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Resonating quantum three-coloring wave functions for the kagome quantum antiferromagnet
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Motivated by the recent discovery of a macroscopically degenerate exactly solvable point of the spin-1/2 XXZ
model for Jz/J = −1/2 on the kagome lattice [H. J. Changlani et al. Phys. Rev. Lett. 120, 117202 (2018)]—a
result that holds for arbitrary magnetization—we develop an exact mapping between its exact ”quantum
three-coloring” wave functions and the characteristic localized and topological magnons. This map, involving
”resonating two-color loops,” is developed to represent exact many-body ground state wave functions for
special high magnetizations. Using this map we show that these exact ground state solutions are valid for any
Jz/J � −1/2. This demonstrates the equivalence of the ground-state wave function of the Ising, Heisenberg,
and XY regimes all the way to the Jz/J = −1/2 point for these high magnetization sectors. In the hardcore
bosonic language, this means that a certain class of exact many-body solutions, previously argued to hold for
purely repulsive interactions (Jz � 0), actually hold for attractive interactions as well, up to a critical interaction
strength. For the case of zero magnetization, where the ground state is not exactly known, we perform density
matrix renormalization group calculations. Based on the calculation of the ground state energy and measurement
of order parameters, we provide evidence for a lack of any qualitative change in the ground state on finite clusters
in the Ising (Jz � J), Heisenberg (Jz = J), and XY (Jz = 0) regimes, continuing adiabatically to the vicinity of
the macroscopically degenerate Jz/J = −1/2 point. These findings offer a framework for recent results in the
literature and also suggest that the Jz/J = −1/2 point is an unconventional quantum critical point whose vicinity
may contain the key to resolving the spin-1/2 kagome problem.

DOI: 10.1103/PhysRevB.99.104433

I. INTRODUCTION

Quantum frustrated magnetism presents one of the most
intriguing and intricate examples of the interplay between spa-
tial geometry and quantum mechanics. This results in a rich
multitude of competing exotic phases such as valence bond
solids, topological phases including several spin liquids, and
magnetically ordered phases. Slight changes in the material
composition or geometry can lead to a dramatic change in its
phase, making frustrated magnets ideal playgrounds to study
quantum phase transitions.

The building blocks of many of these systems are lattices
of magnetic ions made from motifs of connected triangles.
Prominent amongst these is the kagome lattice, a lattice of
corner sharing triangles which has been intensely studied
owing to its relevance to materials such as Herbertsmithite (a
kagome lattice of Cu2+ ions) [1]. Experiments on Herbert-
smithite [2,3]—of which the idealized kagome Heisenberg
antiferromagnet is known to be a good model [4]—find that
spins do not order even at the lowest investigated temperatures
(50 mK, a small fraction of the exchange energy of ∼200 K),
tantalizingly suggesting the picture of a two-dimensional spin-
liquid ground state. However, in spite of several theoretical

efforts devoted to the idealized model, there is no universal
consensus on the precise nature of the spin liquid ground
state [5–15], and recent work even suggests that larger lattices
should stabilize an ordered state [16]. To reconcile some of
these observations, it has been suggested that the kagome
Heisenberg model lies at or close to a critical point in the
phase diagram in a suitably chosen parameter space of model
Hamiltonians [17,18].

Previous work (by two of us, H.J.C. and B.K.C., in
collaboration with others) contributed to the understanding
of the kagome phase diagram through the discovery of an
extensively quantum degenerate exactly solvable point [17].
While the classical extensive degeneracy for the kagome and
hyperkagome lattice has a long history, the connection to the
quantum case in the spin-1/2 XXZ Hamiltonian,

HXXZ [Jz] = J
∑
〈i, j〉

Sx
i Sx

j + Sy
i Sy

j + Jz

∑
〈i, j〉

Sz
i Sz

j (1)

at HXXZ [Jz = −1/2, J = 1] (notated as HXXZ0 [19]), has not
been entirely explored. Si are spin-1/2 operators on site i,
〈i, j〉 refer to nearest neighbor pairs, and J (set to 1 throughout
the paper) and Jz are the XY and Ising couplings, respec-
tively. Reference [17] showed that the quantum degeneracy
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FIG. 1. Two representative three-colorings on the kagome lattice
corresponding to the q = 0 and

√
3 × √

3 solutions. The colors red,
blue, and green represent the classical 120◦ states or their quantum
equivalents.

exists in all Sz sectors and all finite (or infinite) system
sizes. Numerical investigations on the highly symmetric 36d
cluster [20] showed how the XXZ0 point on the kagome
lattice is embedded in the wider phase diagram. We note that
Ref. [21] studied the phase diagram of the triangular lattice in
the vicinity of Jz = −1/2.

At Jz = −1/2, the exact solutions apply to any lattice of
triangular motifs with the Hamiltonian of the form,

H =
∑
�

HXXZ0(�), (2)

where HXXZ0(�) is the XXZ0 Hamiltonian on a single trian-
gle � as long as the vertices are consistently colorable by three
colors such that no two vertices connected by a bond have the
same color. For the kagome lattice, we show representative
three-colorings in Fig. 1 which depict the so-called q = 0
and

√
3 × √

3 patterns [22]. (Other three-colorable lattices
include the triangular lattice, the Shastry-Sutherland lattice,
the hyperkagome lattice, the squagome lattice, and the icosi-
dodecahedron.)

