magnetic fields. But thermal transport [8], inelastic neutron
scattering experiments [9], and Raman spectroscopy [10]
suggest unusual properties in and outside of the AFM region
that are not to be expected in AFMs. Suggestions have been
made that these properties are characteristic of Kitaev spin
liquids [10–13]. We show here that the experimental results
are consistent with a specific local order parameter, which
does, however, have topological properties.

II. MAGNETIC TORQUE

A torque τ is generated when a magnetic field B is applied
to an anisotropic magnetic crystal in a direction which is
not one of the principal axes for the magnetic susceptibility
χ [14]:

τ = M(B) × B, M(B) = −dF

dB
. (1)

F is the free energy and Mi is the magnetization in the ith
direction. In the linear regime where

Mi = χijBj , (2)

the torque in a magnetic material with orthorhombic or hexag-
onal symmetry normally follows the angle dependence

τn(θ ) = 1
2 (χp − χc ) sin(2θ )B2, (3)
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where θ is the direction of the magnetic field measured from
the a-b plane. χc and χp are the susceptibilities with field
in the c axis and in one of the symmetry axes orthogonal
to it, respectively. The above is true in a paramagnet or in
an ordered AFM compound, however complicated the order
may be, provided the AFM order preserves the principal axes
invoked above. For larger B, the dependence on the torque
only has even powers of B. We will briefly mention the angle
dependence of the torque near the region close to the transition
from the AFM to the paramagnetic phase due to a magnetic
field later.

The results for the torque measurements as a function
of angle for various applied fields are shown in Fig. 1 for
γ -Li2IrO3 and in Fig. 2 for RuCl3. The available data for
RuCl3 are not as extensive as for γ -Li2IrO3 [15]. The data for
γ -Li2IrO3 are shown separately in three different panels for
three different field regions described in the figure caption.
At sufficiently small fields, the results in both compounds
are dominated by the angle dependence of Eq. (3) [4]. At
larger fields B � B∗(θ, T ), the dominant term in the angle-
dependent torque has the anomalous angle dependence

τa (θ )

|B| = |N(B )| sin θ sign(cos θ ). (4)

τ (θ )/|B| jumps from its maximum positive value at θ ≈
(π/2)− to its maximum negative value at θ ≈ (π/2)+ [5]. τa

remains the same for B → −B. N(B ) reaches a maximum at
about 30 T at T = 4 K in γ -Li2IrO3 and then slowly decreases
with increasing field (Fig. 1). This slow decrease is consistent
with the exchange interaction energy scale J , determined by
the deviation from the Curie law at 200 K [4]. In fact, as
further discussed below, closer examination reveals that data
at lower fields are also consistent with a torque which is the
sum of the two terms with angular dependence of the forms (3)
and (4). This behavior continues at temperatures and magnetic
fields well beyond the AFM state [5].

In RuCl3, the discontinuity occurs as magnetic field crosses
the direction perpendicular to the honeycomb plane, suggest-
ing that N(B ) in Eq. (4) lies within the honeycomb plane. Fur-
thermore, the discontinuity appears consistent with a sixfold
modulation as the rotation plane of the magnetic field changes
with the azimuthal angle φ [17]. In γ -Li2IrO3, there are two
inequivalent honeycomb planes which share the c direction
and are oriented azimuthally at approximately ±35◦ from the
b axis. In this system, the discontinuity in torque also occurs
as magnetic field crosses the c axis, which reflects the discon-
tinuous behavior of the total N(B ) = N1(B ) + N2(B ), where
N1(B ) and N2(B ) refer to the two inequivalent honeycomb
planes.

More comprehensive results than shown in (2) for RuCl3

have been obtained recently in the magnetotropic coeffi-
cient [16,17], which measures the angular derivative of torque.
The discontinuity in torque manifests itself as a sharp peak in
the magnetotropic coefficient as the field is moved across the
c axis.

