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Nature of lattice distortions in the cubic double perovskite Ba,NaOsOyg
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We present detailed calculations of the electric field gradient (EFG) using a point charge approximation in
Ba,NaOsOg, a Mott insulator with strong spin-orbit interaction. Recent **Na nuclear magnetic resonance (NMR)
measurements found that the onset of local point symmetry breaking, likely caused by the formation of quadrupolar
order [Chen, Pereira, and Balents, Phys. Rev. B 82, 174440 (2010)], precedes the formation of long range
magnetic order in this compound [Lu et al., Nat. Commun. 8, 14407 (2017); Liu et al., Physica B 536, 863
(2018)]. An extension of the static ?Na NMR measurements as a function of the orientation of a 15 T applied
magnetic field at 8 K in the magnetically ordered phase is reported. Broken local cubic symmetry induces a
nonspherical electronic charge distribution around the Na site and thus finite EFG, affecting the NMR spectral
shape. We combine the spectral analysis as a function of the orientation of the magnetic field with calculations
of the EFG to determine the exact microscopic nature of the lattice distortions present in low temperature phases
of this material. We establish that orthorhombic distortions, constrained along the cubic axes of the perovskite
reference unit cell, of oxygen octahedra surrounding Na nuclei are present in the magnetic phase. Other common

types of distortions often observed in oxide structures are considered as well.
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I. INTRODUCTION

The investigation of the effects of spin orbit coupling (SOC)
is one of the central issues in the study of quantum materials
[1]. In addition to its key role in inducing topological phases,
the combined effects of SOC and strong electronic correlations
can lead to numerous emergent quantum phases [1-8]. A
theoretical description of these phases is challenging. Certain
approaches based on multipolar interactions have been pro-
posed [2,7-9]. The key prediction of the quantum models with
multipolar magnetic interactions is that a structural symmetry
is lowered in the magnetically ordered phase. In fact for specific
parameters, a quadrupolar/orbitally ordered phase precedes
the formation of long range magnetism [2,7,9]. To provide
tests of such theory one needs a probe that is concurrently
sensitive to both orbital and spin degrees of freedom. Nuclear
magnetic resonance (NMR) on nuclei with asymmetric charge
distributions provide such tests, as was shown in Refs. [10,11].
In fact, in our recent 2*Na NMR measurements of the Mott
insulator with strong spin-orbit interaction Ba;NaOsOg, we
reported that the onset of local point symmetry breaking, likely
caused by the formation of quadrupolar order, precedes the
formation of long range magnetic order [10,11]. Specifically,
we established that the magnetically ordered state is the exotic
canted two-sublattice ferromagnet with broken local cubic
symmetry. The broken local point symmetry (BLPS) phase
that precedes magnetism is induced by deformations of oxygen
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octahedra. We found that the BLPS extends over a wider
temperature range as magnetic field increases, thus occupying
a larger portion of the H-T phase diagram in high fields.

Here, we present an analysis of the angular evolution of
NMR data as an applied magnetic field is rotated in different
plains of the crystal. This analysis led us to conclude that
the symmetry lowering transition is to an orthorhombic point
symmetry. In crystals with cubic symmetry, the electric field
gradient (EFG) vanishes. The lowering of the symmetry
induces a finite EFG, which is a quantity directly observable in
a static NMR measurement on a nuclei with finite quadrupole
moment, such as 2*Na. Specifically, the parameter extracted
from the spectra of such NMR experiments is the quadrupole
resonance frequency, defined in terms of V,,, which is the
largest principal component of the EFG at the nuclear site,
and other intrinsic nuclear properties [12—14]. Since the EFG
tensor is a traceless rank-two tensor, its components can
be determined by analysis of the spectra obtained as the
orientation of the magnetic field is rotated with respect to the
crystalline axes [12,15].

We use EFG calculations based on a point charge approxi-
mation [12] to describe how various local lattice deformations
affect 2Na spectra in Ba;NaOsOg. A comparison of these
results with experimental findings allows us to determine
the microscopic nature of local cubic symmetry breaking. In
particular, we determine that the broken symmetry phase is
characterized by the distortions of oxygen octahedra involving
dominant displacement of oxygen ions along the cubic axes of
the perovskite reference unit cell. Our work represents further
demonstration of the power of NMR in exploring microscopic
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properties [15—17], which in this case consist of probing spatial
point symmetry breaking that spans well beyond its commonly
known sensitivity to local magnetism [18].

The remainder of the paper is organized as follows. In
Sec. I, we give a basic overview of the quadrupole interactions
and present the ways in which these quadrupole effects are
manifested in Ba,NaOsOg. We present the angle dependence
of the quadrupole splitting, i.e., frequency difference between
two adjacent quadrupole perturbed Zeeman energy levels,
as applied magnetic field is rotated in two different planes
of the crystal in Sec. III. In Sec. III A we present detailed
analysis of the angular dependence data used to determine the
exact symmetry of the EFG. The point charge approximation
approach for calculating EFG is introduced in Sec. IV. Results
of the point charge calculations for various distortion models
are presented in Sec. V.

II. MANIFESTATION OF QUADRUPOLE EFFECT IN
Ba;NaOsOg

The quadrupole effect refers to the interaction between the
nonspherical nuclear charge distribution and an electrostatic
field external to the nucleus. The nonspherical nuclear charge
distribution appears in nuclei with spin / > 1/2 and is rep-
resented by the nuclear quadrupole moment Q operator, a
second-rank tensor defined by the integral over the nuclear
charge distribution [12]. This operator can be more conve-
niently expressed in terms of the nuclear spin operators /. In
this case, its magnitude is proportional to what is convention-
ally referred to as the nuclear quadrupole moment e Q. The
relevant electrostatic field, assuming a Laplacian potential,
is represented by the EFG generated at the nuclear site by
surrounding electronic charges [12,13]. Therefore, the strength
of the quadrupolar interaction is dictated by the product of
the nuclear quadrupole moment and the magnitude of the
EFG. The nuclear quadrupole moment is nonzero for nuclei
with spin I > 1/2, while the EFG is nonvanishing for point
charges arranged on a lattice with symmetry lower than cubic.
Thus, quadrupolar interactions generate finite effects only if
I > 1/2 and the electronic charge distribution is asymmetric
(noncubic).

In Fig. 1 we show a schematic of the energy levels for
nuclei with spin 7 = 3/2, such as **Na that we investigated.
Energy levels are displayed in both zero and a finite magnetic
field H and in the presence of quadrupole interaction with
the EFG. The resulting NMR spectra are also shown. As it
was the case in our experiments, in a finite field we represent
the quadrupolar interaction as a perturbation to the dominant
Zeeman term. In zero applied field and in the presence of a
finite EFG, a single line at a frequency proportional to the
product of the nuclear quadrupole moment and the magnitude
of the EFG can be observed in a nuclear quadrupole resonance
(NQR) experiment. In a finite applied field and in the absence of
quadrupolar interaction (i.e., EFG = 0), the spectrum consists
of a single narrow line at the resonant frequency wy, which
is proportional to the magnitude of the applied field. In the
presence of quadrupolar interaction (i.e., EFG # 0) the central
transition remains at frequency wy. The satellite transitions
appear at frequencies shifted by 4§,, which are proportional
to the magnitude of the EFG (Appendix A). Thus, quadrupole
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FIG. 1. Schematic of the energy levels for a / = 3/2 nucleus in
both zero and a finite magnetic field H, in the presence of quadrupole
interaction with the EFG generated by surrounding electronic charges,
and the resulting NMR spectra. In principle, zero applied field and a
finite EFG result in a single line at frequency w, that can be observed
in a nuclear quadrupole resonance (NQR) experiment. The frequency
g is proportional to the product of nuclear quadrupole moment and
the magnitude of the EFG. In a finite applied field and in the absence of
quadrupole interaction, the spectrum consists of a single narrow line at
frequency wy. In the presence of a quadrupole interaction that acts as
a perturbation to dominant Zeeman Hamiltonian in the depicted case,
the central transition remains at frequency wy. The satellite transitions
appear at frequencies shifted by +§,, which are proportional to the
magnitude of the EFG [Eq. (2)]. For small values of the EFG, satellite
transition cannot be resolved and only line broadening is observed.
Strictly speaking, there is also a broadening due to the distribution
of magnitude of the EFG itself, but this is manifested only on the
satellites and not on the central transition.

interaction splits otherwise single NMR line to 2/ = 3 lines.
Satellite transition cannot be resolved and only line broadening
is observed for small values of the EFG.

