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This paper is concerned with thermal counterflow in superfluid 4He, particularly with
the motion of the normal component at small heat fluxes when this motion is believed to
be laminar. Recent experiments in which this motion is traced with micron-sized particles
of solid deuterium show that the motion is not spatially uniform on a scale of order the
spacing of the quantized vortex lines in the superfluid component. It is argued that this lack
of uniformity has its origin in the fact that the force of mutual friction, which limits the
thermal conductivity, is concentrated near the cores of the vortex lines. Possible effects
of this concentration of force are discussed, and it is concluded that the experimental
observations can be explained only if the vortex lines are arranged randomly in space,
so that the observed lack of uniformity in the normal-fluid velocity can be regarded as
being due partly to spatial variations in the vortex line density. However, problems remain,
in that the form of the observed velocity correlation function has still to be understood.
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I. INTRODUCTION

It has long been known that, according to the two-fluid model, heat is carried in superfluid 4He by
a counterflow of the two fluids, the superfluid component flowing toward the source of heat and the
normal component flowing away from it [1]. Such counterflow normally takes place in a channel,
and in this paper we are concerned with a channel with cross-section of order 10 mm × 10 mm.
Experiments over the years (see, for example, Refs. [2–4] and references therein) have shown that in
such channels the characteristics of the counterflow change as the heat flux increases. At the smallest
heat fluxes the superfluid component flows without friction, while the flow of the normal fluid is
limited only by its viscosity. Over a range of somewhat larger heat fluxes the superfluid component
becomes turbulent, in the sense that it supports a random tangle of quantized vortex filaments; the
thermal excitations constituting the normal fluid are scattered by these filaments, giving rise to a
force of “mutual friction” between the two fluids. This mutual friction can modify the (laminar)
velocity profile in the normal fluid, especially at larger heat fluxes. Then as the heat flux increases
still further there is a transition at which large-scale turbulence is established in both fluids, the two
turbulent fields being partly coupled through the mutual friction, and large-scale turbulence in the
superfluid component being achieved by partial polarization of the vortex filaments.

The experiments to which we have just referred were based for the most part on observations
with second sound, the attenuation of which allows measurement of vortex filament densities, and
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with He2 excimer molecules, which trace the flow of the normal fluid. Particle tracking velocimetry
(PTV), using micron-sized particles of solid hydrogen or solid deuterium as tracers, has also
been used, as reviewed in a recent paper by Mastracci and Guo [5]. This paper also reports new
experimental results, which include information about the motion of the tracer particles that are
known to be tracking the motion of the normal fluid on length scales smaller than those easily
accessible to tracking by He2 excimer molecules (scales of order the spacing of the vortex filaments),
particularly at heat fluxes at which there is a random tangle of vortex filaments and laminar flow of
the normal fluid. In the present paper we discuss the interpretation of this observed motion.

At first sight it might be thought that when the flow of the normal fluid is laminar there ought to
be no small-scale motion. However, this would be true only if the force of mutual friction, which
is principally responsible for limiting the flow of the two fluids, were applied in a spatially uniform
manner. In reality, the force is applied to the normal fluid only very close to the cores of the vortex
filaments [6]; transfer to the bulk of the normal fluid takes place only through the viscosity of the
normal fluid. We shall argue that the resulting perturbation to the velocity field in the normal fluid
is responsible, at least in part, for the observed small-scale motion of the normal fluid.

The theoretical ideas in this paper are for the most part not new. The perturbation in the velocity
field in the normal fluid resulting from motion of a single vortex was recognized in Refs. [2,6], to the
extent that the effect was taken into account in a calculation of the actual magnitude of the mutual
friction; but the calculations in Refs. [2,6] did not require a knowledge of the perturbation at larger
distances from the lines. More recently Idowu et al. [7] carried out a numerical simulation of the
perturbation, which we shall discuss later (see also Refs. [8,9]). It turns out, however, that, as we
shall see, the probable perturbation in the normal-fluid velocity field by a single vortex is too small
to account for our experimental results. We show instead that spatial inhomogeneities in the density
of vortex lines are the probable cause of the observed effects, although the way in which these spatial
inhomogeneities operate is quite subtle and may not be fully understood. Indeed, a fully satisfactory
explanation must await a more sophisticated treatment than we are able to provide, and may involve
physical effects that we have not yet fully identified. To this extent the theory that we present must
be regarded as only a useful first step in understanding the experimental results that we present.