In this work, we employ the quantum three-colorings as a
means of gaining analytic intuition for the physics near the
highly degenerate Jz = −1/2 point. Our work will highlight
the relevance of this point in controlling the physics seen

in the Heisenberg regime, i.e., Jz = 1. For this purpose, we
decompose the XXZ Hamiltonian (1) as

HXXZ [Jz] = HXXZ0 +
(

Jz + 1

2

) ∑
〈i, j〉

Sz
i Sz

j (3)

= HXXZ0 +
(

Jz + 1

2

)
Hzz (4)

and ask if it is possible to simultaneously minimize both parts
of the Hamiltonian. While this is not possible in the most
general circumstances, we find that at high magnetization
(equivalently, low fillings in the hardcore bosonic language)
the Hamiltonian is ”frustration free,” i.e., it is indeed possible
to achieve this minimization.

Since the map between spin 1/2 and hardcore bosons is
used often in the paper, we clarify the terminology associated
with it. Down spins in a background of up spins are equivalent
to hardcore bosons in a vacuum and thus we interchangeably
use the words ”filling” and ”magnetization” in the course of
our discussions. More precisely, the spin (Si) and hardcore
boson operators (bi) are related as

b†
i = S+

i bi = S−
i ni = b†

i bi = 1
2 − Sz

i (5)

and thus the XXZ Hamiltonian reads

HXXZ (Jz ) = 1

2

∑
〈i, j〉

b†
i b j + H.c. + Jz

∑
〈i, j〉

nin j + d, (6)

where d is a constant in a given magnetization sector that
equals Jz( N

2 − 2
∑

i ni ) for a N site kagome lattice. We also
use the term ”magnon” to denote the wave function of one
down spin in a sea of up spins, or equivalently the wave
function of a single hardcore boson in vacuum.

The remainder of the paper is organized as follows. In
Sec. II, we recapitulate the nature of the exact (ground state)
solutions for Jz = −1/2 and why they exist in every mag-
netization sector. For this we define quantum three-colors,
the quantum version of the 120◦ classical ground states,
which provides a convenient choice of variables for explaining
several of our numerical observations. In Sec. III, we develop
the concept of resonating color loops (RCL) which is the
basis of an exact mapping relating the coloring wave functions
to magnons. We discuss in detail the crucial effects due
to Sz (or number) projection. Using the RCL construct, in
Sec. IV, we revisit the more familiar localized and topological
magnon modes, which arise from the flatband that exists
on the kagome lattice. We show that each such mode has
a direct connection to a RCL. In Sec. V these ideas are
further extended to express exact many body ground state
wave functions for special high magnetizations as projected
quantum three-coloring wave functions. We find that for these
special magnetization sectors, the exact ground state, a quan-
tum three-coloring superposition, holds for all Jz � −1/2
which shows the equivalence of the Ising, Heisenberg, and
XY regimes.

For the case of zero magnetization, we have investigated
the relevance of the Jz = −1/2 point (and hence the three-
coloring manifold) by performing large scale density matrix
renormalization group (DMRG) calculations for a large range
of Jz in Sec. VI. These results extend the results of previous
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exact diagonalizations [17] to bigger systems which support
HXXZ0 being a quantum critical point in the XXZ phase
diagram. In Sec. VII, we conclude by summarizing our results
and suggesting future avenues for further exploration.

II. QUANTUM THREE-COLORS AND THE EXACT
SOLUTION OF HXXZ0

We state the central result of Ref. [17], where it was proved
that any Hamiltonian of the form of Eq. (2) for Jz = −1/2 has
ground states of the form,

|C〉 ≡ PSz

(∏
valid

⊗|γs〉
)

, (7)

where {|γs〉 = |r〉, |b〉 or |g〉}, denoted as colors on site s are
defined as

|r〉 ≡ 1√
2

(|↑〉 + |↓〉)

|b〉 ≡ 1√
2

(|↑〉 + ω|↓〉)

|g〉 ≡ 1√
2

(|↑〉 + ω2|↓〉), (8)

where ω = ei2π/3. Taking the quantization axis to be the z
axis, the colors correspond to spin directions in the xy plane
that are at 120◦ relative to one another. Valid colorings satisfy
the three-coloring condition, i.e., exactly one |r〉, one |b〉, and
one |g〉 per triangular motif. These are depicted by colors red,
blue, and green, respectively, in our figures. PSz projects into a
particular total Sz sector.

The construction (7) is referred to as the three-coloring
condition and any such many body state which satisfies the
constraint conditions is a three-coloring state. Such states have
primarily been studied in the context of the classical kagome
antiferromagnet at the Heisenberg point [19,22–29].

Classically, a Luttinger-Tisza analysis [30] of HXXZ shows
that Jz = −1/2 is a critical point in the kagome phase dia-
gram. To see this, we recast Eq. (1) in reciprocal space,∑

q

(S̃XY (q)T · [J̃ (q)] · S̃XY (−q)

+Jz S̃Z (q)T · [J̃ (q)] · S̃Z (−q)), (9)

where

S̃XY (q) = 1√
Nu

∑
r

e−iq·r(SXY
r,1 SXY

r,2 SXY
r,3

)T
(10)

S̃Z (q) = 1√
Nu

∑
r

e−iq·r(Sz
r,1 Sz

r,2 Sz
r,3

)T
(11)

[J̃ (q)] = 1

2

⎛
⎝ 0 1 + eiq·a2 1 + eiq·(a2−a1 )

1 + e−iq·a2 0 1 + e−iq·a1

1 + e−iq·(a2−a1 ) 1 + eiq·a1 0

⎞
⎠

(12)

a1, a2 are the primitive lattice vectors (considering one up-
triangle with three sites as the kagome unit cell), and q is
restricted to the first Brillouin zone and Nu is the number of
unit cells. Sr,μ is a classical spin of unit magnitude at site r, μ,

P1 ω2

ω2 11

1

ω2 1ω

1

1

ω

ω

FIG. 2. Representative example of a single magnon state with
amplitudes 1, ω, ω2 in the three-coloring basis, written as a many-
body coloring wave function with a projection operator.