As noted above, the angular dependence in (4) preserves
the point-group symmetries of the crystal. It is the discontinu-
ity when the field is turned across θ = π/2 and 3π/2 which
is anomalous. The magnitude of the discontinuity depends on
B. One might think that N(B ) is an ordinary magnetization

FIG. 1. Magnetic field evolution of the angle-dependent torque
at low temperatures in γ -Li2IrO3. The dots in the three panels give
the angle dependence in three different field regions. In panel (a),
the low-field region in which the AFM order is preserved for any
angle of the applied field. Panel (b) shows the highest field region in
which the AFM order is absent for field at any angle. Panel (c) shows
the intermediate field region in which the AFM order is suppressed
above a field H ∗(θ ). The function H ∗(θ ) is shown in Fig. 2 of
Ref. [5]. The solid curves in all three panels are best fits to the data
with the functional form given in panel (b). The field dependence of
the coefficients A and A2 are given in Fig. 3. The discrepancies of
the fit in the intermediate field region are discussed in the text. The
data as function of magnetic field at fixed angles have been shown in
Refs. [4,5].

vector which at high fields lies purely in the hexagonal planes
and jumps as the angle of the field is changed across the
c axis. However, we have not found any spin-reorientation
free energy for a collinear or a noncollinear magnetic order
parameter characterized by a vector at zero or nonzero Q or
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FIG. 2. Magnetic field evolution of the angle-dependent torque
at low temperatures in RuCl3. The first panel (a) shows the field
dependence at various fixed angles and the second panel (b) shows
the angle dependence at various fixed fields. More comprehensive re-
sults in RuCl3, including for the discontinuity at near θ = π/2, have
been obtained recently, through measurements of the magnetotropic
coefficient [16,17]. and are consistent with the results shown here.

any two-dimensional magnetic tensor order parameter which
gives the observed jump.

What about the torque when there is a phase transition as a
function of B? There is an angle-dependent field B∗(θ ) in both
compounds at which there is a second-order transition from
the AFM phase to the paramagnetic phase. As B → B∗(θ )
(or fields where there is a transition from one AFM phase
to another) there must be a rapid variation in the torque as
a function of angle related to dB∗/dθ and so a departure
from the sin(2θ ) dependence of Eq. (3). But the functional
dependence of the variation with angle in this case is field
dependent unlike the dependence in Eq. (4), where only the
amplitude depends on the field but the angle dependence is
independent of it. Detailed calculations consistent with such
an idea have been carried out [18]. Their unimportance to
the anomalies on which we have focused here is seen in
comparing Fig. 1 for γ -Li2IrO3, which follows Eq. (4), with
Figs. 2(c) and 2(d) in Ref. [18]. Such an effect is irrelevant in
the very high field region shown in Figs. 1(c) and 1(a) which
are above and below B∗ for all θ in which very good fits are
obtained to Eq. (4). The small but noticeable discrepancies to
the fit to Eq. (4) in the intermediate region shown in Fig. 1(b)
of the same figure may be ascribed to such effects. The

available data in RuCl3 is at present not extensive enough to
quantitatively establish the relative magnitude of the effects.

Actually, an unambiguous signature of a new and inter-
esting effect in γ -Li2IrO3 is provided by the prediction and
observation of the B dependence of N(B ) at small B which is
discussed below. Similar low-field data are needed to ascertain
the issue in RuCl3.

III. A HYPOTHESIS AND ITS TEST

Consider the scalar operator formed of the solid angle
subtended by three spins,

� ≡ 1

2N

∑

(ii ′i ′′ ),�=1,2

Si� · (Si ′,� × Si ′′,�). (5)

� labels the two triangular sublattices of a hexagonal unit cell,
labeled by i; for a given �, (i, i ′, i ′′) label the three sites in
the sublattice in a unit cell in an ordered way, say, clockwise
with respect to the axis perpendicular to the hexagon. N is the
number of unit cells, and 2 is the number of sublattices. We
find that the simplest state which gives the observed properties
is a state with a finite thermodynamic average 〈�〉. We need
consider only the case that � = 1, 2 contribute equally to 〈�〉.
So, henceforth, we will drop the subscript � as well as the
factor 1/2, with the understanding that (i, i ′, i ′′) refer to sites
in the same sublattice in a unit cell. Equation (5) can be easily
generalized to more than one hexagonal plaquette per unit
cell. The order parameter 〈�〉 is a scalar which is odd under
both time reversal and all reflections—it is chiral. The product
of time reversal and chirality is preserved, as is translation by
lattice vectors. Further, it is stipulated that individual spins and
pairs fluctuate so that 〈Si〉 = 0 and 〈Si ′ × Si ′′ 〉 = 0, while the
thermodynamic average 〈�〉 maintains its fixed value. Such an
order cannot be discovered by polarized neutron scattering.
Other methods which may show consistency with such an
order are discussed below.

