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Osis G, Webster KL, Harris AN, Lee HW, Chen C, Fang L,
Romero MF, Khattri RB, Merritt ME, Verlander JW, Weiner ID.
Regulation of renal NaDC1 expression and citrate excretion by
NBCe1-A. Am J Physiol Renal Physiol 317: F489–F501, 2019. First
published June 12, 2019; doi:10.1152/ajprenal.00015.2019.—Citrate
is critical for acid-base homeostasis and to prevent calcium nephro-
lithiasis. Both metabolic acidosis and hypokalemia decrease citrate
excretion and increase expression of Na�-dicarboxylate cotransporter
1 (NaDC1; SLC13A2), the primary protein involved in citrate reab-
sorption. However, the mechanisms transducing extracellular signals
and mediating these responses are incompletely understood. The
purpose of the present study was to determine the role of the
Na�-coupled electrogenic bicarbonate cotransporter (NBCe1) A vari-
ant (NBCe1-A) in citrate metabolism under basal conditions and in
response to acid loading and hypokalemia. NBCe1-A deletion in-
creased citrate excretion and decreased NaDC1 expression in the
proximal convoluted tubules (PCT) and proximal straight tubules
(PST) in the medullary ray (PST-MR) but not in the PST in the outer
medulla (PST-OM). Acid loading wild-type (WT) mice decreased
citrate excretion. NaDC1 expression increased only in the PCT and
PST-MR and not in the PST-MR. In NBCe1-A knockout (KO) mice,
the acid loading change in citrate excretion was unaffected, changes in
PCT NaDC1 expression were blocked, and there was an adaptive
increase in PST-MR. Hypokalemia in WT mice decreased citrate
excretion; NaDC1 expression increased only in the PCT and PST-MR.
NBCe1-A KO blocked both the citrate and NaDC1 changes. We
conclude that 1) adaptive changes in NaDC1 expression in response to
metabolic acidosis and hypokalemia occur specifically in the PCT and
PST-MR, i.e., in cortical proximal tubule segments; 2) NBCe1-A is
necessary for normal basal, metabolic acidosis and hypokalemia-
stimulated citrate metabolism and does so by regulating NaDC1
expression in cortical proximal tubule segments; and 3) adaptive
increases in PST-OM NaDC1 expression occur in NBCe1-A KO mice
in response to acid loading that do not occur in WT mice.

citrate; Na�-dicarboxylate cotransporter 1; proximal tubule

INTRODUCTION

Citrate excretion by the kidneys has a critical role in both
acid-base homeostasis and the prevention of calcium nephro-
lithiasis. The former occurs because citrate is a critical sub-
strate for the tricarboxylic acid (TCA) cycle, where its metab-
olism results in bicarbonate generation at a 1:3 molar ratio
(51). Accordingly, each citrate molecule excreted equates to
excretion of three bicarbonate anions. Citrate excretion de-
creases in response to metabolic acidosis (12, 19, 48), whereby
decreasing bicarbonate precursor excretion contributes to the
kidney’s maintenance of acid-base homeostasis. Citrate also
plays a key role in the prevention of calcium nephrolithiasis.
This is because urinary citrate reversibly chelates Ca2� (20,
45). By doing so, it decreases the ionized Ca2� concentration
in the luminal fluid and urine, which thereby decreases calcium
stone development and growth (22, 29). In addition, urinary
citrate adsorption on crystal surfaces may induce crystal dis-
solution directly (11).

The cellular mechanisms regulating citrate excretion are
partially understood. Circulating citrate is essentially 100%
filtered at the glomerulus and then undergoes regulated reab-
sorption in the proximal tubule. Distal to the proximal tubule,
there is little to no citrate transport (10, 21, 23). In the proximal
tubule, citrate reabsorption occurs primarily as result of Na�-
coupled citrate transport (10, 21, 23, 60) via the apical integral
membrane protein Na�-dicarboxylate cotransporter 1 (NaDC1;
SLC13A2) (3, 49, 52, 57). In metabolic acidosis, there is both
increased proximal tubule luminal citrate reabsorption (3, 9,
28) and increased cellular metabolism of the reabsorbed citrate,
resulting in increased intracellular bicarbonate generation (62).
Increased proximal tubule citrate reabsorption is associated
with, and likely results, at least in part, from increased NaDC1
expression (3, 42).

Several important aspects of NaDC1’s role in citrate trans-
port remain unclear. Importantly, the molecular mechanisms
that transduce extracellular signals and regulate NaDC1 ex-
pression are unknown. One potential mechanism that could
mediate the NaDC1 response to metabolic acidosis involves
the proximal tubule basolateral Na�-coupled electrogenic bi-
carbonate cotransporter (NBCe1; SLC4A4). We have recently
shown that NBCe1 is necessary for normal NaDC1 expression
(50). However, deletion of all splice variants of NBCe1 causes
100% perinatal mortality (18, 25, 50), precluding assessment
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of NBCe1’s role to regulate NaDC1 expression either in the
adult kidney or in response to acid loading or K� restriction.
NBCe1 has five known splice variants (8, 43, 55), and the
A-variant, NBCe1-A, is the primary variant expressed in the
renal proximal tubule. Deletion of only NBCe1-A, in contrast
to deletion of all splice variants, does not cause early mortality
(36). This enables examination of NBCe1-A’s role in the
regulation of NaDC1 expression in adult mice under basal
conditions and in response to experimental stimuli.