where r labels the unit cell and μ labels the site within the unit
cell. SXY

r,μ and SZ
r,μ are the projections of the unit vector Sr,μ

on to the xy plane and z axis, respectively.
For the classical ground state, the two terms in Eq. (9)

are competing. For Jz < −1/2, the second term in Eq. (9)
wins giving a unique ferromagnetic ground state at q = 0
with all spins pointing in the z direction. For Jz > −1/2, the
first term in Eq. (9) wins, giving a flat-band solution with
all q being classically degenerate to each other in energy,
with the spins oriented in the xy plane. They give rise to an
extensively degenerate ground state manifold since there are
infinite ways in which these classically degenerate solutions
at different q may be linearly combined while respecting
the Luttinger-Tisza condition

∑
q S̃XY (q) · S̃XY (−q) = 1. At

the Heisenberg point, this extensively degenerate classical
ground state manifold has also been noted in the literature
before [31–33].

Since the classical spins lie in the xy plane for Jz > −1/2,
they are impervious to the Jz term. Any state that then locally
satisfies the three-coloring (120◦) condition is a classical
ground state for Jz � −1/2 and Jz < 1 for the classical XXZ
Hamiltonian (there is an additional classical phase transition
at the Heisenberg point Jz = 1, which we do not explore). For
the quantum case, only at the Jz = −1/2 point, there is a direct
one to one correspondence between the classical and quantum
ground states, i.e., any valid three-coloring can be interpreted
as both a classical ground state spin configuration and a
quantum ground state spin-1/2 wave function. However, there
remains an important difference between the classical and
quantum solutions even at this point—quantum mechanically,
the Hamiltonian is block diagonal in definite total Sz due to the
U (1) symmetry, and thus the eigenfunctions in each of those
sectors must have definite total Sz. Therefore, projecting each
three-coloring solution to each total Sz sector must also be an
exact ground state of that total Sz sector, thereby justifying the
projection in Eq. (7). Conversely, this also implies that this
exactly solvable point exists in all total Sz sectors.

The three-coloring wave functions when projected to the
one particle sector (or one spin-down sector), can be viewed
as the wave function of a single particle on the kagome lattice.
One such example has been represented in Fig. 2. Depending
on the color associated with the site, the amplitudes are 1,
ω, or ω2. Taking linear combinations of single particle wave
functions (i.e., adding their amplitudes site by site) is exactly
equivalent to taking linear combinations of projected color-
ings, since P1|C1〉 − P1|C2〉 = P1(|C1〉 − |C2〉). This concept
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FIG. 3. Comparison of ground state energies from exact diagonalization and diagonalization in the three-color basis as a function of Jz (in
units of J = 1) for the (left panel) 36d cluster for Sz = 14 (m = 7/9 or 1/9 filling of bosons) and (central panel) for Sz = 12 (m = 2/3 or 1/6
filling of bosons) in the range −1 � Jz � 0. For a thin torus such as the 4 × 2 × 3 torus for Sz = 8 (m = 2/3 or 1/6 filling of bosons) shown
in the rightmost panel, the exact solution holds. In cases where the Hamiltonian is frustration free for Jz � −1/2 (here, leftmost and rightmost
panels), the exact ground state solution holds for arbitrary Jz � −1/2.

will be used in the next section when discussing resonating
color loops.

The total number of three-coloring ground states scales
exponentially with system size. However, there are two sub-
tleties to be considered when counting the exact number of
linearly independent solutions when projecting to definite
Sz. First, when one interchanges colors (consistently for all
sites), the new coloring |C′〉 is not linearly independent of the
original one |C〉. This can be seen by redefining

|↓〉′ ≡ ω|↓〉, (13)

which is equivalent to the transformation (from old to new
variables)

r → g b → r g → b. (14)

This is equivalent to a rotation of the spins in the xy plane by
an angle of 2π/3 around the z axis. Under this transformation
each spin configuration (and hence the overall wave function)
is only rescaled by a constant phase ωN↓ where N↓ is the
number of down spins. A similar transformation holds for
|↓〉′ ≡ ω2|↓〉 which leads to r → b, b → g, g → r. Thus,
these three-colorings are not linearly independent and should
not be counted more than once.

The second subtlety when counting the number of col-
orings is that not all colorings remain linearly independent
when projected to definite total Sz. This is best exemplified by
considering the case of the fully ferromagnetic sector. Here,
even though the number of three-colorings is exponential,
there is only one unique solution possible. Thus, to determine
the precise number of linearly independent many body states,
we evaluate the rank [R(S)] of the overlap matrix SCC′ =
〈C|C′〉. The matrix elements are calculated efficiently and the
matrix numerically diagonalized for this purpose. (Details of
the calculation of the matrix elements in this nonorthogonal
basis have been discussed at length in the supplemental in-
formation of Ref. [17] and are hence not presented here.)
This enumeration of three-coloring states and their counting
is an essential part of the diagonalizations we perform in the
restricted subspace of the full Hilbert space.

Until this stage, our discussion has focused on the Jz =
−1/2 point, which is only one point in the parameter space of
the XXZ model. However, as mentioned in the introduction,

the concept of color degrees of freedom and three-coloring
states is useful more generally; we will show this more ex-
plicitly in the subsequent sections. For example, in an attempt
to minimize both parts of Eq. (4), we have diagonalized the
XXZ Hamiltonian in the three-coloring basis numerically by
solving the generalized eigenproblem,

Hx = ESx, (15)

where HCC′ = 〈C|H |C′〉, E is the eigenenergy, and x is the
eigenvector of coefficients of three-color basis states.