The theoretical problems underlying our experimental results will be explored in two steps. First,
we shall discuss in general terms the likely perturbation in the velocity field resulting from the
motion of a single rectilinear vortex. In essence this ought to involve an understanding of the way
in which the moving vortex drags the normal fluid in its vicinity. We present new calculations of
this dragging effect, arguing that those of Idowu et al. are inadequate. We conclude that dragging
by the individual vortices is insufficient to account for the experimental results. Our second step is
then to suggest that the experimental results can be understood only in terms of the way in which a
moving disordered array of vortices perturbs the velocity of the normal fluid. As we shall see, this
is in detail a difficult problem that requires new types of simulation, and we are able here to give
only an introductory discussion of it.

The relevant experimental results are summarized in Sec. II; they include results already
published in Ref. [5], together with some new results relating to the way that normal-fluid velocities
are correlated in time. The theoretical discussion is presented in Sec. III, and a summary is given in
Sec. IV. Details of the new calculation of the dragging by a single vortex are given in the Appendix.

II. EXPERIMENTAL RESULTS

The apparatus used by Maastracci and Guo was described in detail in Ref. [5]. The heat flow took
place in a channel of 16-mm-square cross section. Tracks of deuterium particles were observed
and analysed at various temperatures and various steady counterflow velocities, and probability
distribution functions (PDFs) for the particle velocity were extracted.

In Fig. 1 we show typical PDFs for the streamwise component of the velocity (i.e., parallel to the
steady heat flux). As has been observed in previous studies, this PDF exhibits two peaks at low heat
fluxes [Fig. 1(a)], the peaks merging into a single peak at large heat fluxes [Fig. 1(b)]. Gaussian
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FIG. 1. The calculated streamwise particle velocity PDFs at 1.85 K for heat fluxes of 38 and 320 mW/cm2.
The solid lines are Gaussian fits to the data.

fits to the peaks lead to corresponding mean velocities, 〈vp〉, and velocity standard deviations,
�vp = 〈(vp − 〈vp〉)2〉1/2. In the two-peak regime the value of 〈vp〉 for the G2 peak agrees well
with the expected mean velocity of the normal fluid (q/ρST ), so that we can identify this peak
as being due to particles that are moving, at least on average and for a significant length of time,
with the normal fluid. The G1 peak is due to particles that are trapped on vortices. At higher heat
fluxes, when the two peaks merge, 〈vp〉 is observed to be equal to about half the steady normal-fluid
velocity, and in this regime particles are, in rapid succession, being continuingly trapped on vortices
and then released by viscous drag from the normal fluid. In this paper we are concerned only with
the width (standard deviation) of the G2 peak, both for the streamwise velocity, which we have been
discussing, and also for the velocity transverse to the steady normal-fluid flow.

In Fig. 2 we show these observed standard deviations as functions of the mean normal-fluid
velocity, 〈vn〉, at three temperatures. We see that the transverse velocity standard deviations
are small and almost independent of 〈vn〉, whereas the streamwise standard deviations show a
marked increase. In fact, the former standard deviations are only a little larger than the effect
of environmental noise. The streamwise standard deviations could well be proportional to 〈vn〉,
although the noise is too large to allow us to draw a definitive conclusion.

Our experimental results allow us to calculate not only these standard deviations, which were
reported in Ref. [5], but also velocity correlation functions, which we report here for the first time,
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FIG. 2. Calculated streamwise and transverse velocity standard deviations for the G2 particles at three
temperatures.