These schematic qualitatives describe our >*Na NMR ob-
servations in Ba;NaOsQOg. The main effects of the quadrupole
interaction observed in this compound are illustrated in Fig. 2.
The high temperature, 20 K, paramagnetic state spectra consist
of a single narrow NMR line. Since the nuclear spin for >*Na
equals to 3/2, the absence of the three distinct quadrupolar
satellite lines indicates that the EFG is zero as a consequence
of a cubic environment. Lowering the temperature broadens the
NMR line (e.g., at 10.5 K) and eventually splits it into multiple
peaks (e.g., at 4.2 K). This splitting indicating the start of sig-
nificant changes in the local symmetry, thereby producing an
EFG, i.e., asymmetric (noncubic) charge distribution. There-
fore, the observed line broadening and subsequent splitting of
the Na spectra into triplets in the magnetically ordered phase
indicates breaking of the cubic point symmetry caused by local
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FIG. 2. Temperature evolution of **Na in Ba,NaOsOg spectra at
15 T with magnetic field applied parallel to the [001] crystallographic
axis. At 20 K, a narrow single peak spectrum characterizes the
high temperature paramagnetic (PM) state. In this state, the crystal
structure of Ba,NaOsOg is undistorted, as depicted. That is, point
symmetry at the Na site is cubic and leads to a vanishing EFG. At
intermediate temperatures, broader and more complex spectra reveal
the appearance of finite EFG induced by the breaking of local cubic
symmetry. In this case, the crystal structure of Ba;NaOsOg is distorted
so that point symmetry at the Na site is noncubic, inducing a finite
EFG. At lower temperature, the splitting into two sets of triplet lines
(labeled as I and II) reflects the existence of two distinct magnetic sites
in the lattice. Zero of frequency is defined as wy = 23y H. Splitting
between quadrupolar satellites is denoted by §,. Abbreviation: PM,
paramagnetic; BLPS, broken local point symmetry; cFM, canted
ferromagnetic.

distortions of electronic charge distribution, as established in
Refs. [10,11]. The data was taken in the same experimental
conditions as described in detail in Ref. [11]. At4.2 K, the *Na
spectra clearly split into six peaks. These peaks correspond to
two sets of triplet lines, labeled as I and II in Fig. 2, that are
well separated in frequency. As previously established, these
two sets of triplets appear due to magnetic interactions [10]
that are irrelevant to our discussion of quadrupole effects. The
splitting labeled §, in Fig. 2 implies that a finite EFG has
been induced by changes in local charge distribution. In this
paper we will consider various modifications of local lattice
symmetry that can induce a finite EFG and account for our
experimental observations [10,11]. However, we first give a
more quantitative overview of the quadrupole interaction.

For anisotropic charge distributions, the quadrupole Hamil-
tonian expressed in the coordinate system define by the
principal axes of the EFG is given by

eQV,,
Holx,y) = ———|(3
o) = o pll
where eQ is the quantity conventionally referred to as
the nuclear quadrupole moment, n = (Vy, — V,,)/V,; is the
asymmetry parameter, and Vyy, Vyy, and V,, are diagonal

o) 42 -2)]

Z

components of the EFG. Here, V,, = eq is defined as the
principle component of the EFG and | Vx| < [Vyy| < | V|, by
convention [18]. The EFG is a symmetric and traceless 3 x 3
tensor that corresponds to the rate of change of the electric field
atan atomic nucleus [19]. The principal axis of the EFG defines
the coordinate system Oxyz, which is not necessarily aligned
with that defined by the crystalline axes Oy,. Evidently, V.
is parallel to one of the crystal axes if the principal axes of the
EFG and those of the crystal are aligned.

We define the observable §, to represent the quadrupole
splitting between different quadrupole satellites. As derived
in Appendix A, §4 corresponds to the frequency difference
between adjacent quadrupole satellite transitions. In the most
general case the quadrupole splitting &, is given by

1/2
(eQ)(Vz) 772
bg=—— 1+ — . 2
d 2h "3 @
Thus, the value of §q is dictated by both the magnitude of
the principal component of the EFG (V,,) and the anisotropy
parameter 7. In the high field limit, when H, is a perturbation
to the dominant Zeeman term, the angular dependence of the

splitting is given by
Vq 2 2
8q = 5 (3cos™0 — 1 4 sin”0 cos 29), 3)

where 6 is the angle between the applied field H and V_,,
¢ is the standard azimuthal angle of a spherical coordinate
system defined by Oxyz, and vg = % Therefore, to test
whether an observed splitting in the NMR spectra originates
from quadrupole effects, one has to measure the spectra as a
function of strength and orientation of the applied magnetic
field. Clearly, for a fix orientation of the applied field the
splitting should be independent of its magnitude. As a matter
of fact, we establish that §, varies by <2%, which is of
the order of the error bars, as H increases from 7 T to 29
T [11]. Insensitivity of §, to the strength of the magnetic
field implies that the splitting originates from quadrupole
effects. Namely, the finite EFG is induced by changes in charge
density distribution and/or lattice distortions and not by trivial
magnetostriction effect on a crystal. However, to decipher the
detailed structure of the EFG tensor, one has to investigate how
d, evolves as the orientation of the applied field is varied with
respect to crystalline axes. As we will describe in detail in the
next section, this type of rotational studies allows us to discern
the exact nature of the distortions.