The results of the ground state energy in the three-color
basis are compared to the exact ground state energy in the full
(Ising) basis for some representative examples in Fig. 3. The
three-coloring states do not form a complete set in a specified
Sz sector and hence are incapable of describing arbitrary wave
functions. However, for two of the three examples shown,
we do obtain the exact energy for Jz � −1/2. For these,
the exact wave functions do lie completely in the three-
coloring manifold with a total ground state energy equal to
EXXZ0 + (Jz + 1/2)( N

2 − 2
∑

i ni ) for a N site kagome lattice.
These numerical findings suggest the existence of an analytic
way of understanding the three-coloring superposition and we
will develop the appropriate concepts for proving that this is
indeed the case.

A third example (36d cluster at 2/3 magnetization or 1/6
filling), where the existence of a chiral spin liquid was argued
previously [34], is also shown in the central panel of Fig. 3.
While we do not obtain the exact energy for Jz � −1/2 for
this case, the general trends appear consistent with exact
diagonalization, suggesting that the three-coloring basis may
be capable of representing certain chiral spin liquids. In this
paper we will focus on the cases where the three-coloring
basis is an exact representation of the kagome ground state
in high magnetization (low filling) sectors.

III. RESONATING COLOR LOOPS

In this section we will develop the machinery to generate,
on some lattices and at low density, simultaneous ground
states of HXXZ0 and Hzz making them frustration free ground
states of HXXZ0 + (Jz + 1

2 )Hzz. Unfortunately, no single three-
coloring is such a ground state, except in the extreme case
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FIG. 4. Definition of resonating color loops on a kagome lattice. Each RCL is obtained by taking a difference of two three-colorings,
which differ only on a single two-color loop. In the top panel, the RCL is located on a hexagon and in the bottom panel it is located on a
topological (noncontractible) loop, here winding along the horizontal direction. The RCLs when projected to a single spin-down (magnon)
sector are exactly equal to localized or topological magnons on the kagome lattice up to a (projective) phase and an innocuous normalization.

of a fully polarized state. Instead, we need to construct lin-
ear combinations of three-colorings; such states are already
ground states of HXXZ0 and so our focus will be developing
linear combinations which minimize Hzz at low density.

The key tool in accomplishing this task will be resonating
color loops (RCL). A RCL is generated by taking a single
closed “two-color” loop (comprising, say of green and blue
colors) and replacing it with a linear combination of the two
different green-blue colorings over that loop with a relative
minus sign between them. For example, consider the closed
loop corresponding to the hexagonal plaquette on the kagome
lattice. Then, the quantum state

|RCL〉 = |gbgbgb〉 − |bgbgbg〉 (16)

is what we define as a green-blue RCL (see Fig. 4). For
the purpose of this work, the definition of the RCL adopted
is always of the form Eq. (16). However, in principle, it is
possible to generalize the concept of RCL to other linear
superpositions, with certain desirable properties. The local
resonating structure of RCLs is thus reminiscent of resonating
valence bond (RVB) states.

Consider a fixed three-coloring with some number of two-
color loops which are adjacent only to a third color, i.e., an
isolated two-color loop (ICL). Any k ICL can be replaced with
k RCL and the resulting state will be a linear superposition
of 2k three-colorings. This follows because if an entire two-
colored loop (say of green and blue) is surrounded by red,
then swapping green and blue within that loop still leaves no
edge with the same color on both vertices. As an example,
consider the

√
3 × √

3 coloring of the kagome lattice (Fig. 1).
This coloring has isolated two-color hexagonal loops. We
can take any number of these hexagons and turn them into
RCLs. Alternatively, on the q = 0 coloring on the kagome
lattice (Fig. 1) there are isolated noncontractible loops which
can be turned into a RCL. It is interesting to note that on
a coordination-4 lattice of triangles, every site is part of an
isolated two-color loop.

Now that we have a linear combination of three-colorings
generated by replacing ICL with RCL, we can consider the
role of projection on these states. In particular, we will see that
if we globally project a state with k RCL into the sector of k

spin-down (i.e., Pk), then there will be exactly one spin-down
constrained to each RCL and no spin-down outside the RCL.
A k = 2 representative example is shown in Fig. 5.

To see why this particle localization happens, we first note
that the difference of two colorings is destroyed by projecting
into the fully spin-up (no boson) sectors on a given RCL, i.e.,

PRCL
0

(∣∣C1
m

〉 − ∣∣C2
m

〉) = 0, (17)

where C1
m and C2

m are arbitrary colorings on the motif denoted
by m. It then follows that P0|RCL〉 = 0 (here it is important
the RCL is the difference of two loops). Now, let us consider,
as an example, P2 applied to a quantum state with 2 RCL and
decompose P2 into the sum of tensor products of projectors
over the two RCLs and the rest of the system, respectively,
written explicitly as

P2 = PRCL1
2 ⊗ PRCL2

0 ⊗ Prest
0

+ PRCL1
0 ⊗ PRCL2

2 ⊗ Prest
0

+ PRCL1
0 ⊗ PRCL2

0 ⊗ Prest
2

+ PRCL1
1 ⊗ PRCL2

1 ⊗ Prest
0

+ PRCL1
1 ⊗ PRCL2

0 ⊗ Prest
1

+ PRCL1
0 ⊗ PRCL2

1 ⊗ Prest
1

⇒ P2 = PRCL1
1 ⊗ PRCL2

1 ⊗ Prest
0 . (18)

P

1PP2

1

FIG. 5. A representative example of projection on to the k = 2
spin-down sector on a configuration with two RCLs. The projection
properties of RCLs ensure localization of bosons/spin downs to
localized hexagons.
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The last equality follows from Eq. (17), as any term in the
sum with PRCL

0 on an RCL is destroyed. This is schematically
shown in Fig. 5. The above generalizes straightforwardly to k
RCLs projected to k spin-down sector. Using this machinery,
we thus have an ability to localize down-spins onto any ICL.
This ability will allow us to minimize Hzz by ensuring that two
spin-downs are never nearest neighbors.

