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ABSTRACT

Quantum transport properties in monolayer graphene are sensitive to structural modifications. We find that the introduction of a hexagonal
lattice of antidots has a wide impact on weak localization and Shubnikov-de Haas (SdH) oscillation of graphene. The antidot lattice reduces
both phase coherence and intervalley scattering length. Remarkably, even with softened intervalley scattering, i.e., the phase-breaking time is
shorter than intervalley scattering time, coherence between time reversed states remains adequate to retain weak localization, an offbeat and
rarely reported occurrence. Whereas SdH oscillation is boosted by the antidot lattice, the amplitude of the SdH signal rises rapidly with the
increasing antidot radius. But both effective mass and carrier density are reduced in a larger antidot lattice. A bandgap of ∼10 meV is
opened. The antidot lattice is an effective dopant-free way to manipulate electronic properties in graphene.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5100813

I. INTRODUCTION

Graphene, a single and isolated atomic layer of graphite, was
the first truly two-dimensional material to be discovered. Its unor-
thodox electronic band structure, with linear dispersion relation
plus Dirac points, gives rise to an intriguing combination of
electron-hole degeneracy, almost-zero effective mass, ultrahigh
mobility, and long mean free path.1–6 Even compared with other
carbon systems, the potential for graphene is enthralling.7,8

Unsurprisingly, graphene is an exceptional platform for testing fun-
demantal physics and many technologically important phenomena
such as Shubnikov-de Haas oscillation,2,3,9,10 weak localization,11–15

quantum Hall effect,2,3,5 and spin-orbit interaction.16 Potentially,
these features may make graphene the long sought transformational
material for practical devices of the future.

Antidot lattice has attracted great interest since it can effectively
tune the electronic properties of graphene. Such regular array of
holes impose periodic potential barriers and are able to create a
bandgap in graphene.6,16,17 By tuning the size, shape, and symmetry
of both the hole and the lattice cell, the band structure can be
modified,6,17–22 hence resulting in the change of electronic and trans-
port properties of materials. Shubnikov-de Haas oscillation may

display structural dependence since it is closely related to the
effective mass due to the Fermi surface. Weak localization might be
influenced when the antidot lattice constant is comparable to the
phase coherence length. However, a systematic understanding of the
relation between electronic properties and antidot geometry in
grapene has not yet been attained and more effort is needed.

In this article, magnetotransport has been measured under a
magnetic field up to 31 T at different temperatures down to 0.37 K.
We report on the structural dependence of weak localization and
Shubnikov-de Haas oscillation in monolayer CVD (chemical vapor
deposition) graphene with the antidot lattice. Remarkably, weak
localization is observed, eventhough intervalley scattering time is
found to be longer than phase-breaking time; this seemingly curious
behavior is rare and has only been reported in a few instances.11,23

When antidots are introduced, phase coherence length and interval-
ley scattering length become smaller. Temperature dependence of
phase scattering time indicates that electron-electron interaction
results in phase breaking. Moreover, Shubnikov-de Haas (SdH) oscil-
lation displays size dependence with changing radius of antidot. The
amplitude of SdH oscillation is boosted, and its peak shifts toward
the lower magnetic field with the increasing hole radius; both carrier
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density and effective mass are reduced correspondingly. These obser-
vations confirm that the antidot lattice is an effective nonchemical
way to manipulate electronic properties of graphene.

II. EXPERIMENTS

Our single layer graphene on the Si substrate with 300 nm
thermal oxide was grown by chemical vapor deposition (CVD)
method, with a mobility of 1008 cm2/(V s) at low temperature 2 K.
The antidot lattice and device isolation were defined by electron beam
lithography (JEOL). The patterns were then etched for 6 s using O2

plasma by reactive ion etcher (RIE) with inductively coupled plasma
(ICP) and RIE power both at 50W. A Hall bar with six Ohmic con-
tacts was defined by the second-step electron beam lithography. Ti/Au
(8 nm/50 nm) films were deposited on the samples using an electron
beam evaporator operating at 1 × 10−6 Torr. The inset of Fig. 1(a)
shows a schematic diagram of the Hall bar device, with the channel
width of ∼9 μm, and the length between the voltage probes of ∼15 μm.
Electrical and magnetotransport measurements were conducted in
31 T, 50mm Bore Magnet (Cell 9) with 3He insert at the National
High Magnetic Field Laboratory (NHMFL). The input current with
1 μA at 17.73Hz was applied by a lock-in amplifier (SR830 DSP).