III. ANGULAR DEPENDENCE OF QUADRUPOLE EFFECT

We performed detailed measurements of 8, at 15 T and
8 K as a function of the angle (9) between H and the [001]
crystalline axis in two different planes of the crystal [(110)
and (010)]. The measured angle dependence of the splitting
is plotted in Fig. 3. We observe that the splitting between any
two adjacent peaks of the triplets I and/or Il is equal, within the
error bars. Therefore, we plot the mean peak-to-peak splitting
between any two adjacent peaks of the triplets I and II. We
observed that the splitting is the largest for H ||[001]. Moreover,
for rotations in the (010) plane, i.e., along one face of the
cubic unit cell, we find that §, reaches its maximum value for
H ||[100] as well [20]. Furthermore as described in Ref. [10],
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FIG. 3. The mean peak-to-peak splitting (§,) between any two
adjacent peaks of the triplets I and II as a function of the angle
between [001] crystal axis and the applied magnetic field (H). The
red circles denote angular dependence of splitting for H rotated in
the (110) plane. The red solid line is the fit to |(3cos?8 — 1)/2],
where 6 denotes the angle between the principal axis of the EFG
(Vzz) and the applied magnetic field. The blue squares denote the
angular dependence of splitting when the sample is rotated in the (010)
plane. The blue dotted line is the fit to [(3sin?@ — 1 — 5 cos? 0)/2]
[Eq. (14)], where 6 denotes the angle between the (Vzz) and H, and
1 is the asymmetric parameter as explained in the text.

we observe no more than three lines per set (I or IT) regardless of
the angle 6. This indicates that the magnetic field was rotated in
the coordinate system defined by the principal axes of the EFG.
In other words, the principal axes of the EFG must coincide
with those of the crystal in a low temperature noncubic phase
of Ba;NaOsOg. This observation together with finding equal
8, on triplets I and II, i.e., two magnetically inequivalent Na
sites, implies that in the simplest scenario the finite EFG arises
from distortions of the 0%~ octahedra surrounding Na™ ions
with the oxygen constrained to move along the cubic axes of
the perovskite reference unit cell, as illustrated in Fig. 2.

In a material with global cubic symmetry such as
Ba;NaOsOg, it is thus possible to stabilize three different
domains, each with the principle axis of the EFG, V., pointing
along any of the three equivalent crystal axes. The fact that the
splitting is the largest for H |[[001], and that only three peaks
per set are observed for H ||[110], implies that two domains are
plausible in the crystal. One domain is characterized by pure
uniaxial 3z2 — r2 distortions where V,, is in the [001] direction,
while the other is distinguished by x> — y? distortions where
V., is in the (110) plane. In the simplest case V,, is parallel
to the [001] direction with n = 0, indicating tetragonal local
symmetry. In the second case, V,, is aligned along the [100]
direction with 5 of order 1, implying orthorhombic local sym-
metry. To determine the exact local symmetry, i.e., distinguish
between tetragonal and orthorhombic distortions, we need to
consider the details of the angular dependence of the splittings
dq obtained for rotations of the applied field in the (010)
plane. The fact that §, reaches its maximum value for both

H||[001] and H||[100], for the field rotated in the the (010)
plane, reveals orthorhombic local symmetry. Next, we discuss
in detail the claim that our observations imply orthorhombic
local symmetry.

Tetragonal symmetry vs orthorhombic symmetry

To qualitatively analyze §, as the magnetic field is rotated,
we start by transforming the Hamiltonian in Eq. (1) into the
coordinate system Oyy,, defined by H having the O, axis
parallel to the applied field. Assuming that the local symmetry
is tetragonal, that is Vy, = V,, and n =0, and that V,; is
parallel to the crystalline ¢ axis, we may without loss of
generality choose the axis, O, parallel to the applied magnetic
field H in plane XOZ, so that

I; =1I,cos0 + I, siné, “)

where 0 is the angle between H and V.. Then, the quadrupole
Hamiltonian in Oy, becomes

Ho = thvo{iBcos’0 — D(3IZ — I(I + 1))
+ 2sin6 cos O[L.(I4 + 1) + (14 + I)1.]
+ 2sin” 017 + 12)}, (5)

3¢90

where .I)Q = IR ) ) )
Taking the quadrupole Hamiltonian as a perturbation to the
dominant Zeeman term, the energy eigenstates of H o are given

by
En = $5hvg 3Bm* — I(I + DI(3cos®0 — 1) (6)

The quadrupole splitting §, between adjacent quadrupole
satellites then equals to

En =Bt _ 1) Geos?o - 1 7
- = EVQ( cos ) @)
Equation 7 describes the angular dependence of quadrupole
splitting in the case of tetragonal symmetry (n = 0) and V,,
parallel to the ¢ axis. We observe such angular dependence
when H is rotated from the [001] to [110] direction, i.e., in the
(111) plane, as shown in Fig. 3.

If 1 is not confined to be zero, one deduces a more general
form of the energy eigenstates of H ¢ [18],

E, = 5hv[3m* — I(I + 1)]

8, =

x [(3 cos’ 6 — H+n sin® 0 cos 2¢1, ®)
leading to
5 — E,— En_1
1 h
= 1vo(3cos’ 6 — 1 + nsin® 6 cos 2¢), 9)

where angles 6 and ¢ are as defined in Fig. 4. For the applied
field rotated in the (110) plane, as was the case in one of our
measurements, cos2¢ = 0, as illustrated in Fig. 4(a). Then,
fitting our data for angular dependence of §, as H is rotated in
the (110) plane to Eq. (9), for V. ||c, we obtain that either n = 0
for tetragonal symmetry or 1 # O for orthorhombic symmetry.

Up to this point, we have assumed that V,, is parallel to the
¢ axis. We point out that the splitting §,, as derived in all of the
above equations, depends on polar angles 6 and ¢ that are given
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FIG. 4. Schematic of rotation of the applied field in the (110)
plane. The red arrow denotes the applied field direction. V7 is parallel
to ¢, a and b axis in (a), (b), and (c), respectively.

in the coordinate system defined by the principal axes of the
EFG. When V., is parallel to the c axis, the coordinate system
defined by the principal axes of the EFG coincides with that
defined by crystalline axes. However, if V_, is parallel to the a
or b axis as depicted in Figs. 4(b) and 4(c), 6 and ¢ need to be
transformed into crystalline coordinates. This transformation
is necessary for a meaningful comparison with the data as only
the orientation of H with respect to crystalline axes is know in
an experiment. We denote angles 6’ and ¢’ [which are 6 and
¢ in Eq. (9)] as angles defined in the EFG coordinate system.
These angles are related to the angles 6 and ¢ in the crystalline
coordinate system according to the following transformations,

cos@’ = siné cos ¢
sin 6’ cos ¢’ = sin O sin ¢

sinf’ sin ¢’ = cos @, (10)
for V,.||la and

cos6’ = sinf cos ¢
sin 6’ cos ¢’ = cos O

sin @’ sin¢’ = sin 4 sin ¢, 11

for V. ||b axis. When the applied magnetic field is rotated in the
(110) plane ¢ = 45°, as shown in Fig. 4(b), Eq. (9) becomes

5—11) Esinze—l— Ecos29—l (12)
¢ = 3% 3 2 2))

Evidently, fitting the angular dependence of §, for H rotated
in the (110) plane to Eq. (12) produces the same quality fitting
curve as a fit to Eq. (9) but with n ~ 0.87. The nonzero value
of n indicates that the symmetry is lower than tetragonal.
Moreover, as V_, is parallel to either the a or b axis, symmetry
must be orthorhombic.

Thus far, both the tetragonal symmetry [with either V_,
parallel to the c axis or the b axis] and orthorhombic symmetry
(with V,, parallel to the a or ¢ axis) EFG could account for the
observed angular dependence of §, when H is rotated in the
(110) plane. Clearly, in orthorhombic structure, C4 rotation
symmetry is broken and the oxygen octahedra are distorted so
that a # b # c. To determine undeniably whether distortions
(i.e., EFG) are tetragonal or orthorhombic, we performed
another measurement of the angular dependence of the splitting
in which the applied field was rotated in the (010) plane. To
understand these results, plotted in Fig. 3, we consider different
orientations of V_, as shown in Fig. 5.

allv,,

FIG. 5. Schematic of rotation of the applied field in the (010)
plane. The red arrow denotes the applied field direction. V7 is parallel
to the ¢, a, and b axis in (a), (b), and (c), respectively.