Thus, the purpose of the present study was to determine the
role of NBCe1-A in the signal transduction pathway regulating
basal, metabolic acidosis-stimulated and hypokalemia-stimu-
lated citrate excretion. We found under basal conditions that
NaDC1 expression is largely present in the brush border at
similar intensity throughout the proximal tubules. We then
determined whether acid loading and/or hypokalemia altered
NaDC1 expression in those proximal tubule segments that
express NBCe1-A, i.e., cortical proximal tubule segments, and
whether there was a change in expression in proximal tubule
segments that do not express NBCe1-A under basal conditions,
i.e., the proximal straight tubule (PST) in the outer medulla
(PST-OM). Our next experiments determined whether NBCe1-A
deletion altered the proximal tubule NaDC1 response to acid
loading and hypokalemia Finally, we determined whether
changes in citrate excretion paralleled changes in NaDC1
expression. The results of this study show that NBCe1-A has a
critical role in the signal transduction mechanisms regulating
NaDC1 expression and citrate excretion. They also show that
alternative/adaptive mechanisms responsive to acid loading are
activated in the PST-OM in response to NBCe1-A deletion.

METHODS

Animals. We obtained 4-mo-old wild-type (WT) male and female
C57BL/6 mice from the Jackson Laboratory. Mice were allowed to
acclimate for 3–4 days before study. To study the role of NBCe1-A
in the regulation of citrate metabolism and NaDC1 expression, we
used mice with selective deletion of NBCe1-A (36). Briefly, NBCe1-A
knockout (KO) mice have an 11-bp deletion in the 5=-portion of the
coding sequence specific to NBCe1-A (and NBCe1-D) that is not
present in the coding sequence of NBCe1-B, NBCe1-C, or NBCe1-E.
This causes a downstream frameshift mutation beginning at amino
acid residue 30 and the generation of multiple early stop codons
beginning at amino acid residue 50 that prevent NBCe1-A protein
expression (36). Because NBCe1-D mRNA is not expressed in the
mouse kidney (16), we refer to these mice as NBCe1-A KO mice. All
breeding involved heterozygous sires with heterozygous dams, and
homozygous deletion mice were compared with age-matched WT
mice derived from the same breeding regimen. We genotyped all mice
using tail-clip samples as previously described (36). The tissues used
for the evaluation of the response to metabolic acidosis were ran-
domly selected from a larger set of mice prepared for another project
examining ammonia metabolism (36).

The Institutional Animal Care and Use Committees of the Univer-
sity of Florida and North Florida/South Georgia Veterans Health
System approved all animal experiments. Trained personnel in the
University of Florida College of Medicine Cancer and Genetics
Transgenic Animal Core Facility oversaw all animal breeding.

Antibodies. Antibodies to NaDC1 were obtained from ProteinTech
Group (Rosemont, IL). We have previously shown that this antibody
was specific to NaDC1 when used for immunohistochemistry studies
by showing an absence of detectable immunolabel in mice with
NaDC1 deletion (50). This antibody, however, was not specific when
used for immunoblot analysis of mouse renal tissues, i.e., the same

immunoblot findings were observed in proteins from WT and NaDC1
KO mouse kidneys (data not shown), thereby precluding immunoblot
analysis in the present project.

Acid loading. An acid diet was prepared as we previously described
(6, 32, 37, 39, 58, 59). Briefly, we added 0.4 M HCl to powdered
standard rodent chow at a ratio of 1 ml/g chow. The control diet was
identical except that we substituted deionized water for HCl. Mice
were housed in metabolic cages throughout the duration of the
experiment, and daily 24-h urine collections were made.

Hypokalemia. We induced hypokalemia as we have previously
described (5, 38), with the exception that mice received the hypoka-
lemia diet for only 4 days. Briefly, hypokalemic mice received
K�-control diet (TD.88238, Envigo Teklad Diets, Envigo) for 2–3
days and then were changed to a nominally K�-free diet (TD.88239,
Envigo Teklad Diets, Envigo). Control mice received only K�-control
diet. Mice were housed in metabolic cages throughout the duration of
the experiment, and daily 24-h urine collections were made.

Tissue preparation for immunohistochemistry. Kidney tissues were
fixed for immunohistochemistry using standard approaches (24, 33,
34, 37, 39). Briefly, mice were anesthetized with inhalant isoflurane,
after which kidneys were preserved by in vivo cardiac perfusion with
PBS (pH 7.4) containing 6,000 U/l of Na-heparin and 120 mg/l of
lidocaine followed by periodate-lysine-2% paraformaldehyde (PLP),
cut transversely into several 2- to 3-mm-thick slices, and immersed for
24–30 h at 4°C in the same fixative. Kidney samples from each
animal were embedded in polyester wax made using polyethylene
glycol 400 distearate (Polysciences, Warrington, PA) with 10%
1-hexadecanol, and 2-�m-thick sections were cut and mounted on
gelatin-coated glass slides.

Immunohistochemistry. Immunolocalization was accomplished us-
ing standard immunoperoxidase procedures we have previously de-
scribed in detail (25, 34, 35, 39). Briefly, sections were dewaxed in
ethanol, rehydrated, heated in Trilogy (Cell Marque, Rocklin, CA) to
88°C for 30 min and then to 96°C for 30 min, cooled for 30 min, and
rinsed in PBS. Endogenous peroxidase activity was blocked by
incubating sections in 3% H2O2 in distilled water for 45 min.
Sections were blocked for 15 min with Serum-Free Protein Block
(DakoCytomation) and then incubated at 4°C overnight with pri-
mary antibody. Sections were washed in PBS and incubated for 30
min with polymer-linked, peroxidase-conjugated goat anti-rabbit
IgG (MACH2, Biocare Medical, Concord, CA), washed again with
PBS, and then exposed to diaminobenzidine (DAB) for 5 min.
Sections were washed in distilled water, dehydrated with xylene,
mounted, and observed by light microscopy. All immunohistochem-
istry was performed simultaneously in the four sets of experimental
mouse kidneys for each model used in this report, that is, for both
genotypes fed control versus acid-loading diet or fed K�-control
versus K�-free diet. Sections were examined on a Nikon E600
microscope equipped with DIC optics and photographed using a
DXM1200F digital camera and ACT-1 software (Nikon).