In the next two sections we will see (1) that this argument
(RCL when projected into a single spin-down) is essentially
a quantum coloring language to describe kagome flatband
magnons and (2) that on a variety of coordination-4 lattice
of triangles such as the kagome lattice, the kagome ladder
and the squagome lattice, at high magnetizations (i.e., at low
fillings), the many body ground state is a tensor product of
RCLs projected to that Sz sector.

IV. KAGOME FLAT BAND MODES FROM RESONATING
COLOR LOOPS

In the previous section we considered how an RCL can be
used to localize down spins on certain motifs. In this section
we are going to consider systems with a single RCL being
projected into the single spin-down sector (i.e., P1) finding
an exact correspondence between these projected RCLs and
the localized and topological magnons [35] associated with
the flatband of the kagome lattice. To understand this result,
we first review the results of Ref. [36] which explained the
existence of kagome lattice flat band modes using a localized
basis of single-particle orbitals.

First we note that the XXZ Hamiltonian with a single down
spin corresponds to the noninteracting tight binding model on
the kagome lattice giving three bands with dispersions,

ε0(q) = −t (19a)

ε±(q) = t

2
(1 ±

√
3 + 2�(q)), (19b)

where �(q) = cos(q · a1) + cos(q · a2) + cos(q · a3). For
t > 0, the flat band becomes the lowest energy band and at
q = 0, ε− touches the flat band. Thus, on a kagome lattice on
a finite torus (periodic boundary conditions), with N unit cells
with a finite momentum grid with N points, there are N + 1
single particle states at ε = −t .

The flatness of the band allows us to take linear combi-
nations of single particle states freely while remaining eigen-
states. This leads to a useful and insightful representation that
results in localized eigenstates [36], given by

AR
† = 1√

L

L∑
j=1

(−1) jb†
j, (20)

where L is the length of any contractible loop of length
4m + 2 or noncontractible loop of length 2m where m is an
integer and j refers to the index of lattice sites numbered
in a contiguous order. When L = 6, this mode is localized
on a hexagonal motif and is represented in the rightmost
side of the top panel of Fig. 4 ignoring the normalization of√

6. Intuitively, this mode can be understood using a simple
quantum interference argument. The topology of the kagome
is such that the ”+” and ”−” contributions from hopping on

FIG. 6. Representative locations of localized and topological sin-
gle particle modes as resonating color loops are shown, including a
10 site loop that may be thought of as a composition of two hexagonal
localized modes. Figure 4 shows how to transcribe the above RCL
representation into the magnon modes. Apart from the single RCL at
a chosen representative location, the rest of lattice is the same valid
three-coloring, which makes the cancellation at all other sites exact.

to the vertices pointing away from the hexagon cancel out
destructively and thus such a localized state becomes an exact
ground state of the tight binding Hamiltonian.

We now identify the relation between the quantum coloring
language and these localized single particle orbitals. By taking
a single projected RCL on a hexagon shown in Fig. 4, a
pattern of alternating (ω − ω2) and (ω2 − ω) is obtained on
the hexagon with 0 everywhere else. Up to an overall phase
factor, the mode is identical to the alternating pattern of + and
− described above. In fact, this argument holds for arbitrary
L = 4m + 2, such as the 10 site loop (which can be alternately
viewed as a superposition of two localized single-particle
hexagon wave functions) which corresponds to a projected 10
site RCL (see Fig. 6). Thus projected RCLs have the form as
in Eq. (20).

The set of N hexagon single particle modes is not com-
pletely linearly independent; the wave function of the N th
hexagonal mode can be rewritten as a linear combination of
the remaining N − 1 modes [36]. Since the expected count
of the lowest degenerate states is N + 1, this leaves us with
two modes to be determined. Reference [36] showed that
these correspond to two topological modes, coming from any
choice of two noncontractible loops along the two periodic
directions on the torus. An example of such a loop in the
horizontal direction is shown in Fig. 6 (bottom). Once again,
this topological magnon has a natural meaning in the basis of
three colors, and as is shown in Fig. 4, it is identical to an RCL
defined on a two-color loop along the horizontal direction.

We have thus shown that every single particle magnon
corresponding to the kagome flat band is exactly an RCL of
a certain type. This is particularly useful, because it allows
us to freely swap concepts between two distinct languages.
In particular, in the next section we will provide a new
interpretation of many-body wave functions constructed at
low magnon fillings, in terms of RCLs.
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FIG. 7. Many-body ground state wave function for magnons
represented in a three-coloring basis. The top panel shows the case
of four magnons (bosons) on the 4 × 2 × 3 torus. The construction
generalizes to L magnons on the L × 2 × 3 lattice, i.e., 1/6 filling.
Each magnon is confined to a strip and the many-body wave function
is simply a product state of corresponding RCLs. Similar construc-
tions apply at 1/9 filling to the infinite kagome and any finite cluster
that accommodates the

√
3 × √

3 pattern (middle panel). For 1/6
filling the construction also generalizes to two dimensions on the
“squagome” lattice built up of triangular motifs (lowest panel).