083305-3



MASTRACCI, BAO, GUO, AND VINEN

(b)(a)

 (
)

r
τ

0

0.75

0.50

1.00

0.25

 ( )sτ
0.02 0.04 0.06 0.08

2.0 KT =

 ( )sτ
0 0.04 0.08 0.12

2.0 KT =

 (
)

r
τ

0

0.75

0.50

1.00

0.25

 (
)

r
τ

-0.2

0.4

0.2

0.6

0.0

(c)  ( )sτ
0 0.1 0.2 0.3 0.4

1.85 KT =
4.05 mm/snv = 6.27 mm/snv = 4.84 mm/snv =

1.25

1.50 1.25 0.8

FIG. 3. Calculated streamwise velocity correlation functions for the G2 particles at different temperatures
and heat fluxes.

and which are defined as

r(τ ) = 〈(vp(t ) − 〈vp〉)(vp(t + τ ) − 〈vp〉)〉
�v2

p

, (1)

where vp(t ) is the velocity of a particular particle on a track measured at time t . These correlation
functions tell us the characteristic lifetimes of the velocity fluctuations, as seen by a particular
particle. Our observed values of r(τ ) for streamwise fluctuations under various conditions are
shown in Fig. 3. Owing to our limited sample sizes, our values of r(τ ) are subject to considerable
uncertainty, but there is little doubt that the lifetimes of the streamwise fluctuations are roughly
100 ms at a temperature of 2 K. But the precise way in which r(τ ) varies with τ is less clear: It
may be more or less flat up to a point where there is an abrupt fall; or there may be a more gradual
fall. Our observations of correlation functions for transverse velocities show no interesting structure,
being dominated by noise. (We note that the observed r(τ ) appear not always to tend to unity as τ

tends to zero. This is probably due to the fact that our signals contain significant amounts of noise,
for which the correlation time is very small, leading to a fall in r(τ ) at unobservably small times.)

We have noted that the correlation functions are related to characteristic lifetimes of the normal-
fluid fluctuations, as seen by a particular particle. We have also noted that r(τ ) may be fairly flat,
until τ reaches a value of τc, when there is a fairly sharp cutoff in the correlation. If, as we are
suggesting, the fluctuations are due to local dragging of the normal fluid by vortex lines, and if we
assume for the moment that the vortex lines remain at rest in the frame of reference moving with
the average velocity of the superfluid, then in this frame of reference the flow of the normal fluid is
stationary and the characteristic length ζ = (vn − vs)τc is the distance in the streamwise direction
over which the dragging is effective. For the case depicted in Fig. 3(b) ζ proves to be about 30 times
the average vortex-line separation. The magnitude of the perturbation in vn at distances less than ζ

is of order �vp for the streamwise flow. If r(τ ) is roughly flat, for τ < τc, then this magnitude does
not depend strongly on distance for distances less than ζ .

We note that the measurements that we have been describing serve to measure correlations in
the direction of the heat flux (i.e., longitudinal correlations). As we shall see more clearly later, it
would be interesting to measure also the transverse correlations. Such measurements are possible
in principle, but they require a study of the correlated motion of two particles. In our observations
so far the density of tracer particles has been too small to allow such study with adequate statistical
error.

In our Introduction we mentioned observations of the normal-fluid flow with He2 excimer
molecules. They involved the production of a narrow line of these molecules, perpendicular to the
heat flux, and an observation of the way in which this line changes as it moves with the normal fluid.
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FIG. 4. The observed broadening of the excimer lines at 1.85 K with increasing normal-fluid velocity, when
the flow of normal fluid is observed to be laminar. The red triangles show the broadening expected from the
PTV results reported in this paper