Quantitative immunohistochemistry. Quantitative immunohistoch-
emistry was performed as previously described (30). Briefly, high-
resolution, 36-megapixel, digital micrographs were taken of defined
tubular segments. DIC and other contrast enhancement techniques
were not used. We used freely available software (version 1.34s,
ImageJ, National Institutes of Health) to quantify pixel intensity
across a line drawn from the tubule lumen through the center of an
individual cell. Background pixel intensity, calculated as mean pixel
intensity in regions of the cell with no detectable immunolabel, was
subtracted from absolute pixel intensity to yield net pixel intensity.
Total cellular expression was determined by integrating net pixel
intensity. All images were obtained and analyzed by an individual
blinded to the treatment group of the slides being examined.

Images were obtained of proximal tubule epithelial cells in the
following three defined regions to assess axial variations in NaDC1
expression, as we have previously described (34): 1) the proximal
convoluted tubule (PCT) in the cortical labyrinth, 2) PST in the
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medullary ray (PST-MR), and 3) PST-OM. At least four profiles of
each tubule segment were quantified in each kidney and were aver-
aged to yield a single measurement. Results were then normalized
such that mean expression in PCT segments in the cortical labyrinth
in nonstimulated same-sex WT mice was 100.0. All quantitative
immunohistochemistry micrographs for either the acid-loading proto-

col or hypokalemia protocol were obtained in a single microscopy
session by a single investigator.

NMR spectroscopy for citrate quantification. Proton 1D NMR
spectra were collected using a 14.1-T NMR magnet equipped with a
CP TXI CryoProbe and an Avance II Console (Bruker Biospin,
Billerca, MA). Each NMR sample consists of 100 �l [50% (vol/vol),

Fig. 1. Na�-dicarboxylate cotransporter 1 (NaDC1)
immunolabel in the normal mouse kidney. Top
left: low-power micrograph of NaDC1 immuno-
label in the normal mouse kidney. Top right:
high-power micrograph of the cortical labyrinth.
Apical immunolabel was present only in proximal
convoluted tubule (PCT) segments. Bottom left:
high-power micrograph in the medullary ray in
the cortex. Apical immunolabel was present only
in proximal straight tubules in the medullary ray
(PST-MR). Bottom right: high-power micrograph
in the outer stripe of the outer medulla. Apical
immunolabel was present only in proximal
straight tubules in the outer medulla (PST-OM).
In no region was significant NaDC1 immunolabel
evident in nonproximal tubule cells. *Proximal
tubule lumen. Results are representative of find-
ings in 10 mice.

Fig. 2. Na�-dicarboxylate cotransporter 1 (NaDC1)
immunolabel in acid-loaded normal mouse kidney.
Top left: low-power micrograph of NaDC1 immu-
nolabel. Increased immunolabel intensity in the
cortex compared with the nonacid-loaded wild-
type mouse was apparent. Top right: NaDC1 im-
munolabel involving the brush border in proximal
convoluted tubule (PCT) segments in the cortical
labyrinth. Moderate to more intense apical NaDC1
immunolabel was evident. Bottom left: apical
NaDC1 immunolabel involving the brush border in
proximal straight tubules in the medullary ray
(PST-MR). Immunolabel intensity in both PCT and
PST-MR appeared greater than in nonacid-loaded
mouse kidneys (see Fig. 1). Bottom right: apical
NaDC1 immunolabel involving the brush border in
proximal straight tubules in the outer medulla
(PST-OM). Immunolabel intensity appeared un-
changed compared with nonacid-loaded mouse
kidneys (see Fig. 1). Results are representative of
findings in 12 mice. *Proximal tubule segments. In
no region was significant NaDC1 immunolabel
evident in nonproximal tubule cells.
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centrifuged and filtered] urine, 80 �l [40% (vol/vol)] deuterated 20�
PBS, and 20 �l [10% (vol/vol)] of internal standard (5 mM DSS-D6
and 0.2% NaN3 in D2O, Chenom), making a total volume of 200 �l
for a sample. The pH was controlled at 7.2. A 1D NOESY pulse
sequence (tnnoesy.c) was used to acquire 1D proton spectra, with a
3-s relaxation delay, 100-ms mixing time, 64 scans, 12-ppm spectral
width, and 4 s of acquisition time (54). All experiments were acquired

at 25°C. Spectra were processed and analyzed using MestReNova
11.0.0 (Mestrelab Research, S.L., Santiago de Compostela, Spain).
They were zero filled to 131,072 points with exponential line broad-
ening of 0.5 Hz and Whittaker Smoother baseline correction. Chem-
ical shifts were calibrated with respect to DSS singlet signal at 0 ppm.
Citrate peak multiplets were fitted to a mixed Gaussian/Lorentzian
line shape and compared with the DSS standard to determine the
concentration.

Statistics. Results are presented as mean � SE; n refers to the
number of animals studied. Statistical analysis was performed using
IBM SPSS Statistics. Statistical comparison of groups with multiple
comparisons used multivariate general linear model analysis ANOVA
techniques. Specific comparisons used Bonferroni correction. Both
male and female mice were studied; in no case did consideration of
sex alter the statistical conclusions. P values of �0.05 were taken as
statistically significant.