Long ago, Herring [19] derived that i Si · (Sj × Sk ) appears
in the permutation operator or the ring-exchange Hamiltonian
for three spins at sites (i, j, k) in a magnetic insulator. A vari-
ational ground-state wave function proposed by Kalmeyer and
Laughlin [20] (see also Ref. [21]) for spins in an insulator on
a triangular lattice, as an alternative possibility to AFM order,
has the symmetries of the order parameter �. Wen et al. [22]
discussed the order parameter � in the context of their de-
scription of anyonic excitations. Such an order parameter,
which is equivalent to spin currents within each unit cell in the
lattice, may be derived to be locally stable in a mean-field the-
ory from physically relevant interaction terms in the Hamilto-
nian analogously to the loop charge currents in Refs. [23,24].

A term proportional to the operator �2 is always allowed in
the Hamiltonian. Given that there is a Hamiltonian for which
the order parameter 〈�〉 �= 0, it follows, since Si · (Si′ × Si′′ )
is Hermitian, that a term proportional to 〈�〉� belongs in
the Hamiltonian. Since a magnetic field B has the same
symmetries as S, a lowest order in B term found in the
Hamiltonian [25] is

H ′ = γ B ·
∑

(i ′i ′′ )

〈Si ′ × Si ′′ 〉(B ). (6)

γ is a coefficient proportional to 〈�〉 and so formally in-
cludes in it the product of the eigenvalues of the parity- and
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time-reversal operators with the product remaining invariant.
(i ′, i ′′) are also ordered in a specific way following the defi-
nition after Eq. (5). The observed behavior in Eq. (4) can be
understood if

N(B ) = γ
∑

(i ′i ′′ )

〈Si ′ × Si ′′ 〉(B ). (7)

N(B ) is even under time reversal and odd under parity, and
N(0) = 0, as stated above. It may be called a quantum screw
vector because it is characterized by its helicity and magni-
tude. In considering the contribution of (6) to the ground-state
energy, we take N(B ) to lie in the hexagonal planes for all
B’s under consideration due to anisotropies in the microscopic
Hamiltonian. The dot product in Eq. (6) includes both the
geometric angle between B and N(B) as well as the product of
the helicity of these two vectors. Beside the angle dependence
between the vectors B and N, we must therefore also take
into account that the helicity of N is picked by the helicity
of the projection of B on N. Therefore, the change of the
ground-state energy on applying a field B has a contribution,

δEa (B ) = −γ |B||N(B )|| cos θ |f (φ). (8)

Obviously the direction of N(B) in the plane is set by the
direction of B projected to the plane. f (φ) is the dependence
on the azimuthal angle of the magnetic field. It should respect
the reflection symmetry of the planes passing through the
c axis. Details of the f (φ) depend on the quantization axis
for the spins, which are determined by the microscopic
Hamiltonian and are in general different for different sites.
We cannot say more about this without knowledge of the
microscopic Hamiltonian.

The sign of γ is picked to be positive to give the state with
the lower value of energy. The anomalous contribution to the
torque τa (B ) derived from the ground-state energy δEa (B ),
using Eq. (1), is

τa (B ) = d δEa (B )

dθ
. (9)

τa (B ) has precisely the form (4) with which experiments
have been fitted; it changes sign across cos(θ ) = 0 and its
magnitude is proportional to sin(θ ). It is invariant under
B → −B and also preserves all the point group symmetries
as in the experiments.