First, assuming that V,, is parallel to the ¢ axis, ' = 6 and
¢’ = 0, so that Eq. (9) becomes

8, = Svo(3cos® 0 — 1 + nsin® 9). (13)

If on the other hand V; is parallel to the a axis, we obtain 6’ =
90° — 0 and ¢’ = 90°. The angular dependence of splitting is
given by

84 = 3vo(3sin*6 — 1 — ncos®H). (14)

Finally, if V,, is parallel to the b axis, we have 8’ = 90° and
¢’ = 0. The splitting becomes

8, = 2vo(ncos20 — 1). (15)

The observed angular dependence of §, for H rotated in the
(010) plane can only be fit to Eq. (14). In this case, the fitting
yields n =~ 0.87.

To sum up, the observed angular dependence of the splitting
confirms that such splitting is due to quadrupole effect. Since
no more than three lines per set (I or IT) are observed regardless
of the angle 6, the principal axes of the EFG must coincide with
those of the crystal. Furthermore, we found that distortions with
both tetragonal [with V,, parallel to the ¢ axis or the b axis]
and orthorhombic symmetry (with V,, parallel to either the a
or ¢ axis) could account for angular dependence of the splitting
for H rotated in the (110) plane. However, only orthorhombic
distortions (with V_, parallel to the a axis) could explain the
angular dependence of the splitting 8, for H rotated in the
(010) plane. Therefore, by combining the results of the angular
dependence of 8, for H rotated in two different planes, we
conclude that the distortion is orthorhombic with n = 0.87
and V. |la. Because the well defined splitting is observed
solely in the low temperature magnetically ordered phase,
we can undeniably deduce that orthorhombic distortions are
present in that low temperature phase. In high temperature
BLPS, i.e., paramagnetic, phase we do not detect well defined
splitting but rather convoluted broadening. Therefore, since the
exact dependence of §, on the field orientation is unknown,
dominant tetragonal distortions along the [001] direction can
in principle account for the line broadening in the PM phase.
Furthermore as described in Ref. [10], in the BLPS phase the
width of the NMR spectra allows us to place an upper limit
on these distortions. We established that any deformations that
exceed 0.02% of the respective lattice constant would cause
visible broadening/splitting of the NMR spectra in the PM
state. In fact, x-ray scattering measurements provide evidence
of tetragonal distortions at higher temperature paramagnetic
phase [21]. These distortions, though extremely small, become
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significant below 100 K. However, they do not exceed the limit
of resolution of 0.02% of the respective lattice constant in our
experiment and thus cause no detectable broadening/splitting
of the NMR spectra.

As we described, in a material with global cubic symmetry,
it is possible to stabilize three different domains, each with
the principle axis of the EFG, V., pointing along any of the
three equivalent crystal axes. Therefore, for either a cubic to
orthorhombic, or a tetragonal to orthorhombic phase transition,
formation of distinct domains, with their principle axes rotated
by 90 degrees, is expected. The analysis of the angular
dependence of the spectral lineshapes in the low temperature
magnetic phase did not provide any evidence for the formation
of different domains. Thus, this must imply the presence of
some weak symmetry-breaking field that favors one domain
over the others. A possible source of such a symmetry breaking
field is provided by the strain from the way the sample was
mounted on the flat platform, which was always parallel to the
specific face of the crystal. We emphasize that the distortions
described here are of local nature, involving oxygen octahedra
that surround Na sites. In principle, it is possible to preserve
global cubic symmetry, even in the presence of such local
distortions, in a double-perovskite structure.

IV. POINT CHARGE APPROXIMATION

We employed the point charge model to calculate V;, and
n resulting from different distortion scenarios. This is done to
find the full set of possible distortions that can account for our
observations, i.e., maximum splitting equals §, ~ 190 kHz, for
H ||c for all satellite transitions, n & 0.87, and Vzz||a. In this
model, the electron density at the Na site is calculated by taking
into account all the surrounding charges, which are treated as
the point charges of zero radius that carry the appropriate ionic
charge. The surrounding charges are accounted for by a lattice
summation method that is easily employed for systems with
a large number of atoms and/or single crystals. We note that
the point-charge approximation of ions neglects any covalent
nature of the bonding in a material and is therefore strictly valid
in strongly ionic compounds, which is the case in Ba,NaOsOg.
In fact, the double-perovskite structure of Ba;NaOsOg is
an example of a heptavalent osmium compound with Os*’.
The Fermi level lies within the t2g bands, confirming the
heptavalent nature of the Os ion [24]. Nevertheless, formal
valence of +7 for Os does not represent a real charge on the
Os ion, due to strong mixing of Os and O molecular orbitals
[22]. For computational simplicity we have adopted a point
charge model in which the Os carries a charge of 47, though
this is clearly an approximation given the mixed Os and O
character of the molecular orbitals. Therefore, for the purpose
of our calculation, we assigned the following charges to each
of the ions: Os’t, Ba?t, Na't, and O%~.

The EFG tensor components V;;, i,j = x,y,z, at a certain
nuclear site resulting from an ion of charge ¢ are given by [25]

i) (i) — s ¢rey?

3
vy = Yy O
n k

(kru)S ’
where ) denotes the sum over multiple unit cells, and
is the sum over all atoms within a single unit cell, and r is the

(16)

® Os
@0
@ Na
@Ba

FIG. 6. Crystal structure of Ba,NaOsOg deduced from x-ray
diffraction at room temperature [22,23]. Solid lines show the unit
cell. Oxygen, osmium, and sodium ions form face centered cubic
structure, while barium ions arrange a simple cubic structure. This
undistorted double-perovskite structure has Fm3m space group.

distance from the specific nuclear site, the point of interest,
to the ion being considered. This expression is summed over
all ions in the structure that contributes to the EFG tensor
at the point of interest. Since the EFG is a two-dimensional
tensor with nine elements, each element V;; represents a
second derivative with i,j C X,Y,Z. The EFG tensor is then
diagonalized to obtain the principal components Vi, V,,, and
V.., where, by convention, | Vi| < |Vyy| < |Vy|. The principal
components are then used to calculate the observables, the
asymmetry parameter 1 = (V,, — V,,)/V,; and the splitting
84 = 3:(€Q)(V..), where eQ is the nuclear quadrupole mo-
ment. We point out that our approach cannot reproduce the
EFG tensor quantitatively with high fidelity. However, it can
reliably identify symmetry breaking distortions.

We can then calculate the EFG tensor at any nuclear site by
numerically summing over the lattice for any known crystal
structure. The crystal structure of Ba;NaOsOg is shown in
Fig. 6. At room temperature this material has an undistorted
double-perovskite structure, in which OsOg octahedra are
neither distorted nor rotated with respect to each other or the
underlying lattice. Specifically, considering the periodic nature
of crystal structure, one determines the lattice in a standard
way by translation of the three primary vectors, as described
in detail in Appendix B. Since EFG elements are proportional
to 1/r3, we found that an iteration over 64 unit cells suffices
to make numerical results converge. That is, summing beyond
64 unit cells does not induce variations in the mean value of
any observable that exceed 1%. More precisely, we compared
the results of summations ranging over up to 8000 unit cells.
In each unit cell, there are 89 ions and the position of each ion
can be accessed by Eq. (B3).