RESULTS

Axial NaDC1 expression. Our first set of experiments deter-
mined NaDC1 immunolabel expression along the proximal
tubule in the normal kidney. Immunohistochemistry using a
validated anti-NaDC1 antibody showed apical NaDC1 immu-
nolabel throughout the entire proximal tubule. High-power
micrographs examining the PCT, PST-MR, and PST-OM
showed similar NaDC1 immunolabel intensity in each of these
portions of the proximal tubule (Fig. 1). Quantitative immu-
nohistochemistry showed that there were no significant differ-
ences in NaDC1 immunolabel between the different regions of
the proximal tubule. Thus, at least under baseline conditions,
NaDC1 expression does not appear to differ in different re-
gions of the proximal tubule.

NaDC1 response to acid loading. Acid loading decreases
citrate excretion (12, 19, 48), and this is associated with
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Fig. 3. Quantitative assessment of Na�-dicarboxylate cotransporter 1 (NaDC1)
expression in the proximal tubule of normal animals comparing basal condi-
tions with an acid-loading diet. Cell-specific NaDC1 immunolabel intensity
was determined in the proximal convoluted tubules (PCT), proximal straight
tubules in the medullary ray (PST-MR), and proximal straight tubules in the
outer medulla (PST-OM) of normal mice that received either control or
acid-loading diet (representative immunohistochemistry shown in Figs. 1 and
2). Acid loading increased expression significantly in the PCT and PST-MR
but not in the PST-OM. n � 10 normal diet-fed mice and 12 acid diet-fed mice.
NS, not significant.
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Fig. 4. Na�-dicarboxylate cotransporter 1 (NaDC1)
immunolabel expression in kidneys from Na�-cou-
pled electrogenic bicarbonate cotransporter A vari-
ant (NBCe1-A) knockout (KO) mice on a normal
diet. Top left: low-power micrograph of NaDC1
immunolabel in a NBCe1-A KO kidney. Relatively
low cortical immunolabel, but intact outer medul-
lary NaDC1 immunolabel, was evident. Top right:
high-power micrograph of NaDC1 immunolabel in
proximal convoluted tubules (PCT) illustrating low-
intensity apical NaDC1 immunolabel. Bottom left:
low-intensity apical NaDC1 immunolabel involving
the brush border in proximal straight tubules in the
medullary ray (PST-MR). Bottom right: modestly
more intense apical NaDC1 immunolabel involving
the brush border in proximal straight tubules in the
outer medulla (PST-OM). Results are representative
of findings in 11 separate mice. *Proximal tubule
segments. In no region was significant NaDC1 im-
munolabel evident in nonproximal tubule cells.
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increased NaDC1 expression (3, 42). The next set of experi-
ments was designed to determine whether the effect of acid
loading on NaDC1 expression was uniform throughout the
mouse proximal tubule or whether there was axial heterogene-
ity in the NaDC1 response. To do so, we compared normal
C57BL/6 mice that had been acid loaded for 7 days with
control mice (used for the previous experiment examining
NaDC1 expression under control conditions) that had been
treated identically except that H2O was substituted for HCl.

In acid-loaded C57BL/6 mice, the general pattern of NaDC1
immunolabel was similar to that observed in control diet-fed
mice. Apical immunolabel was present only in the proximal
tubule, with no detectable expression in nonproximal tubule
cells. However, compared control mice, NaDC1 immunolabel
intensity appeared increased by acid loading in cortical prox-
imal tubule segments, i.e., the PCT and PST-MR, but not in
outer medullary proximal tubule segments, i.e., the PST-OM
(Fig. 2).

Because of the novelty of this qualitative observation, that
acidosis increases NaDC1 immunolabel in cortical but not in
outer medullary proximal tubule segments, we used unbiased
quantitative immunohistochemical approaches (30, 34, 64) to
further assess NaDC1 immunolabel intensity in specific prox-
imal tubule portions. Figure 3 shows these data. Acid loading
increased NaDC1 immunolabel expression significantly in the
PCT (P � 0.001) and PST-MR (P � 0.001) but did not alter
PST-OM NaDC1 immunolabel significantly [P � not signifi-
cant (NS)]. This axial heterogeneity indicates that differing
signaling mechanisms are triggered by acid loading in cortical
proximal tubule segments, i.e., the PCT and PST-MR, versus
outer medullary PT segments, i.e., the PST-OM.

NBCe1-A regulates basal NaDC1 expression. The sites of
altered NaDC1 expression during acid loading, the cortical
proximal tubule segments, PCT and PST-MR, correspond to
the location of NBCe1-A (14, 36, 44, 56, 66). NBCe1-A is the
primary NBCe1 splice variant present in the kidney (16, 31,
55), and it has a key role in determining the proximal tubule
ammonia metabolism response to acid loading (36). Because
ammonia and citrate metabolism are tightly correlated, we
postulated that NBCe1-A might also mediate the NaDC1
response to acid loading.

To test this, we determined the effect of NBCe1-A deletion on
NaDC1 expression. Low-power micrographs of the NBCe1-A
KO kidney identified only faint apical NaDC1 immunolabel in the
cortical proximal tubule segments, but intact expression in prox-
imal tubule segments in the outer medulla; high-power micro-
graphs confirmed these observations (Fig. 4). Compared with
WT littermates, NBCe1-A deletion significantly decreased
overall NaDC1 expression (P � 0.001 by ANOVA); however,
this effect was present only in cortical proximal tubule seg-
ments, i.e., PCT (n � 8 WT mice and 8 KO mice, P � 0.001)
and PST-MR (n � 8 WT mice and 8 KO mice, P � 0.001);
NaDC1 immunolabel intensity in the PST-OM did not differ
significantly between WT and KO mice (n � 8 WT mice and
8 KO mice, P � NS).