Three types of change are possible: a broadening of the line owing to diffusion of the molecules;
distortion of the line owing to turbulent or other forms of normal fluid motion on scales greater than
the line width; and a further broadening owing to these forms of motion on scales less than the line
width. We are arguing in this paper that when the normal-fluid flow is laminar there can still be
nonuniformities in the velocity of the normal fluid on scales of order the spacing between vortex
lines, these scales being less than the observed linewidths. Such nonuniformities ought therefore to
contribute to the broadening of the lines of excimers, such broadening being probably proportional
to the average normal-fluid velocity, vn. Thus, if the lines are examined after they have drifted
for a time tdrift , we may expect the line width, w̄, to change with vn according to the equation
w̄ = w̄0 + Atdriftvn. where w̄0 is the initial width enhanced by that due to diffusion during the drift
time, and where the constant of proportionality, A, is known from the experiments described earlier
in this section. The results of a recent careful analysis of our earlier experiments with excimers are
shown in Fig. 4, where we have plotted the observed linewidth against vn at 1.85 K for a fixed drift
time and for heat fluxes at which flow of the normal fluid is observed to be laminar. The red triangles
show that the broadening expected from the above equation agrees well with experiment.

III. THEORETICAL DISCUSSION

A. Introduction

There appear to be three possible explanations of the observed fluctuations of the G2 particle
velocities: that there is in fact small-scale turbulence in the normal fluid; that the velocity of G2
particles is occasionally perturbed by scattering from vortex lines; that the velocity of the normal
fluid is perturbed by the frictional interactions with the vortex lines (dragging of the normal fluid).

Small-scale turbulence in the normal fluid seems possible, although it would need to be extremely
anisotropic, with hardly any motion transverse to the counterflow; for reasons that will become
clear later, we believe and argue that any such turbulence is not fundamentally responsible for the
observed fluctuations. The second of the possible effects can be ruled out as follows. Scattering
of a particle by a vortex line must involve a timescale of order σ/vG2, where σ is the scattering
cross-section and vG2 is the particle velocity (at this point we rule out any “scattering” that is really
associated with dragging of the normal fluid [9]). This time is unlikely to be greater than about 10 μs.
But we know that the velocity of a tracer particle of radius a will recover from any perturbation in
a time of order ρa2/3ηn, where ρ is the density of the helium and ηn is the viscosity of the normal
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fluid [10]; this time is of order 30 μs. These times are much smaller than the times over which the
perturbed particle velocities are observed to persist.

As we suggested in our general introduction, we believe that the fluctuations in the G2 particle
velocities are in fact due to dragging of the normal fluid induced by the frictional interaction with
the discrete vortices. In the remaining part of this paper we shall first show that dragging by an
individual vortex is too small to account for our observations; nevertheless, as far as we know,
our treatment of this dragging is new and of some intrinsic interest, an earlier treatment by Idowu
et al. [7] having been unsatisfactory. Then we shall show, with a simple model, that dragging by
a disordered array of lines, such as is believed to be present in a counterflow, does lead to effects
that are much larger; effects that could be, at least qualitatively, consistent with our observations.
However, we are not able yet to account for the precise form of the correlation function displayed
in Fig. 3, which remains a serious problem.

B. The dragging of the normal fluid by an individual quantized vortex

The existence of this dragging effect was first recognized in Refs. [2,6], to the extent that the
effect was taken into account in a calculation of the actual magnitude of the mutual friction; but
the calculations in Refs. [2,6] did not require a knowledge of the perturbation at larger distances
from the lines. Nevertheless it was suggested that the dragging could be explained rather fully as
being similar to the dragging of an infinite classical viscous fluid at low Reynolds number by a
thin solid cylinder moving at right angles to its length, especially not too close to the cylinder. This
view is elaborated in an Appendix, where we use it to derive expressions for the perturbed velocity
field in an infinite volume of normal fluid arising from the slow movement of a rectilinear vortex at
velocity U . The character of this perturbation at a distance r from the vortex depends on the value of
r relative to a characteristic length λ = νn/2U , where νn = ηn/ρn is the kinematic viscosity of the
normal fluid. We have obtained expressions for the perturbation in terms of the force, f , of mutual
friction per unit length of vortex in the limits of both λ � r � ξ (the “near field”) and r � λ (the
“far field”); the length ξ is the range over which the force of mutual friction acts near the core of
the vortex. It turns out that for the experiments described in Sec. II λ is much smaller (∼0.7 μm)
than the distances over which the normal-fluid velocity is observed to be perturbed, so that we need
focus only on the far velocity field, given by Eq. (A7).