The first step of the numerical calculation is to set up the
distortion model. We emphasize that we cannot distinguish
between displacements of the actual ions and distortions of
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the ion charge density in our measurements. Moreover, the
point-charge method does not permit modeling distortions of
the ion charge density. Therefore, we choose to model the
development of the final EFG by local distortions only. The
local distortion of oxygen ions in an NaOg octahedron is
reflected by altering the basis indices. For example, in order to
test the effect of 2%’s elongation along the c axis of the oxygen
ion above the Na site at origin, its original position (0,0,0.25a)
should be modified to (0,0,0.25(1 + 2%)a), where a is the
lattice constant. After laying out the distortion model of a single
unit cell, we iterate over all unit cells by changing primary
vectors. In each unit cell, we first access the position and charge
of each ion and then calculate all the EFG elements. Finally,
after the iterations, we calculate the asymmetry parameter n =
(Vix = Vyy)/ V; and maximum 8, = ﬁ(e 0)(V,,) (for H||c),
as derived in Eq. (A4). Moreover, even though the calculation
can yield V,, parallel to either the a or b crystal axes for
orthorhombic distortions, our measurements presented here do
not allow us to discern between these two orientations of V.
Therefore, we use symmetry arguments to compare results of
calculations to our measurements.

V. RESULTS AND DISCUSSIONS OF POINT CHARGE
CALCULATIONS

Next, we describe results of our calculations of the EFG
induced by various types of distortions using the point charge
approximation. We first consider distortions where the oxygen
ions, forming the O?~ octahedra surrounding Na™ ions, are
constrained to move along the cubic axes of the perovskite
reference unit cell.

A. Distortion along the principal axis—one structurally
distinct Na site

This model involves distortions of the O’ octahedra
surrounding Na™ ions as illustrated in Fig. 7(a). We assume
that the modifications are identical for all the octahedra and
that three pairs of O ions independently move along each
crystalline axis. That is, each pair of O ions can either elongate
or compress symmetrically about the central Na site by an
arbitrary amount along the Na-O bond direction. We note that
we are not making any prior assumptions about the structural
symmetry. The schematic of this model is shown in Fig. 7(a).
In the actual simulation we define the distortion in percentage
relative to the Na-O distance, 2.274 10\, of the undistorted bond.
We also define the elongation deformation as negative and the
compression deformation as positive.

@ Os
®0
@ Na

FIG. 7. Schematic of the proposed lattice distortions. (a) One
structurally distinct Na site in a noncubic environment is produced by
elongation/compression of O>~ octahedra. (Model A) (b) Two struc-
turally distinct Na sites are generated by elongation, or compression,
of one O?~ octahedron along the [001] direction and its concurrent
compression, or elongation, in the (a,b) plane. (Model B)

The simulation is ran to produce combinations of distortions
along all three axes of the original cubic axes of the perovskite
reference unit cell which can reproduce our observations. Thus,
our parameter space consists of three numbers, §,, 5, and 5.,
corresponding to distortions along crystalline a, b, and c axes,
respectively. We find that numerous combinations result in the
desired/observed values of §, and 1, some of which are listed
in Table I. v,,, vpp, and v, are the EFG components along the
a, b, and c axis of the lattice coordinate, and V,, = ﬁ %vzz
(here a is the lattice constant) is the largest absolute value of
the three by definition.

As evident in Table I, orthorhombic distortions with
n ~ 0.87 can induce the desired value of §, for different values
of relative displacement along any of the three crystalline axes.
In addition to the appropriate value of §,, the calculations have
to identify a set of relative displacements that generate the
EFG with its principal component along the a axis to account
for the data. The set of displacements that account for our
experimental observations are presented in bold font in Table I.
We find that distortion along any particular direction that does
not exceed 0.8% of the respective lattice constant reproduces
the EFG parameters, in agreement with our observations.

B. Distortion along principal axis—two structurally
distinct Na sites

In this second model, two structurally different Na sites are
generated by elongation, or compression, of one O>~ octahe-
dron along the [001] direction and its concurrent compression,
or elongation, in the (110) plane, as illustrated in Fig. 7(b).

TABLE 1. Sample results of point charge calculations with one structurally Na site. Program loops through §,, 8;, and 8. values within the
range of (—5%, 5%) and returns combinations of parameters that can yield » in the vicinity of 0.87 and §, ~ 190 kHz. The parameters that

reproduce our experimental findings are in bold fonts. (Model A)

Ba Sh 8(: n Upp Vee 811 (kHZ) VZZ

0.1% 0.55% 0.25% 0.87 —2.39 38.89 —-36.49 189.8 b(y)
0.55% 0.1% 0.2% 0.87 38.89 —-2.395 —36.49 189.8 a(x)
—0.25% —0.65% —0.1% 0.87 2.394 —38.89 36.49 189.8 c(2)
—0.65% —0.25% —0.1% 0.87 -38.89 2.394 36.49 189.8 a(x)
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TABLE II. Sample results of point charge calculations with two
structurally distinct Na sites. (Model B)

Sa ‘Sb 80 N Vaa Upb Vee (Sq(kI_IZ) sz

—0.185% —0.185% 0.185% 0 27.9 27.9 —55.9 190.03 c(2)
0.185% 0.185% —0.185% 0 —27.9 —27.9 55.9 190.03 c(z)

This model also naturally accounts for the appearance of two
magnetically different Na sites. These two sites appear from
the two distinct frequency shifts for triplet I and II, even if the
magnetically ordered state is a simple ferromagnet where all
spins on Os’™ ions are assumed to point in the same direction.
The transfer hyperfine field from Os electronic spins to the
Na nuclei is mediated by O>~ ions via its p-d hybridization
with a well localized 5d orbital of Os’*. Evidently, the shorter
the distance between O?>~ and Os’* ions, the stronger the
hybridization and thus transfer hyperfine field at the Na site.
Thus, the internal field at the Na site in the lower plane [in
Fig. 7(b)] consists of a sum of two stronger and four weaker
fields, while the field at Na in the upper plane consists of a sum
of four stronger and two weaker fields. Consequently, NMR
signal from the lower plane Na will appear at smaller absolute
frequency shift (as is the case for triplet I), while that from the
upper plane will appear at the larger absolute frequency shift
(triplet II) (Table II).

The findings of our point charge simulations indicate that in
order to generate equal 8, for both Na sites, as we established in
our experiments, the relative magnitude of the elongation has
to be equal to that of the compression, i.e., distortions must
satisfy the relation |§,| = |8,| = |8.|. It is very unlikely that
such distortions will occur, as electrostatic energies associated
with elongation and compression of the octahedra by the same
relative amount are very different. However, as it results from
our calculations, such distortions are of tetragonal symmetry
and can only induce n = 0, in contrast to our observations. For
the reasons listed, this model cannot account for our data.

C. Rotational distortion in the (a,b) plane

Here we consider model C, consisting of rotations of
oxygen ions in the (110) plane. In this model for each Na,
four of its surrounding O?~ ions in the (a,b) plane undergo
a counterclockwise rotation, as viewed from the top and
depicted in Fig. 8. We found that our calculations could not
generate the splitting 8, of 190 kHz, as shown in Table III.
More importantly, only tetragonal distortions with n = 0 are
generated, which is inconsistent with our data as well.