NBCe1-A deletion causes a spontaneous and relatively se-
vere metabolic acidosis (36). The present study used a ran-
domly selected subset of mice from our previous report (36);
the serum electrolytes from the subset of mice used for this
project did not differ significantly from those previously re-
ported (data not shown). Because experimentally induced met-
abolic acidosis increased NaDC1 expression in the PCT and
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Fig. 5. Na�-dicarboxylate cotransporter 1 (NaDC1)
immunolabel in acid-loaded Na�-coupled elec-
trogenic bicarbonate cotransporter A variant
(NBCe1-A) knockout (KO) mouse kidneys. Top
left: low-power micrograph of NaDC1 immuno-
label in an acid-loaded NBCe1-A KO kidney.
Low-intensity NaDC1 immunolabel was present
in the cortical labyrinth, where intensity ap-
peared more intense compared with that ob-
served in nonacid-loaded KO mice (see Fig. 4)
in proximal straight tubule segments in both the
medullary ray (PST-MR) and outer medulla
(PST-OM). Top right: higher magnification of
low-intensity apical NaDC1 immunolabel in
proximal convoluted tubules (PCT). Bottom left:
substantially more intense apical NaDC1 immu-
nolabel involving the brush border in the
PST-MR compared with that observed in nonac-
id-loaded KO mice (see Fig. 4). Bottom right:
intense apical NaDC1 immunolabel involving
the brush border in the PST-OM. Results are
representative of findings in 11 separate mice.
*Proximal tubule segments. In no region was
significant NaDC1 immunolabel evident in non-
proximal tubule cells.
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PST-MR in normal C57BL/6 mice, the decreased NaDC1
expression in cortical proximal tubule segments of spontane-
ously acidotic NBCe1-A KO mice indicates substantial dys-
regulation of NaDC1 expression.

NaDC1 response to acid loading in NBCe1-A KO mouse.
We next determined whether NBCe1-A had a role in the
NaDC1 response to exogenous acid loading. NaDC1 expres-
sion was examined in NBCe1-A KO mice that had been acid
loaded for 7 days. Serum bicarbonate levels decreased with
acid loading (see Ref. 36; similar findings were observed in the
subset of animals used in this study). The mice were apparently
healthy and exhibited normal grooming and motor activities.
To ensure that any differences seen were specific to NBCe1-A
deletion, a parallel set of experiments was performed in WT
littermates. The response of WT littermates did not differ either
qualitatively or quantitatively from the response observed in
control C57BL/6 mice presented above (data not shown). In
acid-loaded NBCe1-A KO mice, similar to findings in nonacid-
loaded mice, NaDC1 immunolabel was present only in proxi-
mal tubule cells. High-power micrographs showed low-inten-
sity immunolabel in the PCT and moderate-level intensity
immunolabel in the PST-MR and PST-OM (Fig. 5). Compared
with nonacid-loaded NBCe1-A KO mice, immunolabel inten-

sity appeared more intense in the PST-MR and PST-OM but
not in the PCT.

Quantitative analysis of the effect of NBCe1-A deletion on
the NaDC1 response to acid loading. Quantitative analysis
showed that NBCe1-A KO deletion significantly altered basal
and acid-loading NaDC1 expression. First, acid loading only
minimally increased PCT NaDC1 expression in NBCe1-A KO
mice (normal diet: 44 � 4 and acid diet: 79 � 5, n � 8 and 11,
respectively, P � 0.001). This contrasts with the finding that
acid loading substantially increased PCT NaDC1 immunolabel
intensity in both normal C57BL/6 mice (vide supra) and WT
littermates (normal diet: 100 � 4 and acid diet: 207 � 11, n �
8 and 11, respectively, P � 0.001). NBCe1-A deletion signif-
icantly blunted the magnitude of the PCT NaDC1 response to
acid loading (P � 0.001 by ANOVA). Figure 6 shows these
quantitative findings. Thus, NBCe1-A is necessary for the
normal PCT NaDC1 response to acid loading.

The effect of NBCe1-A deletion on the NaDC1 response to
acid loading was different in the PST-MR. In this portion of the
proximal tubule, acid loading increased NaDC1 expression
significantly in both WT mice (normal diet: 153 � 7 and acid
diet: 228 � 13, n � 7 and 11, respectively, P � 0.002) and
NBCe1-A KO mice (normal diet: 61 � 7 and acid diet:
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182 � 22, n � 7 and 10 in each group, P � 0.001). NBCe1-A
deletion did not alter the response to acid loading significantly
(P � NS by ANOVA; Fig. 7). Thus, in contrast to the PCT, in
the PST-MR, NBCe1-A expression is not necessary for the
NaDC1 response to acid loading.

Finally, the response of the PST-OM differed from both the
PCT and PST-MR. In this region of the proximal tubule, where
NBCe1-A is not expressed, acid loading increased NaDC1
immunolabel significantly in NBCe1-A KO mice (normal diet:
180 � 17 and acid diet: 266 � 15, N � 8 and 12, respectively,
P � 0.01; Fig. 8). This contrasts with findings in WT mice
where acid loading did not alter expression significantly (nor-
mal diet: 185 � 23 and acid diet: 202 � 14, n � 8 and 11,
respectively, P � NS). This effect of NBCe1-A deletion to
induce an NaDC1 response to acid loading in the PST-OM was
statistically significant (P � 0.05 by ANOVA).

