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We identify states favored by Coulomb interactions projected onto the Wannier basis of the four narrow
bands of the “magic angle” twisted bilayer graphene. At the filling of 2 electrons/holes per moiré unit cell,
such interactions favor an insulating SUð4Þ ferromagnet. The kinetic terms select the ground state in which
the two valleys with opposite spins are equally mixed, with a vanishing magnetic moment per particle. We
also find extended excited states, the gap to which decreases in the magnetic field. An insulating stripe
ferromagnetic phase is favored at 1 electron/hole per unit cell.
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In addition to superconductivity, recent experiments on
magic angle twisted bilayer graphene revealed insulating
phases at carrier concentrations corresponding to partial
occupation of the four narrow bands composite near the
neutrality point [1–3]. Such correlated insulator phases seem
to occur only when the bandwidth of the composite is
reduced either by fine-tuning of the twist angle to thevicinity
of the “magic” value∼1.1° or by tuning the applied pressure
at ∼1.3° [1–3]. Importantly, the insulating states occur at
commensurate (rational) fillings corresponding to 2 elec-
trons/holes per moiré unit cell, with additional resistance
peaks observed at fillings of 1 hole/electron per unit cell and
3 holes/electrons per unit cell [1–3]. This observation is hard
to reconcilewith the notion that the insulation is due to Fermi
surface nesting, or the van Hove singularities, reconstructed
by electron-electron interactions, because such band struc-
ture features generically occur at incommensurate fillings.
Instead, the above observations suggest that the effective
Coulomb interaction dominates the effective kinetic energy
[1,3]. The former is given by the projection of the Coulomb
interaction onto the Hilbert space spanned by the narrow
bands and is ∼e2=ϵlm ∼ 25 meV, where the moiré period
lm ∼ 13 nm. The effective dielectric constant of the encap-
sulating boron nitride is estimated as ϵ ¼ ffiffiffiffiffiffiffiffiffi

ϵ⊥ϵk
p ≈ 4.4,

where ϵk ¼ 6.6 and ϵ⊥ ¼ 3.0 [4]. The kinetic energy scale
is given by the bandwidth. Although there is no direct
measurement of the bandwidth, theoretical calculations
routinely find it to be ≲10 meV [1,5–10]. Finally, the
superlattice band gap, which separates the narrow bands
from the rest of the bands, is extracted from transport
activation gaps to be ∼30–40 meV [1,3].
Such considerations hint that, even if the physical system

is ultimately in an intermediate coupling regime, a strong
coupling approach may be more successful in capturing
the nature of the correlated phases. In this approach, the
interaction-only Hamiltonian is minimized first, and the

kinetic energy term is then treated as a perturbation
[8,11–20].
Here we present the analysis and the solution to the

strong coupling limit by projecting the Coulomb interaction
onto the microscopically constructed exponentially loca-
lizedWannier states (WSs) for the four narrow bands [7]. In
doing so we find that there is a qualitative difference
between the effect of the interactions in twisted bilayer
graphene narrow bands and the much studied narrow band
whose width is small due to the exponentially vanishing
overlap of the well separated localized orbitals, i.e., a solid
in an atomic limit. In contrast, the small bandwidth in
twisted bilayer graphene is a result of fine tuning (twist
angle or pressure) and subtle interference of the WSs, and,
unlike in the atomic limit, it is not necessarily a result of
large spatial separation of the exponentially localized WSs.
Indeed, as shown before, each WS of the twisted bilayer
graphene narrow bands has three main peaks on neighbor-
ing sites of the triangular moiré superlattice [6–8].
Therefore, for nearest neighbor WSs, on say sites i and
j, two peaks overlap significantly (see Fig. 1). Even though
the integral under both has to vanish by orthogonality, the
integral under each separately does not. This leads to a
dramatically new form of the interaction Hamiltonian
projected onto the narrow band basis—containing terms
beyond the “cluster Hubbard” term [8,12]—which in turn
leads to different strong coupling phases as in the atomic
limit. Specifically, the usual antiferromagnetic superex-
change mechanism fails and turns ferromagnetic. Due to
approximate spin-valley SUð4Þ symmetry, the fully spin-
valley polarized ferromagnet is found to be degenerate with
a spin-valley entangled state whose average total magnetic
moment per particle vanishes. We also find exact excited
states, which are spatially extended, and whose gap is
suppressed by Zeeman coupling to an external magnetic
field, making it (or at least its order parameter) a candidate
for the experimentally observed correlated insulator at 2
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electrons/holes per moiré unit cell. At 1 particle per moiré
unit cell, we find that the projected interactions favor an
insulating stripe SUð4Þ ferromagnet. This state may be a
candidate for the insulator observed at the 1=8 filling [3] if
the SUð4Þ degeneracy is lifted in favor of the physical spin
ferromagnet.
We start by writing the full Hamiltonian as