TABLE III. Sample results of point charge calculations of rota-
tional distortion in the (a,b) plane. (Model C)

d) 50 n Vaa Upp Vee 6q (kHZ) sz
5° 0% O —0.6675 —0.6675 1.335 4899 ¢
25 0% 0 —12.09 —12.09 24.19 88.764 ¢
45° 0% 0 —20.65 —20.65 41.3 151.57 c
65° 0% 0 —12.09 —12.09 24.19 88.764 ¢
8 0% O —0.6675 —0.6675 1.335 4899 ¢

AC

@ Os
®0
@ Na

FIG. 8. Schematic of the rotational lattice distortion generating
single Na site. One structurally distinct Na site in noncubic environ-
ment is produced by in-plane rotation of O?~ octahedra, as depicted
by shorter green arrows. (Model C)

Next, we add distortions that involve the other two O3~
(Fig. 9). Simple arguments indicate that this type of pro-
posed distortion possesses tetragonal symmetry, i.e., n = 0.
In Table IV we display distortions that generate the observed
splitting in point charge simulations. Calculations indicate that
this model only generates tetragonal distortions with n = 0
and V. ||c, both inconsistent with our experimental findings.
Therefore, both models with dominant rotational distortions in
the (a,b) plane fail to account for our data.

AC

@ Os
®0
@ Na

FIG. 9. Schematic of the rotational lattice distortion combined
with elongation, or compression, of two oxygen ions along the [001]
direction. One structurally distinct Na site in noncubic environment is
produced by this lattice modification, consisting of in-plane rotation
(green arrows) and distortion along the c axis (orange arrows) of 0>~
octahedra. (Model C,)
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TABLE IV. Sample results of point charge calculations of ro-
tational distortion in the (a,b) plane with c-axis elongation or
compression. Positive values in the §. column represent compression
while negative ones represent elongation. (Model C,)

8 ¢ N Vaa Vpb Vee 8,(kHz) V;
1% 20° 0 26.18 26.18 —52.35 192.13 c
0.9% 15 0 25.8 25.8 —51.59 189.34 c
—02% 40° 0 —26.35 —26.35 52.69 193.38 ¢
—-025% 35° 0 —26.09 —26.09 52.18 191.51 c
—0.35% 30° 0 -—-264 —-26.4 52.81 193.8 c
—045% 25° 0 —=26.06 —26.06 52.12 19129 ¢
—-085% 5° 0 —26.29 —26.29 52.59 193 c

D. Tilt distortion in the (a,c) plane

In the following model, we consider tilt distortions in the
(a,c) plane depicted in Fig. 10. Two O~ ions of the octahedra
position along the ¢ axis are tilted by an angle 0 away from
the ¢ axis in the (a,c) plane. The rest of the crystal remains
unchanged. Since this tilt does not involve the entire octahedra,
it does not represent Glazer-type distortion, as explained in
Appendix C. To generate the observed splitting, the tilt angle
6 is found to be ~10°. However, the resulting asymmetry
parameter is ~0.69, as shown in Table V. This value of 7 is
insufficient to account for the experimental data.

E. Rotational distortion in the (a,b) plane and tilt distortion in
the (a,c) plane

In this model, we consider tilt distortions in the (a,c) plane
accompanied by a rotational distortion in the (a,b) plane, as
described in Model C. Specifically, the lattice modification
consists of a rotational distortion in the (a,b) plane and a
tilt in the (a,c) plane, as shown in Fig. 11. Four 0% ions

@ Os
®0
@ Na

FIG. 10. Schematic of the tilt-lattice distortion. One structurally
distinct Na site in noncubic environment is produced by tilt of the
(a,c) plane. (Model D)

TABLE V. Sample results of point charge calculations of tilt
distortion in the (a,c) plane. (Model D)

0 n Vaa Ubb Vee Sq (kHZ) VZZ
10° 0.6877 —4146 6473 34.99 184.67 a
10.1° 0.6888 —41.97 6.529 35.44 187.03 a
10.2° 0.6899 —42.48 6.586 359 189.41 a
10.3° 0.691 —43 6.644  36.36 191.82 a
10.4° 0.692 —43.52 6.702 36.82 194.25 a
10.5° 0.6931 —44.05 6.76 37.29 196.7 a

of octahedra positioned in the same plain as Na, i.e., in the
(a,b) plane, are rotated by an angle ¢ (counterclockwise from
the a axis). The two remaining O%>~ ions, located along the ¢
axis, are tilted by an angle 6 relative to the ¢ axis. A subset
of angles 6 and ¢ that generate parameters, in point charge
approximation, in agreement with experimental observations
are listed in Table VI. We find that for & = 8.5° 4+ 0.4° and
¢ = 12° % 1° calculations results are in good agreement with
our data. Therefore, this is the only model in addition to Model
A that well accounts for our observations.

F. Common lattice distortions in perovskite oxides

Perovskite oxides are well known to be prone to lattice
distortions [26,27]. However the tolerance factor, an indicator
for the stability of crystal structures, of Ba;NaOsOyg is 0.99,
which falls in to the very stable category for cubic structure
[22].

Nevertheless, in this section we consider common lattice
instabilities often present in perovskite transition metal oxides,
with tolerance factors less than 0.98. In general, these lattice

FIG. 11. Schematic of the combined rotational and tilt lattice
distortions. One structurally distinct Na site in noncubic environment
is induced by concurrent (a,b) plane rotation and (a,c) plane tilt.
(Model E)
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TABLE VI. Sample results of point charge calculations of ro-
tational distortions in the (a,b) plane and tilt in the (a,c) plane.
(Model E)

0 d) n Vaa Upb VUce Sq (kHZ) V:Z
6.8° 20° 0.8194 -—-36.26 -3.6 39.86 189.11 c
7.1° 19° 0.859 —36.63 —2.779 3941 190.68 c
7.3° 18° 0.8962 —36.69 —2.008 38.69 190.69 c
7.5 17° 09342 —-36.78 —1.251 38.03  190.98 c
7.6° 16° 09701 -—36.51 —0.5546 37.07 189.52 c
7.8°  15° 0.991 —36.67 0.165 36.51 189.47 a
8.2° 14° 0.9493 —-37.7 0.9555 36.75 190.79 a
8.5° 13° 09126 -3841 1.677  36.73  190.83 a
8.7° 12° 0.88 —38.74 2324 3641 18938 a
9° 11° 0.8489 —39.58 2.99 36.59 190.52 a
9.2° 10° 0.8214 —40.02 3573 3645 190.09 a

distortions involve changes in symmetry and global detectable
changes of lattice parameters. A typical distortion mechanism
involves a tilting of essentially rigid oxygen polyhedra, as is
the case in GdFeOs. In Ba;NaOsOg this type of modification
would tilt the entire rigid oxygen octahedra surrounding the
Na ion. In this case, rigid implies that the octahedra preserve
their shape, i.e., no independent motion of individual oxygen
atoms occurs. However, the orientation of the entire octahedra
changes as it tilts away from the [001] direction. The tilt is char-
acterized by two angles: 6, referred to as the polar angle away
from the ¢ axis, and ¢, the azimuthal angle defined relative to
the a axis, asillustrated in Fig. 12(a). The tilted crystal structure
is depicted in Fig. 13 and corresponds to ata™ ¢ distortion
in Glazer’s notation, i.e., the Pmmn space group, as explained
in Appendix C. The important thing about the GdFeOs-type

FIG. 12. Schematic of the proposed GdFeOj;-type distortion.
(a) The red solid line denotes distorted Na-O bond, which in its
undistorted state points along the ¢ axis. The NaOg octahedra is
tilted by angle 6 and ¢ in spherical coordinates. (b) Schematic of
the specific tilt of NaOg. The blue spheres/atoms represent O?~ ions
in the undistorted state while the green ones represent distorted ones.
We note that ¢ is the angle in the (a,b) plane but the four oxygen
ions, originally in the (a,b) plane, are no longer in that plane after
the distortion. This corresponds to a*a*ct distortion in Glazer’s
notation. (Model F)

