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AFFILIATIONS
1Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, New York 11973, USA
2Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA

a)Author to whom correspondence should be addressed: yangmuli@bnl.gov

ABSTRACT

Controllable geometric manipulation via micromachining techniques provides a promising tool for enhancing useful topological electrical
responses relevant to future applications such as quantum information science [P. J. W. Moll, “Focused ion beam microstructuring of
quantum matter,” Annu. Rev. Condens. Matter Phys. 9, 147 (2018); Jang et al., “Observation of half-height magnetization steps in Sr2RuO4,”
Science 331, 186 (2011); Moll et al., “Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2,” Nature
535, 266 (2016); Moll et al., “Evidence for hydrodynamic electron flow in PdCoO2,” Science 351, 1061 (2016)]. Here, we present microdevices
fabricated with a focused ion beam from an indium-doped topological insulator Pb1�xSnxTe. With the device thickness on the order of 1 lm
and an extremely large bulk resistivity, we achieve an unprecedented enhancement of the surface contribution to about 30% of the total con-
ductance near room temperature. The surface contribution increases as the temperature is reduced, becoming dominant below approxi-
mately 180K, compared to 30K in millimeter-thickness crystals. In addition to the enhanced surface contribution to normal-state transport,
we observe the emergence of surface superconductivity below 6K. Measurements of magnetoresistivity at high magnetic fields reveal a weak
antilocalization behavior in the normal-state magnetoconductance at low temperatures and a variation in the power-law dependence of resis-
tivity on temperature with the field. These results demonstrate that interesting electronic responses relevant to practical applications can be
achieved by suitable engineering of single crystals.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5122789

Tunable electrical responses and the emergence of superconductivity
in topological insulators have garnered a broad interest in both aca-
demic and industrial communities due to their potential applications.5,6

Three-dimensional topological crystalline insulators, with an inverted
bulk bandgap and spin-momentum-locked metallic surface states pro-
tected by a crystalline symmetry, represent a useful quantum state of
matter.6–9 Theoretically, such topological crystalline insulators have
been predicted for the rock salt crystal structure.7,8,10 Subsequent pho-
toemission spectroscopy measurements of Pb1�xSnxTe observed Dirac
states near high-symmetry reciprocal lattice points.11–14 Pb1�xSnxTe
features a topological phase transition with doping x and hosts nontriv-
ial surface states for x larger than �0.35.12,14 By compensating for
defects with In substitution, the bulk resistivity of Pb1�xSnxTe can be
unusually large for the intermediate x.14,15 Surprisingly, a slightly higher
In concentration can lead to the emergence of superconductivity.16 As
the resistivity of In-doped Pb1�xSnxTe is approximately two orders of
magnitude greater than that of the most dilute superconductors (e.g.,
Ca-doped SrTiO3),

15,17 the nature of superconductivity in Pb1�xSnxTe
is at odds with the conventional Bardeen-Cooper-Schrieffer theory.18

Focused-ion-beam machining, which offers considerable flexibil-
ity in the precise control of the device geometry, has recently been
applied to study topological materials, strongly correlated materials,
and unconventional superconductors.1–4 Geometric control of quan-
tum devices has proved to be an effective method for manipulating
surface and bulk responses.3,14 In order to increase the surface-to-bulk
response ratio and thus facilitate studies of surface electrical responses,
we have fabricated microscale devices with an FEI Helios Nanolab 600
focused ion beam/scanning electron microscope DualBeam system.
For clarity, in this letter, we only present detailed results on two
devices, D1 (84.0� 23.0� 0.5 lm3) and D2 (75.0� 30.3� 1.8 lm3),
fabricated from the same In-doped bulk crystal of Pb1�xSnxTe
[(Pb1�xSnx)1�yInyTe with x¼ 0.4 and y¼ 0.08]. Similar behaviors are
also observed for devices made on other topological materials, including
Pb1�xSnxTe with other chemical concentrations. False-color scanning
electron microscopy images of D1 and D2 are presented in Figs. 1(a)
and 1(b), respectively. To minimize the surface damage, we polished the
samples with the Gaþ ion beam of selective energy and flux density
(30KeV/2.8 nA, 30KeV/0.92 nA, 30KeV/0.28 nA, 16keV/0.47nA,
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16 keV/45 pA, and 8 keV/11 pA in a consecutive order) before an
in situ lift-out procedure using a micromanipulator probe. The lift-
out samples were placed on SiO2/Si (300 nm SiO2 thickness) wafers
with gold pads prefabricated using optical lithography and electron-
beam physical vapor deposition (Kurt J. Lesker PVD 75 E-beam
evaporator). In situ electron-beam-assisted deposition of platinum
was used to connect samples with gold pads and the fabricated devi-
ces were annealed at 120 �C for 20 min to ensure Ohmic contacts.
Both D1 and D2 were made such that their edges are along equiva-
lent crystalline a axes. Energy-dispersive X-ray spectroscopy (EDS)
measurements were performed on D1 and pristine In-doped
Pb1�xSnxTe crystals using an analytical scanning electron micro-
scope JEOL 7600F. The variations among the atomic weights of Pb,
Sn, and Te are within 4%, suggesting that the alteration of the
Pb1�xSnxTe structure is minimal during the device fabrication. The
Ga concentration for D1 is observed to be 0.086 0.02.