H ¼ K þ U; ð1Þ

where the kinetic energy K is described by the tight-
binding model [7] based on the WSs and where the
Coulomb interaction is

U ¼ 1

2

X
r;r0

X
σ;σ0¼↑;↓

c†σðrÞcσðrÞVðr − r0Þc†σ0 ðr0Þcσ0 ðr0Þ: ð2Þ

Projecting onto the four narrow bands is equivalent to
expanding cσðrÞ solely in terms of the narrow bands WSs

cσðrÞ ¼
1

3

X
R

X6
p¼1

X
j¼�1

wRþδp;jðrÞdj;σðRþ δpÞ; ð3Þ

where integers m, n define the triangular moiré lattice
vectors R ¼ mL1 þ nL2, the eigenvalue of the AA site
centered threefold rotation expðj2πi=3Þ is labeled by
j ¼ �1, and δ1;…;6 are basis vectors connecting the
honeycomb sites to the triangular sites (see Fig. 1). To
an excellent approximation, WSs with j ¼ �1 correspond
to different valleys with very little valley mixing [7]. The

factor of 1=3 is due to each honeycomb site position
Rþ δp being counted three times.
The Coulomb interaction VðrÞ is screened due to the

presence of the metallic gates [1–3]. The separation
between the gates sets the length scale beyond which
the image charges exponentially diminish the repulsion
[21]. Interestingly, the gate separation is comparable to the
moiré unit cell. This, as well as the form of wRþδp;jðrÞ,
justifies keeping only R ¼ R0 in the sum below:

U ¼ 1

2

X
R;R0

X
r;r0∈⎔

X
σ;σ0¼↑;↓

nσðRþ rÞVðRþ r −R0 − r0Þnσ0 ðR0 þ r0Þ ð4Þ

≈
1

2

X
R

X
r;r0∈⎔

X
σ;σ0¼↑;↓

nσðRþ rÞVðr − r0Þnσ0 ðR0 þ r0Þ; ð5Þ

where nσðrÞ ¼ c†σðrÞcσðrÞ and the sums over r, r0 are restricted to be within the moiré hexagon centered at the origin (see
shaded ⎔ in Fig. 1).
Substituting Eq. (3) into the above form, with numerically calculated wRþδp;jðrÞ from the microscopic model [7], we find

that to an excellent approximation we can replace Vðr − r0Þ by its average over a region of size set by the extent of wδp;jðrÞ
within the moiré hexagon V0, and because VðrÞ is dominated by the small wave vectors, we can ignore the valley mixing
terms [6]. Thus,

U ≈
V0

2

X
R

�X
j¼�1

X
σ¼↑;↓

Oj;σðRÞ
�

2

; ð6Þ

where Oj;σðRÞ ¼ P
r∈⎔ nj;σðRþ rÞ and

nj;σðRþ rÞ ¼ 1

9

X
R̄;R̄0

X6
p;p0¼1

w�̄
R−Rþδp;j

ðrÞwR̄0−Rþδp0 ;j
ðrÞd†j;σðR̄þ δpÞdj;σðR̄0 þ δp0 Þ ð7Þ

≈
X6

p;p0¼1

w�
δp;j

ðrÞwδp0 ;jðrÞd†j;σðRþ δpÞdj;σðRþ δp0 Þ: ð8Þ

FIG. 1. The centers of the hexagons correspond to the triangular
moiré lattice spanned by primitive vectors L1;2. The Wannier
state (WS) wave function centered on the moiré honeycomb site j
has three peaks at the neighboring triangular moiré sites (grey
circles with vertical stripes). The WS on the neighboring site i
overlaps with it on the two hexagons (red horizontal stripes). An
example of a four fermion interaction term, which is beyond the
extended Hubbard model, appearing in the strong coupling
Hamiltonian Eqs. (6), (9)–(11), is also shown schematically.
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It is clear that Oj;σðRÞ is a superposition of not only
densitylike operators d†j;σðRþ δpÞdj;σðRþ δp0 Þ with
p ¼ p0, but also hoppinglike terms with p ≠ p0, which
may be of the same order of magnitude. For example,P