V. LOW DENSITY EXACT SOLUTIONS FROM
RESONATING COLOR LOOPS

Now that we have developed the connection between RCLs
and localized and topological magnons, we will explicitly
construct many-body solutions which minimize both HXXZ0

and Hzz, for certain cases of net magnetization. We begin
with the case of a narrow kagome torus with dimensions
Lx × (Ly = 2) × 3. For Lx = 4, we show in Fig. 7 (top panel)
that the RCLs are ”stripes” (blue-green local motifs) on which
the closely-packed localized magnons reside. Since each RCL
is associated with a winding loop of four sites (along with two
other padded sites) and each such motif contributes a single
magnon or hard-core boson, the filling is exactly 1/6. At this
filling, denoted by f , the exact many body wave function is

therefore a product state on these local motifs,

|ψ〉 = PN f

( ∏
m=motif

|RCLm〉 ⊗
∏

o=other

|ro〉
)

. (21)

Since the magnons are never located on neighboring sites,
due to the zero amplitude red sites (as indicated in Fig. 7),
they completely avoid nearest neighbor density-density in-
teractions [see Eq. (6)] thereby minimizing Hzz. Thus, this
wave function is the exact ground state for arbitrary repulsive
interactions (Jz � 0). This closely-packed construction has
been noted earlier in the literature in the “+/−” magnon
language [35,37–41]. However, since the wave function is
also a product of RCLs, the wave function has an exact
representation in a basis of valid three-colorings, it also be-
comes the ground state for any Jz � −1/2, starting now from
Eq. (4) or its hard-core boson counterpart. The RCL is thus
able to localize down spins (or particles) on motifs (eg. local
hexagons or topological loops) and keeps them apart.

This idea of constructing single magnon wave functions
and the extension to many body wave function generally
applies to many other lattices, fillings, and tilings (choices of
motifs). For example, for 1/9 filling, the idea generalizes to
the infinite kagome and on any finite cluster that accommo-
dates the

√
3 × √

3 pattern. This includes the 36d cluster and
certain quasi-one-dimensional cylinders [42]. Each magnon
is now confined to a local hexagon and using the formalism
of projected RCLs, the many body wave function is simply a
product state of RCLs and color red (a) on sites that do not
belong to the hexagonal RCLs. Since the tiling of RCLs can
be done in three distinct ways (due to the threefold symmetry
of the

√
3 × √

3 pattern), our construction yields a threefold
degenerate ground state solution.

For 1/6 filling, we may extend the above exact solutions
to the two-dimensional ”squagome” lattice, now using the
motifs shown in Fig. 7 (bottom panel). Each motif is once
again associated with an RCL, and because of the Sz or
number projection operation, the intermediate sites between
the magnons have zero amplitudes, with the magnon or boson
residing on the square plaquettes.

This analysis also immediately gives the ground state in
the coloring basis for any lower density. If a wave function
with k RCLs is the ground state of Eq. (4), then the wave
function obtained by replacing any subset of the k RCLs by
ICLs is still a ground state. In the thermodynamic limit, these
fill in all lower densities. In particular, this means that these
phases extend to the quantum critical point at Jz = −1/2 on
the kagome for all filling �1/9.

Thus, we have shown that several low magnon (par-
ticle) density/high magnetization solutions can be exactly
constructed from three-coloring states. In each individual
example presented, the wave function constructed mini-
mizes both HXXZ0 and Hzz, and hence is the exact ground
state wave function for any Jz � −1/2. Said differently, the
magnons confined to their individual motifs (strip, hexagon,
etc.) completely avoid repulsion (Jz > 0) at low density and
minimize their kinetic energy by staying localized. However
the color-magnon transformation shows that even under at-
tractive interactions, the localized magnons do not immedi-
ately condense—rather there is a critical attraction strength
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(Jz = −1/2) which is needed for this to happen. While this
result is true and mathematically rigorous only at low density,
where the magnons form a crystal [40], a natural question
that arises is whether the coloring manifold is responsible
for the origin of the spin liquid ground state, expected at
one-sixth (2/3 magnetization) [34,43] and half filling (zero
magnetization).

VI. DMRG FOR HXXZ FOR THE ZERO
MAGNETIZATION SECTOR

In lieu of such an understanding, we now turn our attention
to a numerical study in the case of half filling (Sz = 0)
where the ground state does not have an exact three-coloring
representation. A previous DMRG study [44] argued that
the spin liquid at the Heisenberg point (Jz = 1) adiabatically
continues both to the XY (Jz = 0) and Ising (Jz � 1) limits.
Also, previous ED studies on 36 and 48 site clusters showed
remarkable similarities in the low-energy spectrum from Jz =
0 to Jz = 1 [45] and the Ising limit [46]. In addition, another
ED study on 36 sites strongly suggested adiabatic continuity
for all Jz � −0.4 (and possibly up to XXZ0) [17]. Here,
we extend these results by performing large-scale DMRG
calculations (using ITensor [47]); these results support the
finding that the spin liquid phase extends to the Jz = −1/2
point [17,48].

We study the zero-magnetization ground states in a wide
range of Jz, from Jz = 5 to Jz = −1. To better focus on the
Jz = −1/2 point, we have shown the results only up to Jz = 1;
the ground state changes smoothly with no signs of a phase
transition between Jz = 1 and Jz = 5. We focus on the XC8
cylindrical geometry (which is depicted in Fig. 10) and keep
the bond dimension (number of states in DMRG) up to 7000.
The total energy has been extrapolated to infinite length; our
extrapolated results are shown in Fig. 8 as a function of Jz.
Details of the extrapolation are given in Appendix A.