FIG. 13. Tilting of essentially rigid oxygen octahedra. The
schematic of the tilting of NaOg octahedra with 6 = 10° and ¢ = 45°,
where 6 and ¢ are standard angles defining spherical coordinates.
(Model F,)

distortion is that only the orientation of the octahedra changes,
whereas their intraionic structure remains intact. Moreover,
typical values of the bend in the bond involving oxygen in
GdFeOj are roughly between 145—-170°. Point charge calcula-
tions are carried for both rigid and nonrigid octahedra cases.
As it results from our calculations, the maximum quadrupole
splitting induced by the distortions involving rigid octahedra
does not exceed ~150 kHz. A subset of the results is displayed
in Table VII. Besides insufficient magnitude of the splitting, in
all cases we obtain V.| c, inconsistent with observations.
Next, we consider the flexible octahedra, where the in-
traoxygen bonds within an octahedra can either elongate or
compress, like in models A and B. To illustrate this, we take
the second entry of Table I. This entry corresponds to 0.55%
elongation along the a axis, 0.1% elongation along the b axis,
and 0.25% compression along the ¢ axis, which generates
calculated results in agreement with observations. We then
combine such elongation/compression and the rigid tilt. In
Model A, the displacement of Na-O bond occurs along the a, b,
or ¢ axis. As the octahedra tilt, the displacements are still along

TABLE VII. Sample results of point charge calculations of
GdFeOg-type distortion with rigid Og octahedra. (Model F)

0 ¢ n Vaa Ubb Vee 811 (kHZ) sz
0°  10° 0 —2.465 —2465 493 18.091 ¢
0°  30° 0 —1546 —1546 3092 113.46 c
0°  46° 0 —-20.63 —20.63 41.25 151.39 c
0°  60° 0 —1546 —1546 3092 11346 c
2 10° 0.0721 —-2.577 =223 4807 17.687 ¢
2 30° 0.0067 —-1549 —1529 30.78 112.96 c
2° 46° 0.0004 -20.54 2056 41.1 150.85 c
6° 46° 0.0031 -—-1996 —-20.08 40.03 146.92 c
10° 46° 0.0086 —18.85 —19.17 38.02 139.55 c
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TABLE VIII. Sample results of point charge calculations of
GdFeOq-type distortion with flexible NaOg octahedra (Model F +
Model A). The underlying distortions along the a, b, and c axis are
0.55%, 0.1% and 0.25%. The calculated 7 and §, are symmetric with
respect to ¢ = 45° because the a axis and b axis are symmetric around
¢ = 45°. (Model F,)

0 ¢ n Vaa Upb Uee 6q (kHZ) V:Z
0° 0> 08768 38.89 —2.395 -36.49 189.81 a
0° 2° 08719 3871 -—-2479 -36.24 188.51 a
0° 10° 0.7814 35.17 —-3.844 3132 163.8 a
0° 44° 0.2214 —-2.675 —4.196 6.87 25.825 ¢
0° 46° 0.2214 —-4.196 —-2.675 6.87 25825 ¢
2> 0° 0.8694 39.13 -2.555 -36.58 190.31 a
2° 2° 0.8646 3896 —2.638 —36.32 189 a
2° 44° 02274 -2.612 —4.149 6.761 25445 ¢
2° 46° 02274 —4.149 -2.612 6.761 25445 ¢
4°  2° 0.8452 3958 -3.063 -—36.52 190.2 a
4°  44°  0.2447 2442 —4.025 6.468 24436 ¢
4°  46° 0.2447 —4.025 —2.442 6.468 24436 ¢

the Na-O bonds but no longer along the principal axes of the
crystal. As in the case of rigid octahedra, 6 and ¢ are the polar
and azimuthal angles in spherical coordinates as depicted in
Fig. 12(a). A subset of point charge calculation results is shown
in Table VIII. Minimum splitting occurs when ¢ = 45 for fixed
0. As illustrated in Table VIII, to generate results compatible
with our observations, we find that the displacements of oxygen
ions must be comparable to those that reproduce the data in
Model A and the angles do not exceed 4°. Such a small tilt
angle induces a displacement of oxygen ions that is much
smaller than the dominant displacement along the cubic axes
of the perovskite reference unit cell. For angles larger than
4°, both 8, and n significantly decrease below the observed
value. Larger angle displacements along the cubic axes are
required to obtain desired é, and n values in agreement with the
data. This indicates that the dominant displacement of oxygen
ions along the cubic axes of the perovskite reference unit cell
reproduce our observations, as was the case described in Model
A. Essentially, this model maps to Model A. In addition, the
tilt angle has to remain relatively small to assure that these
distortions induce and EFG with the principal axes aligned with
those of the crystal, as imposed by the experiment. Therefore,
GdFeOs;-type tilt distortions are inconsistent with our data.

VI. CONCLUSION

We reviewed details of the quadrupole interactions in
Ba;NaOsOg in the low temperature phase characterized by
local cubic symmetry breaking. We presented measurements
of the splitting §,, frequency difference between the adjacent
quadrupole perturbed Zeeman energy levels, at 15 T and 8§ K
as a function of the direction of the applied magnetic field.
The field was rotated away from the [001] crystalline axis
in two different planes of the crystal. From the analysis of
the rotation data in two different planes, we established that
only the orthorhombic distortions are responsible for the local
cubic symmetry breaking in the low temperature magnetically
ordered phase. These distortions induce an EFG with principal

axes aligned with those of the crystal, a principal component
V..|la, and an anisotropy parameter of n =~ 0.87.

To find the full set of possible distortions that can induce
such EFG, we employed the point charge model to calculate
V.. and n resulting from different scenarios. This is the
simplest model valid for strongly ionic compounds, such as
Ba;NaOsOg. However, it allowed us to quickly scan through
a huge parameter space of possible lattice modifications. We
found that our experimental observations can be accounted
for by distortions of oxygen octahedra surrounding Na ions
dominated by the displacement of oxygen ions along the cubic
axes of the perovskite reference unit cell, as described in Model
A. In addition to distortions in Model A, we find that Model
E consisting of combined affects of tilt distortions in the (a,c)
plane with rotational distortions in the (a,b) plane, for angles
not exceeding 12°, is consistent with our data. Both models
are characterized by the dominant displacement of oxygen
ions along the cubic axes of the perovskite reference unit
cell.

Since we cannot distinguish between displacements of
the actual ions and distortions of the ion charge density,
the point charge approach does not allow us to determine
the nature of the orbital order possibly responsible for the
local cubic symmetry breaking in Ba;NaOsOg described in
Ref. [2]. First principle calculations [28,29] of the EFG,
with the input from our current work, are required to learn
more about the nature of the putative orbital order in this
compound.

As indicated in Ref. [10], the presence of a two-sublattice
canted ferromagnetic state can imply that the broken cubic
symmetry phase is a staggered quadrupolarly ordered phase
with distinct orbital polarization on two sublattices. Experi-
mentally, the distinct orbital polarization on two sublattices,
and thus the exact nature of the orbital order, can directly be
identified by performing !0 NMR. The challenge in such an
experiment is the weakness of naturally abundant !’0O NMR
signal, but this can be overcome by performing "0 isotope
exchange.
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APPENDIX A: QUADRUPOLE INTERACTION

1. Axially Symmetric Case

In the simplest case of a field with axial symmetry, the
interaction between the EFG (eq) and the nucleus with spin
I and quadrupole moment e Q, is described by the quadrupole
Hamiltonian,

g = €D

—_— 2 —
= 0l — 1) [312 — 11 + D).