The zero-field electrical resistivity of D1 and D2 was measured
down to 0.3K using an Oxford 3He vacuum insert system and a Janis
CPX-HF micromanipulator probe station [Figs. 1(c) and 1(d), respec-
tively]. Both devices are very good insulators with the resistivity around
8� 105X cm at 10K, indicating a negligible doping effect from Ga ions
in the bulk. At the same time, the drop in resistivity below 6K suggests
the emergence of superconducting fluctuations, a state that is not pre-
sent in the parent crystal.14,16 As shown in Figs. 1(e) and 1(f), the resis-
tivity only reaches zero below 0.4K. The strongly reduced but finite
resistivity below 2K is consistent with the presence of two-dimensional
(2D) superconducting fluctuations above the phase-ordering tempera-
ture. The lines through the data points in the insets of Figs. 1(e) and
1(f) represent the fits to the Halperin-Nelson formula for the resistivity
of a phase-fluctuating 2D superconductor19,20

q Tð Þ ¼ qe�b=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T=TBKT�1
p

; (1)

where TBKT is the Berezinskii-Kosterlitz-Thouless transition tempera-
ture21,22 at which resistivity becomes zero. q and b are the other fit
parameters. The fits yield TBKT ¼ 0:36 K, q ¼ 2:98� 104 X cm,
and b ¼ 1:4 for D1 and TBKT ¼ 0:38 K, q ¼ 7:74� 104 X cm, and
b ¼ 1:2 for D2. The similarities in TBKT and b indicate a consistent
behavior in both devices.

To interpret the possible source of superconductivity, it is relevant
to know that while (Pb0.6Sn0.4)1�yInyTe is a bulk insulator for y¼ 0.08, it
is a bulk superconductor for y¼ 0.2 and 0.3 with Tc� 4K.16 Ga is chem-
ically similar to In and found to be present at the surface with a concen-
tration similar to In, which raises the possibility that doping by Ga in the
near-surface region has induced the superconductivity. To check this pos-
sibility, we added 10% Ga to an insulating bulk (Pb0.6Sn0.4)1�yInyTe crys-
tal with y¼ 0.1, melted the combination, and allowed it to solidify. The
resulting material exhibited a diamagnetic response with a volume shield-
ing fraction between 10% and 50% and an onset temperature for super-
conductivity as high as 7.3K. While additional work is required to
identify the exact superconducting phase and we cannot rule out a possi-
bility of modifications in the electronic structure due to the surface strain
of the microdevices induced by focused ion beam fabrication,23 the added
Ga seems to be responsible for the surface superconductivity in our devi-
ces. If the coherence length [�12nm for (Pb0.5Sn0.5)0.84In0.16Te, Ref. 14]
is smaller than the layer thickness, then the superconductivity should
have a 2D character. Based on the ion beam energy used and the hard-
ness of Pb1�xSnxTe materials,1 we qualitatively estimate the penetration
depth to be on the order of 10nm. The net effect, obtaining a supercon-
ducting layer at the surface of a topological bulk phase, is similar to that
achieved by selective ion sputtering on NbAs.24

FIG. 1. (Pb0.6Sn0.4)0.92In0.08Te devices and possible two-dimensional superconductivity. (a) and (b) False-color scanning electron microscopy images of the crystals (purple),
gold contacts (yellow), and platinum wires (gray) for D1 and D2, respectively. (c) and (d) Corresponding zero-field resistivity. (e) and (f) The emergence of possible two-
dimensional superconductivity. For clarification, the insets show a fit to the Halperin-Nelson formula (H-N fit) up to 1.5 K [Eq. (1)].19,20
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Next, we consider the insulating behavior in the normal state.
The temperature dependence of resistivity is very useful for distin-
guishing the surface and bulk contributions. Assuming that the
surface and bulk states contribute to the conduction channels in
parallel, the normalized resistivity ratio, r Tð Þ � qðTÞ=qðT0Þ, can
be expressed as14,25,26

1=r Tð Þ ¼ 1=rs þ 1=rbe
�D=kBT ; (2)

where T0¼ 300K for D1 and 280K for D2. 1=rs denotes the surface
conduction assumed to be temperature independent,14,25,26 and
1=rbe�D=kBT denotes the thermally activated bulk conductance. The
fitted results are shown in Fig. 2, with the corresponding parameters
rs ¼ 3:26, rb ¼ 0:39, and D ¼ 32:4 meV for D1 and rs ¼ 5:27,
rb ¼ 0:24, and D ¼ 36:7 meV for D2. The similarities of rb and D
indicate a consistent bulk response in the two devices. The fraction of
surface and bulk contributions to the total conductance can be evalu-
ated as r Tð Þ=rs and r Tð Þ=rb, respectively. In Fig. 2(c), we compare the
conductance contributions. The temperature at which the surface
states constitute half of the total conductance (Th) is found to be
approximately 30K for samples with thicknesses between 0.20 and
0.60mm.14 The relatively small surface contribution and the low Th
limits the sensitivity to the surface state. For D1 and D2, which have a
device thickness of 0.5 lm and 1.8 lm, respectively, the Th is enhanced
to 182K and 137K. The relative surface contributions near room tem-
perature are 30% and 19%, respectively.