For the region of Jz < −1/2 the ground state is ferro-
magnetic (albeit phase separated due to the total Sz = 0 con-
straint), and thus the ground state energy for this region equals
Jz/2, as indicated by the good agreement between our DMRG
data points and the red dashed line. On going from Jz = 1
to Jz = 0 the energy increases monotonically and smoothly,
indicating an absence of a phase transition in this region,
consistent with Ref. [44]. Importantly, this smooth monotonic
behavior continues across Jz = 0 and a kink is seen only at
(or close to) Jz = −1/2, strongly suggesting that the exactly
solvable point is a transition point between spin liquid and
ferromagnetic states. Evidence for such a transition is further
clarified by monitoring the first and second derivatives of
energy, shown in Fig. 9; the first derivative has a discontinuity
and the second derivative has a peak at Jz = −1/2.

In practice, the DMRG simulations were found to get stuck
in valence bond solid states or metastable states with edge
spins. We thus had to run different random initial states to
converge to the lowest energy spin liquid state. This is, in
principle, consistent with a scenario that the XXZ model is
associated with a line of critical points [17] and that the
choice of geometry typically picks one state over the other.
One concrete example of this observation is discussed in
Appendix B for Jz = −0.35 where the energy per site of the

−1.0 −0.5 0.0 0.5 1.0
Jz

−0.50

−0.45

−0.40

−0.35

−0.30

−0.25

E

−0.56−0.54−0.52−0.50−0.48−0.46−0.44−0.42

−0.270

−0.265

−0.260

−0.255

−0.250

FIG. 8. Ground state energy per site from DMRG for the XC-8
cylinder in the limit of infinite length for the range −1 � Jz � 1. The
red dashed line indicates the energy (= Jz/2) of pure ferromagnetic
states. The inset zooms into a narrow range around Jz = −1/2. The
error bars are presented but smaller than the symbol sizes. The dotted
lines in the inset indicate the exact energy −1/4 at Jz = −1/2.

competing VBS and spin liquid differ only by ≈10−4. In
general, we found that the convergence is particularly difficult
around Jz = −0.4, which may suggest the need for further
detailed future studies in this region with larger systems and
different geometries.

For Jz < −1/2 we started our DMRG calculations with
two ferromagnetic domains. Not doing so led to more ferro-
magnetic domains with slightly higher energy than the two
domain solution. Magnetic pinning field is also applied to
further stabilize the states in the region −0.52 � Jz < −0.5
close to the transition point. Further details are discussed in
Appendix A.

0.00

0.25

0.50

d
E

/d
J

z

−0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Jz

−50

0

50

d
2 E

/d
J

2 z

FIG. 9. First and second derivative of the energy per site as a
function of Jz. The error bars are presented but smaller than the
symbol sizes. The discontinuity in the first derivative and the peak
in the second derivative at Jz = −1/2 signal the occurrence of a
quantum phase transition.
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Jz = −0.495

0.49−0.4 −0.001

Jz = −0.505

FIG. 10. Spatial profile of spin moments 〈Sz
i 〉 and valence bond

energies 〈Si · S j〉 on a representative XC-8 cylinder for Jz = −0.495
and Jz = −0.505. The maximum spin moment for Jz = −0.495 is
∼5 × 10−4. The solid (dashed) bonds represent the negative (positive)
valence bond energies.

Figure 10 shows local spin and valence bond order pa-
rameters at two representative points Jz = −0.495 and Jz =
−0.505 very close to the transition point. Clearly, for Jz =
−0.495 there is no local order (for the order parameters mea-
sured) and for Jz = −0.505 a ferromagnetic state is stabilized;
domains are observed as the system prefers to phase separate
to maintain the total Sz = 0 constraint.

VII. CONCLUSION

In summary, we have explored properties of quantum
three-coloring states and developed an exact one-to-one cor-
respondence between quantum three-colors and the localized
and topological magnons that make up the flat band modes
on the kagome lattice. While both perspectives and concepts
have existed in the literature in various forms (classical three-
colorings, quantum magnons), our work makes their connec-
tion concrete for the quantum case and generalizes it to both
the single and multi-magnon case. It is no coincidence that
the two color loops in a three-coloring state and the magnon
modes in the kagome flat band have geometrical similarities;
our work shows why this is the case.

Extending this connection, we have expressed exact many-
body ground state wave functions for special high magneti-
zations (or low fillings in the bosonic language) in a three
coloring basis; this proves their validity for all Jz � −1/2
showing the equivalence of the XY and Ising regimes, for
these magnetization sectors. Using the color-magnon trans-
formation, our results extend the range of validity of exact

solutions which have been argued to hold for Jz � 0 (repulsive
case in the boson language), to −1/2 � Jz � 0 (attractive
case). We have also highlighted the important role and sub-
tleties of number projection at low fillings. For the case of half
filling/zero magnetization, our numerical DMRG calculations
suggest that the physics of the Heisenberg point is crucially
connected to the Jz = −1/2 point.

Finally, we note that in the present work, we have only
considered the cases where a macroscopic superposition of
three colorings describes product states in the magnon basis
(these are incidentally also a subset of correlator product
states [49]). However, it is natural to ask whether and/or how
can one map a highly entangled state from the Ising or magnon
basis to the three-color basis. In addition, the three-colorings
present an attractive possibility of explaining the large number
(exponentially scaling with system size) of singlets seen in the
low-energy spectrum in exact diagonalizations [50,51]. We
hope to address these and related questions in the future.
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APPENDIX A: ENERGY EXTRAPOLATION