III. RESULTS AND DISCUSSION

A. Weak localization

Figure 1(a) shows scanning electron microscopy (Zeiss Ultra
Plus FESEM) image of the graphene antidot lattice with a hole

radius of r = 125 nm. The antidot lattice is a hexagonal array of cir-
cular holes. As the radius is varied between different sets of
samples, the nearest edge distance between two antidots is held
constant at 200 nm. In our study, we compare r = 125 nm,
r = 50 nm, and r = 0 nm (pristine graphene). Raman spectrum of
chemical vapor deposited graphene is displayed in Fig. 1(b). 2D
peak at 2660 cm−1 is much larger than G peak at 1600 cm−1, indi-
cating that our graphene is monolayer.24–26

Due to the roles of chirality and Berry phase, weak localization
of monolayer graphene is very different from that in conventional
two-dimensional systems.27 Because the Berry phase is π in mono-
layer graphene, the two trajectories are expected to gain a phase
difference of π. However, chirality is reversed between the two
valleys, and thus zero phase difference between two self-intersecting
trajectories is allowed in the presence of significant intervalley scat-
tering. The correction to the change of magnetoconductivity of gra-
phene is given by11,12,17,28

Δσ(B)¼ e2

πh
F

B
Bf

� �
� F

B
Bf þ 2Bi

� �
� 2F

B
Bf þBi þB*

� �� �
,

F(z)¼ln zþψ
1
2
þ 1
z

� �
, Bf,i, * ¼ �h

4De
τ�1
f,i,*: (1)

Here, ψ(z) is the digamma function,τfis the phase-breaking
time, τ i is the elastic intervalley scattering time and τ�1

* ¼ τ�1
w þ τ�1

z ,
where τw is related to trigonal warping and τz is the intravalley

FIG. 1. (a) SEM image of the gra-
phene antidot lattice, which is com-
posed of a hexagonal array of circular
holes. The radius of antidot is around
125 nm; the nearest edge distance
between two antidots is 200 nm. The
inset shows a schematic diagram of
the Hall bar device. (b) Raman spec-
trum of CVD monolayer graphene.
Magnetoconductivity at a set of temper-
atures for (c) r = 125 nm antidot lattice
and (d) pristine graphene. The yellow
curves are the best fitting to Eq. (1).

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 126, 084305 (2019); doi: 10.1063/1.5100813 126, 084305-2

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


scattering time; here the contribution of τ i is not included. The corre-
sponding length is Lf,i,* ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Dτf,i,*

p
, where D is the diffusion cons-

tant given by D ¼ vF2τt=2 and τt is the transport scattering time
obtained from the carrier mobility.

The first term in Eq. (1) is responsible for positive magnetocon-
ductivity, i.e., weak localization, while the second and third terms
lead to antilocalization. Hence, when the intervalley and intravalley
scattering are strong enough (τf . τ i, τ*), the first term dominates,
resulting in positive Δσ and weak localization. Situations where the
phase-breaking time τf is larger than intervalley and intravalley scat-
tering time are common and have been reported by numerous
experiments.11,12,29 For instance, the intervalley scattering in exfoli-
ated monolayer graphene is usually very strong since graphene is
tightly coupled to the substrate and weak localization can be easily
observed.14 For our present monolayer graphene and antidot struc-
tures, the conductivity curves shown in Figs. 1(c) and 1(d) increase
with the increasing magnetic field, and weak localization is also
noticed. This effect becomes much stronger at low temperatures. We
use Eq. (1) to fit experimental data, and analysis of each term has
been shown in Fig. S1 in the supplementary material. From the best
fit, we computed the scattering times and lengths for these samples.
Interestingly, here the intervalley scattering length Li is larger than
the phase coherence length Lf, correspondingly τ i . τf for both
graphene and r = 125 nm antidot samples. Tikhonenko et al. have
analyzed the condition for weak localization and antilocalization.11