Effect of acid loading and NBCe1-A deletion on citrate
excretion. Finally, because NaDC1 is a primary determinant of
citrate excretion, we determined the effect of acid loading and
NBCe1-A deletion on urinary citrate excretion. Under basal
conditions, citrate excretion in WT mice averaged 8.63 � 1.59
�mol/day (n � 11). Citrate excretion by NBCe1-A KO mice
under basal conditions was significantly greater, averaging
21.81 � 4.74 �mol/day (n � 11 in each group, P � 0.02).
Mice were then acid loaded for 7 days, and citrate excretion
was measured. In WT mice, acid loading decreased citrate
excretion significantly, to 0.12 � 0.02 �mol/day (n � 11, P �
0.001 by paired t-test). In NBCe1-A KO mice, acid loading
also decreased citrate excretion significantly, to 0.28 � 0.15
�mol/day (n � 11, P � 0.001). After acid loading, urinary
citrate did not differ significantly between WT and KO mice
(P � NS). Also, the relative change in citrate excretion was not
altered significantly by NBCe1-A deletion (WT mice: �97.
9 � 0.6% and KO mice: �98.2 � 0.7%, n � 11 in each group,
P � NS). Figure 9 shows these results. Thus, in WT mice, acid
loading increases NaDC1 expression in cortical proximal tu-
bule segments and decreases citrate excretion. In NBCe1-A
KO mice, acid loading increases NaDC1 expression in a
pattern different from WT mice, resulting in an intact ability to
decrease citrate excretion in response to acid loading to iden-
tical levels as observed in WT mice.

Effect of hypokalemia on NaDC1 expression in WT mice.
Another common cause of altered citrate metabolism is hypo-
kalemia (12, 15, 17). To determine whether the finding that
acid loading increased NaDC1 expression only in cortical
proximal tubule segments in WT mice was specific to acid
loading or whether it might reflect a generalized finding re-
garding NaDC1 regulation, we determined the effect of hypo-
kalemia on NaDC1 expression along the proximal tubule.
Exposure of both WT and NBCe1-A KO mice to a K�-free diet
for 4 days decreased plasma K� significantly in both genotypes
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(data not shown). Immunohistochemistry of the hypokalemic
WT kidney showed increased NaDC1 immunolabel intensity in
the PCT and PST-MR but not in the PST-OM (Fig. 10).
Quantitative immunohistochemistry confirmed these qualita-
tive observations. Thus, hypokalemia, just as does metabolic

acidosis, increases NaDC1 expression only in cortical proximal
tubule segments in the mouse. Notably, this is the site of
NBCe1-A expression.

Effect of hypokalemia on NaDC1 expression in NBCe1-A
KO mice. The NaDC1 response to hypokalemia in NBCe1-A
KO mice differed significantly from that observed in WT mice.
NaDC1 immunolabel intensity did not appear to differ in any
proximal tubule segment between that observed in mice ex-
posed to K�-control diet and those exposed to K�-free diet
(Fig. 11). Quantitative immunohistochemistry confirmed these
qualitative findings; hypokalemia did not significantly alter
NaDC1 expression in the PCT, PST-MR, or PST-OM (P � NS
for each comparison). Comparison of WT and NBCe1-A KO
mouse responses to hypokalemia showed that NBCe1-A dele-
tion significantly altered the response to hypokalemia in the
PCT and PST-MR (n � 5 K�-control diet and 6 K�-free diet;
PCT: P � 0.05 and PST-MR: P � 0.05) but did not all alter the
response in the PST-OM (n � 5 K�-control diet and 6 K�-free
diet, P � NS).

Effect of NBCe1-A deletion on citrate response to hypokalemia.
The typical response to hypokalemia is decreased citrate ex-
cretion. We determined the effect of NBCe1-A deletion on this
response by comparing citrate excretion in mice on the last day
of the K�-control diet and then on the last day of the K�-free
diet. WT mice exhibited the expected response, decreasing
from 72 � 10.6 to 3.3 � 2.4 �mol/day (n � 6, P � 0.001; Fig.
12). In NBCe1-A mice, citrate excretion on the last day of the
K�-control diet was significantly greater than in WT mice (KO
mice: 96 � 21.0 �mol/day, n � 6, P � 0.05 vs. WT mice).
Hypokalemia decreased citrate excretion in NBCe1-A KO
mice (16.6 � 8.9 �mol/day, n � 6, P � 0.001 vs. K�-control
diet), but citrate excretion in response to the K�-free diet was
significantly greater than observed in WT mice (P � 0.01). The
relative decrease in citrate excretion induced by the K�-free
diet was significantly blunted by NBCe1-A KO (WT mice:
95 � 3% and KO mice: 83 � 6%, n � 6 in each group, P �
0.002).

DISCUSSION

This study identifies several important aspects of NaDC1
and citrate excretion as well as the role of NBCe1-A to regulate
each of these processes. First, this study shows that expression
of the primary protein involved in the regulation of urinary
citrate excretion, NaDC1, in response to acid loading and
hypokalemia exhibits significant axial heterogeneity along the
proximal tubule. In WT mice, both experimental conditions
increased expression in the PCT and PST-MR, i.e., in cortical
proximal tubule segments, but not in the PST-OM. Second, this
study shows that NBCe1-A mediates a critical role in the
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regulation of NaDC1 expression, namely, NBCe1-A is neces-
sary for both the normal basal levels of NaDC1 in cortical
proximal tubule segments, the PCT and PST-MR, and it is
necessary for increased NaDC1 expression in the PCT in

response to both acid loading and hypokalemia. Third, in the
absence of NBCe1-A, alternative regulatory mechanisms,
which are not active in the WT mouse, enable an increase in
PST-OM NaDC1 expression in response to acid loading.
Changes in urinary citrate excretion paralleled these NaDC1
findings under basal conditions, in response to acid loading and
in response to hypokalemia. These findings significantly ad-
vance our understanding of renal citrate metabolism.