r∈⎔ w
�
δp;j

ðrÞwδpþ1;jðrÞ is non-negligible. This is despite

the WSs being orthogonal when r is summed over all
space; with r restricted to only one hexagon, the sum is
Oð1Þ. For fixed R, the orthogonality in turn forces terms
such as those with p ¼ 1 and p0 ¼ 2 to be negative of the
terms with p ¼ 5 and p0 ¼ 4, etc. In what follows, we
assume for clarity that the three peaks of each WS reside
entirely within the three neighboring hexagons with no
support elsewhere. We relax this assumption in the
Supplemental Material without any change to our con-
clusions [22]. To summarize,

Oj;σðRÞ ¼
1

3
Qj;σðRÞ þ α1Tj;σðRÞ; where ð9Þ

Qj;σðRÞ ¼
X6
p¼1

d†j;σðRþ δpÞdj;σðRþ δpÞ; ð10Þ

Tj;σðRÞ ¼
X6
p¼1

ðeiηp;jd†j;σðRþ δpþ1Þdj;σðRþ δpÞ þ H:c:Þ;

ð11Þ

where eiηp;j ¼ ð−Þp−1eið−Þp−1θj , δ7 ¼ δ1, and

α1eiθj ¼
X
r∈⎔

w�
Rþδ2;j;σ

ðrÞwRþδ1;j;σðrÞ: ð12Þ

α1eiθj is generally a complex number and θþ1 ¼ −θ−1. This
phase factor can be absorbed by applying a global Uð1Þ
transformation on WSs. In the rest of the Letter, we will
therefore assume θþ1 ¼ −θ−1 ¼ 0. For our WSs con-
structed from the projection method [22], α1 ≈ 0.23.
Although not all the above interaction terms have been
included in the model of Ref. [6], and although the
Coulomb interaction is not assumed screened in Ref. [6],
similar value for α1 can be estimated from their ratio of the
nearest-neighbor exchange and nearest neighbor density

repulsion as αðKÞ1 ≈ 1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J1=V1

p
≈ 0.16 (see Table I of

Ref. [6]; see also Ref. [25]). The nature of the ground
state in the strong coupling limit is insensitive to such
differences.
We emphasize that it is not necessary to include the

kinetic energy terms K in Eq. (1) to induce correlation
among various sites; such sizable value of α1 makes the
projected interaction term [Eq. (6)] nonlocal even in the
strong coupling limit, and as we will see that it dictates the
nature of the ground state. It is therefore worth under-
standing why α1 is sizable. In the atomic limit, this overlap
is exponentially small. As a consequence, the interactions

usually include only the on site terms, giving rise to the
Hubbard model; α1 would then be set by the ratio of the
bandwidth and the on site repulsion. In our case, as
mentioned, the two of the three peaks of the neighboring
WSs spatially overlap and α1 ∼Oð1Þ. This stems from the
fact that the emergent twofold symmetry C00

2 (see Fig. 1) is
not locally implemented for our valley filtered WSs [26].
Otherwise, when combined with (locally implemented)
C0
2 (see Fig. 1) and the emergent valley Uð1Þ symmetry, all

the WSs would have to have the same parity under C00
2 [26],

leading to α1 ¼ 0. However, C00
2 cannot be locally imple-

mented simultaneously with the valley Uð1Þ, C0
2, and the

time reversal symmetry [8,26]. α1 ∼Oð1Þ is thus rooted in
the nontrivial topological properties of the narrow bands
[8,26–30].
As the first step, we therefore need to find the spectrum

of the interactionU in Eq. (6). This is nontrivial because the
commutator ½Oσ;jðRÞ; Oσ;jðR0Þ� does not vanish for nearest
neighbors R and R0 due to α1 ≠ 0. However, the ground
state of Eq. (6) can be exactly solved for special fillings,
including 2 particles/holes per unit cell. To see this, note
that