As shown in Fig. 2(a), the yellow curve separates the regions of
localization and antilocalization. We can clearly see that when the
phase-breaking time is smaller than the intervalley scattering time
τf , τ i, weak localization can still be observed if τf � τ*. Our data
fall into this frontier (∼top left quarter) regime; consequently,
localization ensues, although τf=τi , 1. This means that the inter-
valley scattering in our graphene is very weak, which might be due
to the fact that the graphene layer is relatively loosely coupled to the
substrate, thereby effectively reducing the contribution of atomically
sharp scatters.14,23

Secondly, phase coherence length Lf and intervalley scattering
length Li are decreased when the antidot is introduced. As we

know, intervalley scattering can be enhanced by atomically sharp
defects. The introduction of antidot results in more edges, leading
to stronger intervalley scattering in antidot samples. Hence, a
smaller Li is observed for graphene with the antidot lattice in
Fig. 2(b). But the intervalley scattering length is still longer than
phase coherence length Lf since Lf is also decreased by the intro-
duction of the antidot.

The temperature dependence of τf contains the inelastic
scattering information responsible for phase breaking of charge
carriers. As shown in Fig. 2(b), phase coherence length increases
when the temperature is decreasing. We did not find the saturation
of Lf at low temperatures. The inelastic phase-breaking rate is cal-
culated, and it is linearly proportional to temperature,τ�1

f / T in
Fig. 2(c). This linearity has been attributed to phase breaking by
inelastic electron-electron scattering.11,12 In addition, we reason
that the introduction of the antidot structures is responsible for
the decrease of dephasing time/length. Since dephasing rate

τ�1
f ¼ akBT

ln(g)
�hg , where g(n) is the normalized conductivity defined

as g(n) ¼ σ(n)h=e2. Several articles have shown that the sample
with a larger carrier density has longer phase coherence
length.29–31 Our pristine graphene has a larger carrier density than
that of the antidot sample. The introduction of the antidot lattice
results in a lower carrier density and shorter coherence length.

B. Shubnikov-de Haas oscillation

The magnetoresistance for the graphene antidot lattice with
hole radius r = 125 nm at a magnetic field of up to 31 T is shown in
Fig. 3(a), where the magnetic field is applied perpendicular to the
film. Above 7 T, Shubnikov-de Haas oscillations appear and
become prominent at larger fields. To clearly highlight these oscil-
lations, the background resistance has been subtracted out, and
the residual ΔR is shown as a function of 1/B in Fig. 3(b). Here, the
background is determined by averaging the curves connecting the
maxima and minima, respectively. Obviously, these oscillations
exhibit temperature dependence, and their amplitudes are reduced
with the increasing temperature.

FIG. 2. Weak localization effect for r = 125 nm antidot lattice and pristine graphene. (a) A diagram of the scattering times, the yellow curve separates localization and anti-
localization regions.11 (b) Temperature dependence of scattering lengths. (c) Phase-breaking rate as a function of temperature.
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Shubnikov-de Haas oscillation can be expressed as2,32,33

ΔR/ χ
sinh(χ) exp

�π
ωcτq

� �
, where χ ¼ 2π2kBT=ΔE, ΔE ¼ �hωc ¼ �heB=m*,

kB is the Boltzmann constant, �h is the reduced Planck constant, e is
the electron charge, and τqis the quantum lifetime. In fact, the SdH
oscillation is a periodic function of 1/B, and the oscillation
frequency BF in Tesla corresponds to the magnetic field of nL ¼ 0
Landau level. We obtained frequency BF = 112.6 T from fast Fourier
transform (FFT) analysis as shown in the inset of Fig. 3(b).
Furthermore, the carrier density has the following relation with
oscillation frequency nSdH ¼ 4eBF=h; here the factor of 4 accounts
for the fourfold degeneracy due to double spin and double valley in
graphene.3 For the r = 125 nm graphene sample, the carrier density
is calculated to be nSdH ¼ 1:067� 1013cm�2.