Our experimental results, described in Sec. II, relate to thermal counterflow. For the present it
is sufficient for us to assume that the vortex of interest moves with the average velocity of the
superfluid component, so that we can take U = 〈vs〉 − 〈vn〉 = (ρ/ρs)〈vn〉, where ρ is the density
of the helium and ρs is the density of the superfluid component. We note that the force of mutual
friction, f , can be expressed in terms of U as ακρsU (see Ref. [11]), so that

f = ακρ〈vn〉, (2)

where α is a dimensionless mutual friction constant, and κ is the quantum of circulation (2π h̄/m4);
we ignore any transverse component of the mutual friction. It follows that the far velocity field can
be written

ur (y, z) = −ακ〈vn〉
ν

(
λ

2πz

)1/2

exp

(
− y2

8λz

)
, (3)

where ν = ηn/ρ, and where we have omitted the small radial flow that ensures mass continuity. We
note that this equation describes a laminar wake, the width of which increases as

√
(8λz) and in

which the velocity falls as z−1/2.
To display the result of this calculation in a useful way, we introduce dimensionless parameters

as follows: ũn(ỹ, z̃) = un(y, z)/〈vn〉, and all length scales are divided by a relevant vortex spacing �,
so that

ũn(ỹ, z̃) = −ακ

ν

(
λ̃

2π z̃

)1/2

exp

(
− ỹ2

8λ̃z̃

)
. (4)
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FIG. 5. The wake generated in the normal fluid by a single rectilinear vortex line.

For illustrative purposes we shall apply Eq. (4) to a counterflow at 〈vn〉 = 6 mm s−1, with a
temperature of 2.0 K; values of the relevant parameters (taken from our own measurements or from
Ref. [12]) are then: � = 46 μm; νn = 1.0 × 10−8 m2 s−1; α = 0.279; ρn/ρ = 0.553; λ = 0.68 μm.
The result is shown in Fig. 5. We note that this wake decays too rapidly with distance to account
for the observations reported in Sec. II. We add that so far we have confined much of our
theoretical study to temperatures close to 2 K, since it is only at these temperatures that we have
satisfactory experimental results; in fact, however, the essential features of our results are not
strongly temperature dependent.

At this point we must refer to work of Idowu et al. [7], which was also concerned with the
dragging of the normal fluid by a single moving vortex. In some respects this work was more
ambitious than the analysis that we have just outlined, in the sense that the motion of the vortex
relative to the normal fluid was taken as due to a prescribed motion of the superfluid with a force
of mutual friction between the vortex and the normal fluid. Calculations were based on a normal
fluid that obeys the Navier-Stokes equation (including its nonlinear terms), with the force of mutual
friction localized close to the core of the vortex. Instead of relying on analytical results, Idowu
et al. obtained the normal-fluid velocity field from a two-dimensional direct numerical simulation,
the vortex moving in a 1-mm computational square box, with periodic boundary conditions, the
normal-fluid velocity field being recorded when the vortex is near the center of the box. For the
most part the velocities with which the vortex moves (relative to the normal fluid) were smaller than
those relevant to our present studies and in the range of roughly 0.1 to 1 mm s−1. These velocities
correspond at temperatures near those that we have investigated to values of λ that are significantly
larger than our own; at 0.1 mm s−1, λ ∼ 100 μm, while at the larger velocity λ ∼ 10 μm. This
means that within the 1-mm computational box any wake would not be well developed, although
it ought to be visible at the higher velocity. Nevertheless, no wake seems to have been formed in
these simulations. More seriously, the characteristic length λ seemed to play no role, the form of the
velocity field at all distances from the vortex being in that sense very different from that described
by us. The velocity field obtained by Idowu et al. does seem to involve a characteristic length, as
indicated in their Fig. 3, but, unlike λ, this length seems to be independent of the velocity with
which the vortex moves relative to the normal fluid, except perhaps at temperature very close to the
λ point. It is not clear what determines this characteristic length.