There can be no linear (or odd power) dependence of
|N|(B ) on B. A prediction which follows is that the leading
dependence of |N(B )| ∝ B2, i.e., τa proportional to |B|B2.
As discussed above, this follows from the symmetries of the
chiral spin order and the fact that it involves three spin opera-
tors, each of which is tuned by B. More specifically, given the
spin structure of N, τa (θ, φ) depends on the product of the two
orthogonal components of the field in the hexagonal planes
with direction determined by the appropriate quantization
axes and of the component perpendicular to the plane which is
a natural quantization axis. One may therefore also understand
the observed discontinuity in the torque as follows: When the
component of the field perpendicular to the plane and one of
the components in the plane is held fixed and the other com-
ponent in the plane changes sign, the torque must also change
sign. This obviously happens when θ is turned across π/2.

For φ in a symmetry direction, the predicted field depen-
dence of the anomalous torque at low fields has been tested
by a detailed analysis of the data for the iridate compound
which is given in Fig. 1(a) of Ref. [4]. This shows τ/|B|
continuously as a function of B at multiple field orientation
angles. More than a hundred field slices are taken from this
data and the angle dependence at these fixed fields is then fit
to the sum of the two terms (3) and (4), with denser field slices
at low field to ascertain the dependence on magnetic field. The
results are shown in Fig. 3. A2(B ) is the coefficient of the term
proportional to sin(2θ ), i.e., the normal term proportional to
the anisotropy of the magnetic susceptibility. A(B ) is the coef-
ficient of the term sin(θ )sgn(cos(θ )); i.e., it is proportional to
|N(B )|. The low-field results are shown in an expanded form
in Fig. 3(b) and show the predicted B2 dependence up to 3 T.
This is the maximum field where the low-field angle depen-
dence can be fit without crossing the angle-dependent AFM

FIG. 3. (a) The coefficients A and A2, determined by fitting the angle dependence of the τ/B in Fig. 1 and more such data at fixed
temperature to A sign(cos θ ) sin θ + A2 sin2 θ , as a function of magnetic field. (b) The low-field dependence of A and A2. A is multiplied by
10 for viewing on the A2 scale. A plotted against B2 (inset) displays the B3 dependence of the anomalous component of the torque at low
fields. The shaded region in the first figure shows the region in which AFM is found below B < B∗(θ ); the latter varies from 3 T for field in
the hexagonal planes to 18 T for field normal to them [4].
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phase boundary. The high-field behavior of A(B ) and A2(B )
can only be extracted above 18 T, outside of the shaded region
in Fig. 3(a). A magnetoresistive contribution inherent to the
torque detection method is removed by antisymmetrization of
the data. A zero-field offset due to the bridge circuit used in
the torque measurement is removed such that torque is zero
at zero field. However, whether these systematic effects are
removed or not, the qualitative behavior of the A’s remains the
same. We also note that in the low-field limit, A2 dominates
the total torque signal and we suggest direct measurements of
M (B ) to support that the leading-order correction goes as B2.

Just as AFM order does not give the observed jump of τ/B

as a function of angle of B, it does not give a τ/B ∝ B2 at low
fields at any angle. In fact, for an AFM order, the free energy
must contain only even powers of B; therefore, τ/B contains
only odd powers of B. Similarly, the deviations from sin(2θ )
discussed in Ref. [18] give τ/B with only odd powers of B.

Low-field torque data are not available for RuCl3. Behavior
similar to that in Fig. 3 in this compound would be unambigu-
ous proof of chiral order in that compound.

In the experiments, |N(B )| has a broad peak at an interme-
diate field and then decreases very slowly. The slow decrease
of this component at larger B indicates decay of the chiral
order parameter at an energy scale of the large bare magnetic
couplings in the compound indicated by the Weiss constant.

If |N(B )|/B2 �= 0, it follows that the order parameter
� �= 0 in zero applied field. It coexists with the AFM order
parameter M(Q) and continues at temperatures and fields
beyond where M(Q) = 0.

We have found that there is a steep rise in the coefficient A

near B = B∗(θ ) where the AFM order and the coefficient A2

begins to sharply decrease. This is consistent with an allowed
coupling of the form proportional to u|M(Q)|2|�|2, where u

is a repulsive coupling energy.