The first major finding in the present study is that there is
significant axial heterogeneity in the proximal tubule NaDC1
response to metabolic acidosis and hypokalemia. In normal
mice, both acid loading and hypokalemia increased NaDC1
immunolabel only in the PCT and PST-MR and not in the
PST-OM. This parallels findings that metabolic acidosis has
greater effects on another critical proximal tubule function,
ammoniagenesis, in the earlier portions of the rat proximal
tubule, the S1 and S2 segments, than in the S3 segment (46, 47,
67). This parallel regulation suggests similar mechanisms may
be involved in the regulation of these two key proximal tubule
functions in acid-base homeostasis.

At least one of the signaling pathways regulating cortical
proximal tubule segment NaDC1 expression involves NBCe1-A.
NBCe1-A deletion decreased NaDC1 expression in cortical
proximal tubule segments, i.e., PCT and PST-MR, and its
deletion significantly impaired the PCT NaDC1 response to
acid loading. These effects occurred despite the concomitant
metabolic acidosis that NBCe1-A deletion causes, whereas
metabolic acidosis in mice with intact NBCe1-A expression
increases PCT and PST-MR NaDC1 expression. These effects
of NBCe1-A to regulate NaDC1 expression completely corre-
spond with the cellular localization of NBCe1-A, which is
expressed at detectable levels only in the PCT and PST-MR in
the rat (14, 44, 56, 65), rabbit (1, 56), human (66), and mouse
kidney (36).

The observation that NBCe1-A deletion decreases NaDC1
expression in cortical proximal tubule segments, the PCT and
PST-MR, appears to be physiologically important. Urinary
citrate excretion was almost threefold greater in NBCe1-A KO
mice than in WT mice under basal conditions. Because reab-
sorbed citrate is metabolized through the TCA cycle, generat-
ing three bicarbonate ions per citrate, increased citrate excre-
tion in NBCe1-A KO mice likely contributes to the metabolic
acidosis observed in these mice under basal conditions (Ref. 36
and the present study). The citrate excreted by spontaneously
acidotic NBCe1-A KO mice, because of this 1:3 conversion ratio,
is equivalent to loss of ~65 �mol/day alkali, which decreases net
acid excretion by ~20%. Moreover, since NBCe1-A deletion
causes substantial metabolic acidosis (36), which normally essen-
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Fig. 11. Na�-dicarboxylate cotransporter 1 (NaDC1) immunohistochemistry in
response to hypokalemia in Na�-coupled electrogenic bicarbonate cotrans-
porter A variant (NBCe1-A) knockout (KO) mice. Top and middle: NaDC1
immunohistochemistry in NBCe1-A KO mice on the K�control diet (top) and
after the K�-free diet (middle) for 4 days. Bottom: results of quantitative
immunohistochemistry for NaDC1 immunolabel. Results are normalized to
mean proximal convoluted tubule (PCT) expression in wild-type (WT) mice on
the K� control diet equal to 100.0. The K�-free diet did not alter NaDC1
expression significantly in either the PCT, proximal straight tubules in the
medullary ray (PST-MR), or proximal straight tubules in the in the outer
medulla (PST-OM). Results are from 5 mice on the K� control diet and 6 mice
on the K�-free diet. *Proximal tubule.
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tially abolishes citrate excretion, the finding of increased citrate
excretion in NBCe1-A KO mice indicates substantial dysregula-
tion of citrate metabolism. Indeed, citrate excretion by NBCe1-A
KO mice under basal conditions was ~200-fold greater than the
citrate excretion by acid-loaded WT mice, even though nonacid-
loaded NBCe1-A KO mice had more severe metabolic acidosis,
i.e., their serum bicarbonate concentration was lower, than did
acid-loaded WT mice.

This critical role of NBCe1-A in citrate metabolism appears
directly relevant to human conditions. Mutations causing dysfunc-
tional NBCe1 protein result in proximal renal tubular acidosis
(RTA) in animal models (18, 36), and they are the only known
genetic cause of human familial proximal RTA (2, 13, 26, 27, 31,
61). Studies in people with familial proximal RTA have shown
that citrate excretion is inappropriately elevated when considered
in view of their spontaneous metabolic acidosis (40). Although
genetic identification of the cause of the proximal RTA was not
evaluated in Ref. 40, the only known genetic cause of familial
proximal RTA involves NBCe1 mutations. Thus, we suggest that
NBCe1 mutations underlie the abnormal citrate excretion ob-
served in the previous study (40).

In addition to regulating basal NaDC1 expression, NBCe1-A
expression is also a key component of the signaling pathway
through which metabolic acidosis increases NaDC1 expres-
sion. The present study shows that acid loading increases
NaDC1 expression in the PCT, where NBCe1-A is expressed,
and that NBCe1-A expression is necessary for this normal
response. NBCe1-A also appears to have a key role regulating
PST-MR NaDC1 expression. The present study shows that in
the presence of NBCe1-A, acid loading increases PST-MR
NaDC1 expression. In the absence of NBCe1-A, NaDC1 ex-
pression in the PST-MR under nonstimulated conditions was
significantly less than in WT mice, either under basal condi-
tions or after acid loading, and was even less than the increased
induced by acid loading in WT mice. Because NBCe1-A KO
mice under basal conditions had significantly greater metabolic
acidosis than did NBCe1-A WT mice after acid loading, this
suggests that NBCe1-A was necessary for both basal and
acidosis-induced increases in PST-MR NaDC1 expression.

NBCe1-A also has a critical role in NaDC1 and citrate
excretion responses to hypokalemia. In WT mice, hypokalemia
increased NaDC1 expression in cortical proximal tubule seg-
ments, where NBCe1-A is expressed, but not in the PST-OM,
where NBCe1-A is not found under normal conditions.