Doubts about the validity of these simulations arise for at least two reasons: the computational
box was too small in relation to the spatial extent of the perturbed velocity field; and insufficient
time was allowed for a steady state to be achieved. As we understand it, the velocity fields were
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FIG. 6. Illustrating the effect of the small radial flows.

all observed at a time, t , equal to one second after the vortex was set in motion. At this time the
vorticity generated by motion of the vortex can have suffered viscous diffusion to a distance of only
δ = (2ηnt/ρn)1/2, which is equal to only 0.19 mm, and which is therefore less than the size of the
computational box. This suggests that a steady state had not been reached, and that δ, rather than λ,
might be the characteristic length underlying the computations.

These considerations do of course raise the question whether a steady state is reached in
the experiments. It turns out that for practical purposes the steady state is reached, because the
characteristic length λ is much smaller than in the simulations of Ref. [7]. Therefore, our conclusion
about the perturbation of the normal fluid velocity caused by dragging by a single vortex still holds.
We must therefore seek another explanation for the experimental results of Sec. II.

We know from the success of simulations of counterflow turbulence in the superfluid component
that the vortex lines form at any instant a disordered array. This implies that the local density of
vortex lines, and hence the corresponding local value of the mutual friction, is nonuniform. This
nonuniformity will give rise to local variations in the velocity of the normal fluid, additional to
those already discussed, as is observed. To see whether these local variations might be sufficiently
large, we have tried to analyze the effect of a disordered array of rectilinear vortices. We shall
assume that each such vortex produces a wake, as described above. After the next section, which
aims to clarify how mass continuity is achieved with an array of vortices, we shall first discuss the
relationship between disordered wake structures and the velocity correlation functions introduced in
Sec. II; then we describe our calculated wake structures for disordered vortex arrays; and finally we
calculate velocity correlation functions for these disordered vortex arrays and compare them with
experiment.

C. Mass continuity in a moving vortex array

Before we describe these results with disordered arrays of vortices, we think it useful to enlarge
on the effect of the small radial flows described by the second term on the right-hand side of
Eq. (A7). As we have already explained, for the case of a single isolated rectilinear vortex, this term
serves simply to ensure mass continuity; there is an effective flow towards the vortex in the wake,
and the second term describes a consequential flow away from the vortex. However, it is less clear
how mass continuity is maintained in the case of an array of vortices, as we now explain. Consider,
for example, the flow of normal fluid past an infinite row of vortex lines, each line being normal to
the xz plane, as shown schematically in Fig. 6, the flow being maintained by a suitable temperature
gradient. In addition to the wakes (shown in blue), each vortex will produce a radial flow, away
from the vortex. Components of these radial flows in the direction of x will largely cancel, but let
us consider the effect of those in the direction of z along a line such as that shown broken in red.
They will serve first to decelerate the flow of the normal fluid for z < 0 and then to accelerate it for
z > 0. The deceleration will be canceled by the temperature gradient that is driving the flow of the
normal fluid, but the acceleration for z > 0 serves to ensure that the total mass flow across a plane
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z = constant to the right of the vortices is conserved in spite of the smaller velocity existing within
the wakes. Similar considerations apply to the disordered arrays that we now discuss.

D. Relations between disordered wake structures and velocity correlation functions

As we have stated, the vortices present in a thermal counterflow form a disordered array, and
we must first consider how the corresponding wake structures are related to the observed velocity
correlation functions described in Sec. II.

We work with cartesian coordinates (x, y, z), the average steady velocity of the normal fluid being
along the +z axis. We suppose that we have calculated the wake structure in the region z > 0 due
to all the vortices, forming a disordered array, in the region z � 0, and we denote the corresponding
velocity field in the region z > 0 by v(wake, z). In addition there is in the region z > 0 the velocity
field v(2, z) due to the vortices in this region. Observation of the velocity correlation function serves
to measure 〈(v(wake, 0)[v(wake, z) + v(2, z)])〉. In what follows we shall assume that v(wake, 0)
and v(2, z) are uncorrelated. This assumption seems reasonable if the disorder is sufficiently strong,
and if we are dealing with arrays of parallel rectilinear vortices. In practice it is unlikely to be strictly
correct, especially for more realistic configurations of vortices; but it is the best we can do at present.
It means that the observed correlation function serves to measure 〈(v(wake, 0)(v(wake, z))〉, which
is obtained by suitable averaging of the wake structures discussed in the next section.