P
R

P
j

P
σ Oj;σðRÞ ¼ N̂, where N̂ is the total particle

number operator. Therefore, we can write Eq. (6) exactly as

V0

2

X
R

�
n0−

X
j;σ
Oj;σðRÞ

�
2

þV0n0N̂−
V0

2
n20NR ð13Þ

where NR is the total number of moiré unit cells. Because
N̂ is fixed in the quantum number sector of interest, the last
two terms are fixed. The ground state thus minimizes the
first term. But the first term is a sum of squares of
Hermitian operators, and if we can find a state in which
each term vanishes, we find the ground state. Let n0 ¼ 2.
Then the state

jΦ0i ¼
Y
R

d†j¼1;↑ðRþ δ1Þd†j¼1;↑ðRþ δ2Þj0i ð14Þ

makes the first term vanish for every R, and is therefore a
ground state. This state actually corresponds to a fully spin-
valley polarized ferromagnet with two electrons per moiré
unit cell.
This result can be recovered in the basis of

Bloch states. Starting with the most general Coulomb
interaction V̂ ¼ 1

2

P
q VðqÞρqρ−q with VðqÞ > 0 and

ρq ¼
P

σ¼↑;↓

P
r e

−iq·rnσðrÞ, we project it to the Bloch
basis of the four narrow bands. Assuming no valley mixing,
the state

jΦ0
0i ¼

Y
k

f†j¼1;μ¼1;↑ðkÞf†j¼1;μ¼2;↑ðkÞj0i; ð15Þ

is the eigenstate of V̂ with the eigenvalue of E ¼
1
2

P
G VðGÞjNj¼1;Gj2 where

P
G sums over all the
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reciprocal lattice vectors of the moiré lattice. Here f†j;μ;σ is
the creation operator for the Bloch state in the narrow bands
with the valley j, band μ, and spin σ. The Fourier transform
of the charge density of the state jΦ0

0i is

NjG ¼
Z

d2k
ð2πÞ2

X
r∈UC

dr
X
μ

jψ jμkðrÞj2e−iG·r;

where the r sum is over the unit cell, and ψ jμkðrÞ is the
Bloch state wave function with the valley j, the band μ, and
the momentum k. As VðqÞ > 0, it is reasonable to expect
that jΦ0

0i is also the ground state if VðqÞ decays fast
enough with increasing q. The states jΦ0

0i and jΦ0i are
equivalent, strongly suggesting that our conclusion is
independent of the choice of the basis.
Although jΦ0i is a ground state, it is not the only one for

the interaction in Eq. (6). Due to the SUð4Þ symmetry of
Eq. (6), the ground state is ð2NR þ 3Þð2NR þ 2Þð2NR þ
1Þ=6 fold degenerate. This SUð4Þ ground state manifold
includes states as [see Fig. 2(a)]

jΦ1i ¼
Y
R

Y2
p¼1

1ffiffiffi
2

p ½d†1;↑ðRþ δpÞ þ d†−1;↓ðRþ δpÞ�j0i:

ð16Þ

Note that the expectation value of the square of the total
(magnetic) spin operator hΦ1jS2

totjΦ1i ¼ OðNRÞ, which
means that the magnetic moment per particle vanishes in
the thermodynamic limit. jΦ1i is therefore not a
ferromagnet.
The ground state degeneracy is lifted by the kinetic

terms, K in Eq. (1), which in general break the SUð4Þ
symmetry. The valley Uð1Þ symmetric hopping terms
tðRþ δ;R0 þ δ0Þd†Rþδ;j;σdR0þδ0;j;σ favor the state with two
valleys equally mixed, because then the second order
process is least blocked. For the same reason the hopping

terms that mix the valleys favor the state in which the two
valleys carry opposite spins. The ground states is then given
by Eq. (16) up to a global spin SUð2Þ rotation. The
nonmagnetic ground state depicted in Fig. 2(a) is thus
favored by the kinetic terms.
We can also find some of the excited eigenstates of