In order to study the size effect of antidot, graphene antidot
lattices with different radii were measured. Three effects are
observed in Fig. 3(c). First, the resistance is increased. The intro-
duction of the antidot lattice brings in more scatterings, hence
leading to larger resistance in antidot samples than that of pristine
graphene. Second, the magnitude of oscillations is enhanced by
the antidot lattice. When the lattice is introduced and its radius is
increased, the SdH signal becomes prominent as shown in
Fig. 3(d). The peak value is almost 800Ω for the r = 125 nm
sample at around 28 T, whereas it is only 136Ω at 30 T for pristine
graphene. Table I lists several parameter values associated with the
nL ¼ 4 Landau level. Clearly, the SdH oscillation is boosted with
the increasing antidot radius. Lastly, the corresponding magnetic

field of peaks or valleys also displays geometry dependence, it
moves to the lower field with the increasing hole size. For the same
Landau level, such as nL ¼ 4, the magnetic field is 27.2 T, 25.9 T,
and 24.7 T for r = 0 nm, 50 nm, and 125 nm samples, respectively.
From the Fourier transform analysis, the oscillation frequency BF is
obtained and listed in Table I. The sample with larger hole radius
has a smaller BF, which corresponds to a smaller carrier density. In
other words, the carrier density decreases with the increasing hole
radius. Based on the above observations, we conclude that the
antidot size indeed affects the properties of graphene.

The inverse relation of the carrier density with antidot radius
is also shown by the Landau fan diagram in Fig. 4(a). The intercept
in the Landau index is the associated Berry phase β.2,3,9 Through
linear regression of the data, we find β � 0:5 for all three samples,
hence, Berry phase wB ¼ 2πβ ffi π, indicating the presence of the
Dirac fermion.3,9,34 However, the slope from the fitting for each

FIG. 3 (a) Magnetoresistance as a
function of the magnetic field at a set
of temperatures for monolayer gra-
phene with r = 125 nm antidot lattice,
pronounced Shubnikov-de Haas (SdH)
oscillations are observed. (b) SdH as a
function of 1/B after subtracting the
background. Fourier transform analysis
is shown in the inset. (c)
Magnetoresistance of monolayer gra-
phene with the antidot lattice at 0.37 K,
antidot radius is defined as 0 nm (pris-
tine graphene), 50 nm, and 125 nm. (d)
Comparison of SdH oscillations after
subtracting the background.

TABLE I. Comparasion of electronic properties of the graphene antidot lattice with
different radii.

Antidot
radius

|ΔR| (Ω)
for nL= 4 BF (T)

nSdH
(cm−2) μ [cm2/(V s)] m*

r = 0 nm 110 126.7 1.225 × 1013 1008 0.087me

r = 50 nm 461 114.6 1.108 × 1013 423 0.078me

r = 125 nm 607 112.6 1.067 × 1013 368 0.064me
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sample is different, where the slope means the SdH oscillation fre-
quency BF. Pristine graphene is observed to have the largest slope
and BF, hence the largest carrier density according to
nSdH ¼ 4eBF=h. As a result, with the increasing hole radius, slope
becomes smaller and the carrier density is reduced correspond-
ingly. Note that the carrier density obtained by the Landau fan
diagram and Fourier transform remains the same.

The effective mass m* of carrier also displays geometric depen-
dence, and it decreases with the increasing antidot radius. m* can be
extracted from the temperature dependence of the SdH amplitude at

a constant magnetic field by ΔR(T , B)
ΔR(T0, B) ¼ T sinh(2π2kBT0=ΔE(B))

T0 sinh(2π2kBT=ΔE(B))
. Here, we

choose the lowest temperature 370mK as T0. The Landau level
spacing ΔE(B) ¼ �heB=m* from the best fitting for different magnetic
fields is shown in Fig. 4(b). The effective mass m* can be obtained
from the slope of the linear fitting, and there is an inverse relation
between the effective mass and slope. For all three samples, pristine
graphene has the smallest slope, and the slope increases with the

increasing antidot radius. Using the slope, the effective mass is calcu-
lated to be 0.087me, 0.078me, 0.064me, respectively, for samples with
hole radius r = 0 nm, 50 nm, and 125 nm (me is the mass of a free
electron). As indicated by experimental data, the effective mass
decreases with the increasing hole size. It is worth noting that the
carrier density and effective mass have similar relation with antidot
radius.35 Since the effective mass is increased with the increasing

carrier density, m*¼ EF
v2F
¼ �hkF

vF
¼ �h

ffiffi
π

p
vF

ffiffiffi
n

p
, here k2F=π ¼ n, kF is the

Fermi wave vector.2,3,36 If pristine graphene has the largest carrier
density, the effective mass is consequently largest. This is consistent
with our experimental data, and the carrier density and effective
mass both decrease with the increasing antidot size. Figure 4(c)
shows the relation between square root of the carrier density and
effective mass. The Fermi velocity is calculated to be 0.83 × 106 m/s,
0.869 × 106 m/s, and 1.046 × 106 m/s for r = 0 nm, 50 nm, 125 nm
antidot lattice samples, respectively. The difference of the Fermi
velocity might indicate the change of band dispersion.