The impact of the magnetic field on the resistivity of D1 was
probed using the 35 T resistive magnet and a 3He cryostat at the DC
Field Facility, National High Magnetic Field Laboratory. The measure-
ments were performed with Signal Recovery 7265 lock-in amplifiers
and Lake Shore 372 AC resistance bridge systems. The raw magneto-
resistivity results are plotted in Fig. 3(a). The normalized magnetore-
sistivity, Dq=q0, where Dq � q l0Hð Þ � q0, is shown in Fig. 3(b).
Weak oscillations are found at 0.48K, but they are already undetect-
able at 0.58K. Above 6K, the electrical resistivity of D1 is finite for the
entire field range and we define q0 � q l0H ¼ 0 Tð Þ. Below 6K,
superconductivity exists at a low magnetic field and q0 is obtained by
extrapolating the high magnetic field (l0H � 10 T) resistivity to
zero field, using the form q l0Hð Þ ¼ q0 þ aHn. Remarkably, the
high-magnetic-field dependence of q l0Hð Þ is described by n � 1
below 2K. This field dependence was previously reported in
other topological insulator thin films,27,28 and it was associated with

the topological surface states. n gradually increases to 1:7 at 20K,
above which it saturates, as shown in Fig. 3(c). Correspondingly,
Dq l0H ¼ 35Tð Þ=q0, a measure of the fractional change in magneto-
resisity, decreases dramatically with temperature.

To further analyze the surface contribution, we convert the mag-
netoresistivity into magnetoconductance. The magnetoconductance of
topological crystalline insulators has been associated with the quantum
interference between scattering trajectories of surface states.5–9 With a
p Berry phase, destructive quantum interference suppresses back scat-
tering. This destructive quantum interference can be destroyed by
applying external magenetic fields, leading to a decrease in the magne-
toconductance.14,29 Magnetoconductance near the superconducting
transition temperature is plotted in Fig. 3(d), which can be described
by the weak antilocalization behavior using the Hikami-Larkin-
Nagaoka equation29

FIG. 2. Surface and bulk contributions. (a) and (b) Temperature dependence of the normalized resistivity ratio for D1 and D2, respectively. The solid lines denote a fit to the
parallel conductance equation [Eq. (2)]. The dashed line presents the surface and bulk resistivity. (c) Temperature dependences of the surface and bulk conductance contribu-
tions. The blue Diamond indicates Th � 30 K for the bulk crystals.14 Th¼ 182 K for D1 and 137 K for D2.

FIG. 3. High-magnetic-field electrical responses for D1. (a) Magnetoresistivity data at
various temperatures. (b) Normalized magnetoresistivity showing a variation in the
power-law dependence of resistivity on temperature with the field. (c) Temperature
dependences of qð35 TÞ=q0 and power index n. (d) Magnetoconductance and fits to
the Hikami-Larkin-Nagaoka equation [Eq. (3)], showing a weak antilocalization
behavior.14,29
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Dr ¼ a
e2

ph
ln H/=H
� �

� w H/=H þ 1=2
� �� �

; (3)

where w is the digamma function and H/ is the phase-coherence
characteristic field. For indium-doped Pb1�xSnxTe, the Fermi surface
crosses four Dirac cones and a is predicted to be close to 2. The fits
to 4.3 and 10K data yield a ¼ 1:23, l/ ¼ 27:6 nm and a ¼ 0:94,
l/ ¼ 15:8 nm, respectively. l/ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=4eH/

p
denotes the electron

coherence length, which exhibits a slight reduction as the thermal fluc-
tuations increase, consistent with the previously reported results.14

In summary, we report an unprecedented enhancement of sur-
face conductance for Pb1�xSnxTe devices using microstructuring tech-
niques. The temperature Th at which surface states constitute half of
the total conductance is increased to about 180K and a 30% surface
contribution is observed near room temperature. Furthermore, we
observe an approximately linear magnetoresistivity and the emergence
of surface superconductivity with a 2D character at low temperatures.
These electrical responses, likely related to an enhanced surface
conductance, point to a useful engineering of single crystals toward
potential applications.

See the supplementary material for the diamagnetic response of
the melt (Pb0.6Sn0.4)0.9In0.1Te crystal added with Ga and the represen-
tative EDS results for D1.
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