NBCe1-A deletion completely blocked these responses in cor-
tical proximal tubule segments. Hypokalemia decreased citrate
excretion in WT mice, and NBCe1-A deletion, likely through
its effects on NaDC1 expression, significantly blunted this
response. Thus, NBCe1-A is necessary for normal NaDC1 and
citrate responses to hypokalemia. There also appears to be an
NBCe1-A-independent mechanism through which hypokale-
mia decreases citrate excretion in the absence of detectable
changes in NaDC1 expression. Possible etiologies include
differences in luminal pH, which can alter citrate reabsorption
through mechanisms independent of changes in NaDC1 ex-
pression, posttranslational regulation of NaDC1, and the pos-
sibility of citrate reabsorption through proteins other than
NaDC1.

Several other proteins regulate NaDC1 expression. One is
the calcineurin inhibitor-targeted protein cyclophilin (4), which
likely mediates the effects of calcineurin inhibitors to cause
hypocitraturia (63). Other studies have shown that protein
kinase C, Na�/H� exchanger regulating factor 2, serum and
glucocorticoid-inducible kinase, and protein kinase B can reg-
ulate NaDC1 (7, 53). Recent studies have also shown that acid
stimulation of NaDC1 expression involves endothelin-1/endo-
thelin type B receptor signaling (42) and the protein tyrosine
kinase Pyk2 (68). However, NBCe1-A has a unique role in this
regulation, as it is the only integral membrane protein presently
identified that transduces extracellular signals and enables
regulated NaDC1 expression and urinary citrate excretion.

There are several potential mechanisms through which
NBCe1-A might regulate NaDC1 expression. First, because
NBCe1-A typically functions in a bicarbonate exit mode in the
renal proximal tubule, it is possible that NBCe1-A deletion
decreases basolateral bicarbonate exit, resulting in intracellular
alkalization, and that intracellular pH is the primary mecha-
nism regulating NaDC1 expression. Supporting this possibility
is that maneuvers expected to cause intracellular acidification,
such as metabolic acidosis and hypokalemia, increase NaDC1
expression and/or activity (3, 41), and that the pH-sensitive
cytosolic signaling protein Pyk2 regulates NaDC1 expression
(68). It is also possible that decreased basolateral exit via
NBCe1-A alters the cytoplasmic Na� concentration, which
may have direct and/or indirect mechanisms that alter NaDC1
expression. Another consideration is that because NBCe1-A is
an electrogenic transporter, basolateral plasma membrane volt-
age may be altered by NBCe1-A deletion, resulting in altered

75

80

85

90

95

100

WT KO

%
 P

er
ce

nt
 d

ec
re

as
e

0.0

25.0

50.0

75.0

100.0

125.0

K-Control Diet Low K Diet

Ur
in

e 
ci

tr
at

e 
(�

m
ol

/d
ay

)

WT KO

P<0.05

P<0.01

P<0.01

Fig. 12. Effect of Na�-coupled electrogenic bi-
carbonate cotransporter A variant (NBCe1-A)
deletion on the urinary citrate response to a
K�-free diet. Left: urine citrate excretion on the
last day of the K�-control diet and then on day 4
of the K�-free diet in wild-type (WT) and
NBCe1-A knockout (KO) mice. NBCe1-A dele-
tion increased urine citrate excretion signifi-
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cellular responsiveness. However, it is also possible that
NBCe1-A deletion results in a coordinate decrease in apical
H� secretion by Na�/H� exchanger isoform 3 and/or H�-
ATPase and thus does not alter intracellular pH, that basolat-
eral Na�-K�-ATPase prevents changes in intracellular Na�,
and that its deletion does not alter basolateral plasma mem-
brane voltage. Thus, it is possible that mechanisms other than
those discussed above mediate the effect of NBCe1-A on
NaDC1 expression. Finally, it is also possible that lack of
NBCe1-A during development alters NaDC1 expression.

The observation that NBCe1-A regulates proximal tubule ci-
trate handling through effects on NaDC1 expression add to the
growing list of proximal tubule functions that NBCe1-A regulates.
NBCe1-A deletion, in addition to being associated with proximal
RTA, also causes impaired proximal tubule ammonia metabolism
under basal conditions and, similar to the present study, in re-
sponse to acid loading (36). Thus, NBCe1-A expression appears
to be necessary for multiple components of the proximal tubule
contribution to acid-base homeostasis, filtered bicarbonate reab-
sorption, ammonia metabolism, and the regulation of citrate re-
absorption and excretion.

The present study also identifies that NBCe1-A-independent
mechanisms can regulate NaDC1 expression. Acid loading did
not alter PST-OM NaDC1 expression in the WT mouse, but it
did in the NBCe1-A KO mouse. This observation indicates the
involvement of a signaling pathway in the PST-OM that
regulates NaDC1 expression in NBCe1-A KO mice that was
not active in WT mice. At present, the specific signaling
pathway in the PST-OM of NBCe1-A KO mice that is acti-
vated by acid loading is unclear. This signaling pathway could
be induced either as a direct cellular response to NBCe1-A
deletion or it could be indirectly induced by the significantly
lower serum bicarbonate observed in NBCe1-A KO mice.

In summary, the present study identifies important new
aspects related to renal citrate metabolism. In normal mice,
acid loading and dietary K� restriction increase NaDC1 only in
cortical proximal tubule segments. NBCe1-A expression is
necessary for normal basal NaDC1 expression in the same
proximal tubule sites and is necessary for the PCT response to
acid loading and to hypokalemia. Thus, NBCe1-A is a key
component of the signaling pathways that regulate NaDC1
expression and citrate excretion. Finally, NBCe1-A deletion
induces an alternative signaling pathway that is not active in
WT mice that enables increased PST-OM NaDC1 expression
in response to acid loading. These findings significantly ad-
vance our understanding of renal citrate metabolism.
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