In the main text, we showed results for the energy and
certain observables from our DMRG calculations carried out
in the zero magnetization (Sz = 0) sector. Here we describe
further details of how the energy extrapolations to the infinite
length limit were done using the finite size DMRG data. In
Fig. 11 we show the energy extrapolations with the inverse
length (1/Lx) on XC-8 cylinders for Jz = −0.51, −0.505,
and −0.495 close to the exactly solvable point Jz = −1/2.
In our notation, the length is defined by the number of tri-
angles along the longitudinal direction. We perform quadratic
extrapolations for all Jz except Jz = −0.505, which does not
show quadratic behavior but does show sufficiently small
dependence on Lx. (We can thus estimate its Lx → ∞ value
accurately even without the extrapolation, as is shown in
Fig. 11.)
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FIG. 11. Extrapolation of the energy per site with 1/Lx for Jz = −0.51, −0.505, and −0.495 from the DMRG data. The lengths used
for Jz = −0.51 are 10, 12, 14, 16, 18, 20, 22, 24, 26, 30, for Jz = −0.505 are 8,10,12,14, and for Jz = −0.495 are 4, 8, 10, 12. Quadratic
extrapolations are performed for Jz = −0.51 and −0.495, and linear extrapolation is performed for Jz = −0.505. Notice the resolution of the
y-axis tic marks for Jz = −0.505.

For Jz < −1/2, where the ground states are ferromag-
netic [17], we use ferromagnetic states with one domain wall
as the starting states in our DMRG runs (the left half of the
cylinder is initially fixed to a certain spin and the right half
with the opposite spin type) as a way of avoiding getting
stuck in the multiple domain wall states. We note that a state
with any finite number of ferromagnetic domain walls in the
thermodynamic limit will have zero energetic cost (per site)
compared to the purely ferromagnetic or one-domain wall
state.

We observe that in practice, for Jz < −1/2 and very close
to −1/2, only long enough cylinders (�8 in our cases) make
the one-domain wall ferromagnetic states stable. The reason is
as follows. Exactly at the transition (Jz = −1/2), the clean fer-
romagnetic state without a domain wall has the same energy as
other (three coloring) ground states in the zero magnetization
sector. The ferromagnetic state with a domain wall—whose
existence is required to remain in the zero magnetization
sector—raises the total energy at any finite size, and it is only
for larger lattices that it is energetically favored. In a finite-size
system, the domain-wall energy is not negligible, and DMRG
ends up with nonferromagnetic states for Jz very close to −0.5
(0.51 and 0.505 in this work).

APPENDIX B: COMPETITIVE ENERGY CANDIDATES

In the main text we mentioned that we found a state with
some strong discernible local bond energies, which we refer to
as ”VBS.” (It must be noted that the pattern of bond energies
is different from what is conventionally referred to as a VBS
which has neighboring strong and weak bonds.) This VBS is
strongly competitive with the spin liquid state in our DMRG
calculations. Here we elaborate more on this finding.

Figure 12 shows the bond expectation values of 〈S̄i · S̄ j〉
and on-site values of 〈Si

z〉 for two different states obtained
from two independent DMRG simulations for Jz = −0.35.
The independent runs were started from two different ran-
dom product states and the bond dimension was gradually
increased during each sweep of the DMRG algorithm. The
energy per site of the two states (when extrapolated to in-
finite bond dimension) differs only by 10−4 [the spin liquid
has energy −0.26329(2) per site while the VBS has energy
−0.263065(3) per site, see the top panel of Fig. 13], yet the

states are visibly very different. This suggests (but does not
rigorously prove) the possibility that the Hamiltonian is at a
critical point in parameter space. Note that in Ref. [17], a criti-
cal line emanating from Jz = −1/2 at second nearest neighbor
coupling J2 ≈ 0 has been reported based on diagonalization of
the symmetric 36 site cluster.

To further analyze the proposal that the two states are
separated by the J2 = 0 line, we measure the ”J2 energy”
defined as Ĥ (J2) ≡ J

∑
〈〈i, j〉〉 Sx

i Sx
j + Sy

i Sy
j + Jz

∑
〈〈i, j〉〉 Sz

i Sz
j ,

where 〈〈i, j〉〉 denotes the next nearest neighbor sites. In
Fig. 13 (left and center panels) we show the energies extrap-
olated with the truncation error in DMRG for both the energy

−0.4 −0.001

0.083−0.4 −0.001

FIG. 12. The spin liquid (upper panel) and the VBS (lower panel)
states found in the DMRG simulations for Jz = −0.35. The widths
of the bonds are proportional to the valence bond energies 〈S̄i · S̄ j〉
and the lengths of the arrows proportional to the spin moments 〈Si

z〉.
The maximum magnitude of the spin moment for the spin liquid is
≈9 × 10−6.
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FIG. 13. Extrapolation of the total energy (left panel) and the “J2 energy” (center panel) per site with the truncation error in DMRG for
the spin liquid (SL) and the VBS states as shown in Fig. 12. The rightmost panel shows the estimated energy with finite J2, more explicitly
E (J1, J2) ≡ E (J1) + J2〈H (J2)〉. The crossing shows the suggested transition between SL and VBS with finite J2. The light colors show the
error bars of E (J1, J2).

and the ”J2 energy” per site. The J2 energies for spin liquid
and VBS are 0.0630(5) and 0.1061(15), respectively, which
suggests that a small negative J2 can drive the spin liquid
to the VBS. The right panel in Fig. 13 shows explicitly this
idea. We show the estimated energies with finite J2, defined by
E (J1, J2) = E (J1) + J2〈H (J2)〉, for both the SL and the VBS.
The crossing indicates the suggested transition between the
SL and the VBS at small J2.

We also mention that the error bars in DMRG ener-
gies are defined by 1/5(Evariat − Eextrap), where Evariat is the
lowest variational energy and Eextrap is the extrapolated en-
ergy. Here the factor 1/5 is chosen on the basis of experi-
ence and is typically used in DMRG simulations [52]. The
most conservative error bars would be with the factor of
1, which then will cover the variational energy as an upper
bound.
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