Relation to Kitaev states

The ground state of the Kitaev model preserves time-
reversal invariance unlike � �= 0. (See, however, Ref. [26]
for Kitaev model on a decorated honeycombe lattice.) An
external magnetic field has no effect on the ground state (or
the excitations) in the Kitaev model to order B or B2. For a
magnetic field coupling as

∑
α=x,y,z BαSα , a state with � is

generated to O(BxByBz/J
3), where J are the three couplings

in the model assumed equal [2]. In effect, at this order the
flux w(p) = �i⊂pSi around the hexagonal plaquettes p in
the Kitaev model, which has a finite expectation value in the
ground state in the absence of the field, breaks up into a sum of
the expectation values 〈�〉 of the two sublattices. In the Kitaev
model, an anomalous torque related to N(B) is also expected
with a discontinuity near θ = π/2, but such a torque would be
proportional to B6 at low fields as opposed to O(B3) observed
in the experiments discussed above.

IV. SOME PROPERTIES OF THE CHIRAL
SPIN-ORDERED STATE

Since 〈�〉 breaks time reversal, an internal magnetic field
is generated. It may be observed by Kerr effect and by muon
resonance. Similarly, breaking of chirality should be visible in
second harmonic generation and in optical polarimetry.

There have been several inelastic scattering experiments
(neutron scattering [9] and Raman [10]) that see a continuum
of excitations carrying angular momenta of ±1. Continua of
excitations are not to be expected in a spin-wave theory for
conventional ordered states, especially at long wavelengths.
In a state with a ground-state expectation value �, the sim-
plest excitations for a given total momentum q are expected
to form a continuum. This is because the simplest low-
energy excitation, formed from linear combinations of local
±1 excitations of Si , must be accompanied by excitations
of (Sj × Sk ) to correspond to the lowest local change in
�. As discussed below, one should also expect topological
excitations.

Given the expectation value 〈�〉, thermal Hall conductivity
κxy is to be expected because of chiral surface states accom-
panying such an order parameter. Kitaev predicts a quantized
value for this quantity in a (large) field due to field-induced
chiral spin-order when the bulk ground state has a gap [2]. In
RuCl3, there is indeed good evidence for a finite κxy [8]. Its
value is even quantized to the predicted value but only in an
intermediate field regime. The field dependence both at lower
and higher fields is complicated [27,28] and further theory and
experiments are required to understand it. Such measurements
in γ -Li2IrO3 are suggested, as are torque measurements in
other samples with spin liquids (Kitaev or not).

A state with 〈�〉 �= 0 is expected to have a quantized
spin-Hall effect. The topological nature of such a state was
verified by Haldane and Arovas [29] by explicit calculation
of a Chern number 2 (representing semion excitations) in a
model of a hexagonal lattice with a effective Hamiltonian
including the Hermitian operator Si · (Sj × Sk ) supplemented
with a Heisenberg Hamiltonian. The connection to a quantized
thermal Hall effect may follow, but this needs further investi-
gation.

It should be noted that while RuCl3 may be considered
two dimensional to a good approximation, γ -Li2IrO3 is three
dimensional. While the two kinds of hexagonal planes (men-
tioned earlier) do not share any ions, we see no symmetry
reason that there are zero interactions between the magnetic
ions in them.

Further theoretical work suggested is investigations of the
effective Hamiltonians relevant for these compounds for the
order parameter 〈�〉, conditions for it to have gapless or
gapped excitations, with and without an applied magnetic
field, and the Chern class. Detailed investigations of torque as
a function of temperature and other techniques in the samples
discussed above and those without the nuisance of an AFM
order parameter are also suggested. Although topological, the
chiral spin order has a conventional Z2 × Z2 symmetry. One
would then expect it to occur as a phase transition (at a high
temperature). Experiments to look for it should be done. A
free energy of the form of Eq. (8) has two branches which
cross at θ = π/2, 3π/2. We have discussed the consequences
for torque of always being in the lower energy equilibrium
branch. One should however, in general, expect a hysteresis
in the discontinuity of torque at the angles π/2, 3π/2. We
suggest time-dependent experiments to look for it. The chiral
order parameter may also be around in other candidate spin
liquids. It seem to us that torque measurements may be the
most direct way to reveal them.
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