(AD)
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By definition the EFG is a 3 x 3 tensor that corresponds to the
rate of change of the electric field at an atomic nucleus [19]. The
matrix is symmetric and traceless. The principal components
are denoted by V., V,,, V., and |V ;| > |V,,| = |V,,|. By
convention, the principal component of the EFG is defined as
V.. = eq. The principal axes of the EFG define the coordinate
system Oxyz, which is not necessarily aligned with that
defined by the crystallographic axes O.,.. Evidently, V., is
parallel to one of the crystal axes if the principal axes of the
EFG and those of the crystal are aligned.

For anuclear spin / = 3/2, as is the case of 2Na, the energy
eigenstates of Hq are given by

_ (eQ)(eq)
T 4I2I-1)

Then, the frequencies between different quadrupole satellite
transitions equal

[3m? — I(I + D). (A2)

m

@m—m-t = % [3@m — D] = @ x Q
Q= % for [+3/2) — |+1/2)
0, for [+1/2) — |-1/2)
—5» for 1=1/2) —>1-3/2). (A3)

Therefore, in a magnetic field applied along the principal
axis of the EFG only three NMR lines (transitions) will be
observed with equal splitting &, between adjacent transitions.
In this case, the quadrupole splitting §, between different
quadrupole satellites is simply given by

84

1
E(e O)(Vzo)

1
= Z(Quadrupole moment) x (EFG). (A4)

Consequently, we can estimate the value of the EFG by
using the experimentally determined value of the splitting 6, ~
190 kHz for H ||[001].

2hé,

e

2%x4.136 x 107 eV -5 x 190 x 10%s~!
0.12 x e x 10728 m?

1.31 x 10 V/m?.

EFG =

(A5)

Next, this value can be used to roughly estimate the magnitude
of particular lattice distortions in our material. In the oxygen
octahedra surrounding the Na nuclei the EFG takes on the
following form [30],

EFG
il 0 0
_ 4 L4z 1 0
T 4rme a b
0 kg

(A6)

Clearly, with cubic symmetry such as in Ba;NaOsOg,
the paramagnetic state is characterized by a = b = c. The

EFG is then zero, which leads to a vanishing splitting
8.
! The observed 4 is largest for a field applied in the [001]
direction, as shown in Fig. 2 of the main text. In this case
the simplest model, accounting for the splitting of the Na line
into three equally spaced quadrupole satellite lines, involves
distortions of the O octahedra surrounding Na nuclei solely
along the [001] direction. In this case, ¢ = 2e,a = b # ¢, and
we obtain

L1 0 0
zq a C 1 1
EFG = 0 - — = 0 (A7)
4rey a ¢ | |
0 0 —2(5 — )

Therefore, the principal axis of the EFG (V,, = eq) is given

by
Vo4 8e 1 1 (AS)
“ 47'[6() 613 C3
1 1 4
) =+ 131 x 100 V/m?
a> 3 8e
= +0.01137 x 10 m~3. (A9)

In Ba;NaOsOg with a = 2.274 A, distortions along the ¢
crystalline axis of the order of 4% can account for the observed
d,, that is

1 1
5= +0.01137

c=2.181A (—4.1%), for compression

¢ =2.385A (4.9%), for elongation. (A10)

2. Anisotropic Charge Distribution Case

For anisotropic charge distributions, the quadrupole Hamil-
tonian expressed in the coordinate system defined by the
principal axes of the EFG is given by

eQsz A A N R
Tar—plBE =)+l = )] @1

where n = (V,, — V,,)/V,; is the asymmetry parameter and
Vx> Vyy, and V;; are diagonal components of the EFG. In this
case, the splitting between the adjacent transitions is given by

_ (eO)(V) "
SQ_T(IJF?) |

Thus, the value of 4 is dictated by both V;, and anisotropy
parameter 7. In the high field limit, when H, is a perturbation
to the dominant Zeeman term, the angular dependence of the
splitting is given by

Hox,y) =

(A12)

Yq 2 .2
8q = ?(3 cos“ 0 — 1 4+ nsin” 0 cos 2¢), (A13)
where 6 is the angle between the applied field H and V,, ¢
is the standard azimuthal angle of spherical coordinate system
deﬁn;d by Oxyz, E}nd vg = 2h31"’('2q£1) = (e%lv“ . Asin the case
of axially symmetric EFG, in the coordinate system defined by
the principal axes of the EFG, denoted by (Oxyz), only three
NMR lines (transitions) will be observed with equal splitting

dq between any adjacent lines.
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APPENDIX B: LATTICE SUM

Considering the periodic nature of crystal structure, one
determines the lattice in a standard way by the translation of
the three primary vectors. We define the target Na site to be
the origin of a three-dimensional coordinate system. Any other
point in the lattice is denoted by

r'=r+ pa; + pmar + psas, (BD)

where a; are the primary vectors of the lattice and w; the
primary indices of these vectors. Then each atom within a unit
cell can numerically be located from

r; = x;a; + yiax + z;as, (B2)

where x;, y;, and z; are fractions between 0 and 1 that represent
the position of the ith atom corresponding to the basis origin.
Combining Eq. (B1) and Eq. (B2), the position of any particular
ion is then given by

ri = (u +x)a; + (2 + ydaz + (13 + z;)as. (B3)

APPENDIX C: GLAZER’S NOTATION

Perovskite oxides are well known to be prone to lattice
distortions [26,27]. In fact, most materials with perovskite
structures are not in their ideal cubic form ABO3, described by
the Pm3m space group and represented as a network of corner-
sharing BOg octahedra with ‘A’ atoms located in the geometric
center of the gap between oxygen octahedra. However, their

distorted structure can be defined as distortions from the ideal
cubic configuration. The types of distortions established in per-
ovskites can be reduced to three types: B-cation displacements
within an octahedra, distortions of the BOg octahedral unit
(Models: A, B, C, D, and E), and the rigid tilting of the corner-
sharing BOg linked-octahedra units (Model F). This last type
of distortion was classified and derived from crystallographic
assumptions by Glazer in Ref. [31]. That is, Glazer type
distortions are described in terms of tilt components along the
three different pseudocubic (PC) axes, referred to the original
undistorted cubic perovskite. Such pseudocubic axes coincide
with the tetrad axes of the octahedra. Given the octahedra
corner connections, a tilt about a pseudocubic axis determines
the tilts in the directions perpendicular to this axis. However,
the tilt of the successive octahedra along the same axis can
be either in the same direction or in the opposite direction. To
sum up, there are several possibilities for tilts in a perovskite
network of corner-sharing octahedra: The main axis of the tilt
can be parallel to each crystallographic axis; the amplitude of
each tilt may be different from the others, and two subsequent
layers being stacked along the tilt axis may be tilted either in
phase or antiphase. The different possibilities of tilt distortions
can be labeled by the notation a*b*c*, where a, b, c refer to tilts
around the [100]pc, [010]pc, and [001]pc axes, respectively. If
letters are repeated, the tilts are equal for their respective axis.
The superscript * can be either O for no tilt along an axis, +
for tilt of successive octahedra in the same sense, or — for tilt
of successive octahedra in the opposite sense [31,32].
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