Eq. (6) exactly. In particular,

jN þ 1; j; σ;p mod 2i ¼
X
R

d†j;σðRþ δpÞjΦ1i; ð17Þ

jN − 1; j; σ;p mod 2i ¼
X
R

dj;σðRþ δpÞjΦ1i; ð18Þ

have energies ENþ1¼13
6
V0þEN and EN−1 ¼ − 11

6
V0 þ EN ,

respectively, where EN ¼ 2NRV0. The gap is therefore at
mostΔ ¼ ENþ1 þ EN−1 − 2EN ¼ V0=3. Note that the exci-
tations [Eqs. (17)–(18)] are spatially extended.
Even though the ground state jΦ1i does not couple

linearly to the Zeeman magnetic field,B, the excitations do,
and the gap closes upon the application of a critical B.
In order to gain some intuition for the physics behind the

mathematical results discussed, imagine artificially tuning
α1 to be small. At α1 ¼ 0, ground states of the “cluster
Hubbard” terms include states with one particle per
honeycomb site. The small hopping terms give rise to
exchange interactions Oðα21Þ, via both the usual second
order perturbation theory and directly via the first order
terms also of Oðα21Þ. The former would normally be
antiferromagnetic, but in this case contributions from
different hexagons cancel and only the latter, ferromagnetic
exchange, remains (recently, the ferromagnetic ground state
is proposed to account for the insulator phase found in
trilayer graphene, with the trivial band structure [31].
However, the ferromagnetic exchange interaction in
Ref. [31] is found to be one order smaller than the on site
repulsion). The ground state manifold of the “cluster
Hubbard” Hamiltonian also includes states which do not
necessarily have one particle per site, but the same argu-
ment applies [22].
Recent experiments also suggest that an insulating state

appears at the filling of 1 hole/electron per unit cell, with
the insulation enhanced by the Zeeman magnetic field [3].
We were unable to find the exact ground state at this filling
analytically, even in the strong coupling limit because
α1 ≠ 0. However, the ground state can be found if α1 is
small. The leading term in U is given by the “cluster
Hubbard” terms, with ground states for which each
hexagon contains three fermions, and

P
j;σ Qj;σðRÞ ¼ 3.

Such ground states are highly degenerate even without
counting the valley and spin degrees of freedom. The linear
order and the second order of the cross termP

R ½
P

j;σ Qj;σðRÞ�½
P

j0;σ0 Tj0;σ0 ðRÞ� vanish for the same
reason as discussed above. Therefore, to the order
Oðα21Þ, only the term

P
R ½
P

j;σ Tj;σðRÞ�2 contributes.

(a) (b)

FIG. 2. Schematic of the ground states at (a) 1=4 filling (2
electrons/holes per moiré unit cell) and at (b) 1=8 filling (1
electron/hole per moiré unit cell).
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This contribution is minimized if (1) each hexagon contains
exactly three occupied sites; (2) each occupied site is in
the same state; (3) the number of bonds connecting an
occupied site and an unoccupied site is minimized. These
constraints favor the stripe SUð4Þ ferromagnetic phase as
the ground state, see Fig. 2(b), with the energy correction
δE ¼ α21NRV0=2. This phase is also an insulator due to the
existence of the charge gap.
To summarize, we analyzed the Coulomb interactions

(screened by the gates) projected to the exponentially
localized Wannier states [7] for the four narrow bands in
the “magic angle” twisted bilayer graphene. The projected
interaction is highly nonlocal and is beyond extended
Hubbard models. Such novel interactions result from the
non-trivial topological properties of the narrow bands
[8,26], giving rise to the SUð4Þ ferromagnetic ground
states at 1=4 and 1=8 fillings. At 1=4 filling, the kinetic
terms break the SUð4Þ symmetry and select the state in
which two valleys with opposite spins are equally mixed
[Fig. 2(a)]. This state, although still SUð4Þ ferromagnetic,
is (physical) spin nonmagnetic in the thermodynamic limit,
with a charge gap suppressed by the magnetic field. We also
argue that the stripe SUð4Þ ferromagnetic insulator phase is
the ground state at 1=8 filling [Fig. 2(b)]. If the SUð4Þ
degeneracy is lifted in favor of the physical spin ferro-
magnet, such a state could be a candidate for the exper-
imentally observed insulator at the 1=8 filling [3]. The
mechanism of such symmetry breaking remains an open
problem.

J. K. was supported by the National High Magnetic Field
Laboratory through NSF Grant No. DMR-1157490 and the
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1506756.

Note added.—Recently, after the submission of our manu-
script, another theoretical work [32] was posted on arXiv,
which includes a subset of the interactions described in
Eq. (6) and finds the spin ferromagnetic state at 1/4 filling.
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