FIG. 4. (a) The Landau fan diagram, the intercept in the Landau index is the associated Berry phase β. (b) Field dependence of Landau level spacing. (c) Effective mass
and carrier density relation.

FIG. 5 (a) Angle dependence of mag-
netoresistance for the graphene antidot
lattice at T = 0.37 K. The radius of
antidot is 125 nm. The inset shows the
schematic diagram of the angle defini-
tion. (b) Rescale magnetoresistance as
a function of B cos θ. All data at differ-
ent angles collapse into a single curve.
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C. The relative orientation dependence

The angle dependence of magnetoresistance has also been
investigated to show the two-dimensional nature of carriers in the
graphene antidot lattice. We define θ as the angle between the
direction of the magnetic field and the normal direction of the gra-
phene plane, as shown in the schematic diagram of Fig. 5(a).
Magnetoresistance for the r = 125 nm sample at 370 mK has been
measured at angles from 0° to 90°. At θ = 0°, when the magnetic
field is perpendicular to the sample, the SdH oscillation is pro-
nounced. When the angle is increased, the amplitude of the SdH
oscillation becomes smaller. The peaks of the oscillations shift
toward the higher magnetic field. At θ = 90°, where the magnetic
field is parallel to graphene surface and along the current configu-
ration, no oscillation is observed and resistance changes slowly with
the magnetic field. We have plotted the magnetoresistance as a
function of perpendicular component of the magnetic field, B cos θ.
Peaks at different angles in Fig. 5(b) collapse together, showing a
universal curve. Hence, the behavior of carriers in graphene exhib-
its the two-dimensional nature.27,32

D. Bandgap

Temperature dependence of resistance for three samples has
been measured and shown in Fig. S2 in supplementary material.
Pristine graphene generally exhibits temperature insensitivity.
However, the resistance in the antidot lattice sample increases with
the decreasing temperature. The activation bandgap is estimated by
the following equation, R ¼ R0 exp(Ea=2kBT), where Ea is the acti-
vation energy and R0 is a constant. Figure 6 shows the Arrhenius
plot for two samples. The bandgap is calculated to be 10.4 meV for
the r = 50 nm antidot lattice and 7.9 meV for the r = 125 nm
sample at high temperature. Generally, the induced bandgap in

the graphene antidot lattice is inversely proportional to the lattice
constant and neck width.6,22,37 Eroms et al.17 reported a bandgap
around 6meV with similar antidot dimension. Jessen et al.38 have
reported graphene superlattice encapsulated by hexagonal boron
nitride (hBN), and they found a very large energy gap ∼148 meV
in a lattice with a period of 35 nm and a minimum feature size
of 13 nm. With the protection of hBN during fabrication, high
mobility and true bandgap can be realized.

IV. CONCLUSIONS

The introduction of the antidot lattice has great influence on
transport properties of graphene. We observe that the antidot
lattice reduces the phase coherence length and intervalley scattering
length. Although weak localization is easily observed when phase-
breaking time is longer than intervalley scattering time, we find
that coherence remains adequate to retain weak localization even
if the phase-breaking time in our graphene is shorter than the
intervalley scattering time. In addition, Shubnikov-de Haas oscilla-
tions are extremely sensitive to the hole size. With the increasing
antidot radius, the amplitude of Shubnikov-de Haas oscillation is
enhanced. Moreover, the carrier density, mobility, and effective
mass are reduced with the increasing hole size. The introduction of
the antidot lattice opens a ∼10 meV bandgap. Therefore, quantum
transport and electronic properties in graphene can be effectively
tuned by the antidot lattice.

SUPPLEMENTARY MATERIAL

See the supplementary material for details on weak localiza-
tion fitting, each term contribution, and temperature dependent
resistance.
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