E. The velocity induced in the normal fluid by a disordered arrays
of quantized vortex lines moving with the superfluid

Our aim in this section is to consider as best we can at this stage the perturbation in the velocity of
the normal fluid caused by a disordered array of vortices, such as exists in a counterflow associated
with a heat flux. We shall consider first the effect of a disordered array of parallel rectilinear vortices,
aligned along the y axis in a Cartesian coordinate system, and stationary in the frame of reference
moving with the average superfluid velocity.

We shall assume that the temperature and other parameters are the same as those relating to
Fig. 5. Using a random number generator, we place 300 rectilinear vortices at random positions
within the region defined by −10 < z/� < 0, −15 < x/� < 15; the positions of the central third of
the vortices are shown in Fig. 7. We then calculate the total perturbation to the normal-fluid velocity
in the region defined by 0 < z/� < 50,−5 < x/� < 5, assuming that the wakes are additive. This
last assumption is justified because the Oseen equation, on which our simulations are based, is
linear in the velocity perturbation u. The result is shown in Fig. 8(a). The result for a different set of
random positions is shown in Fig. 8(b).

We see that the randomly positioned rectilinear vortices lead to random perturbations in the
normal-fluid velocity that are quite large and extend to distances that are much greater than those
generated by a single vortex. Perturbations that vary slowly in the transverse direction seem to
decay more slowly in the direction of flow, and can decay in distances greater than 50�, although
perturbations that vary more rapidly in the transverse direction tend to decay in distances of order
10�. The fact that the predicted perturbations in the normal-fluid velocity extend much further than
those due a single vortex suggests that we may be on the right lines to account for the experimental
results of Sec. II. However, we have still to calculate and display the form of the expected correlation
function that can be compared with the experimental data in Fig. 3, and we shall do this in the next
Section.

As is clear from Figs. 8(a) and 8(b), the width of the region where the normal-fluid velocity is
perturbed depends on the particular random arrangement of the vortices. We have already noted that,
although such widths are in principle measurable, they cannot be deduced with adequate accuracy
from our existing observations.

Although the large perturbations in normal-fluid velocity that we see in our simulations must
arise from inhomogeneities in the density of vortex lines, we can see no simple connection with the
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x~

~
z

FIG. 7. Rectilinear vortices in random positions.

spectrum of vortex density fluctuations, which has been the subject of a good deal of study (see, for
example, Refs. [13,14]).

We must emphasize that our theoretical analysis so far has ignored the motion of the vortex
lines relative to the average superfluid velocity, and we shall attempt to address this deficiency in
Sec. III(g).

Before we embark on the next section we mention briefly that we have also investigated the
perturbations in the normal fluid velocity produced by a random arrangement of vortex rings at
a temperature of 2 K, the density of the rings being such that the line densities are similar to
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FIG. 8. (a, b) The wakes generated in the normal fluid by a randomly spaced array of rectilinear vortices;
the dimensionless velocity in the wakes as a function of x̃ and z̃. Figure 8(a) relates to the distribution of vortices
in Fig. 7.
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r(z)~

z
~

FIG. 9. The calculated correlation function, r(z̃), plotted against z̃.

those involved in our studies of random arrangements of rectilinear vortices. The results are broadly
similar to those obtained with rectilinear vortices, suggesting that the results are not very sensitive
to the precise arrangement of the vortices. Nevertheless, we recognize that we have not yet based
our simulations on realistic vortex configurations.

F. Predicted form of the correlation function [Eq. (3)]

In accord with the argument in Sec. III(d), velocity fields of the type displayed in Fig. 8 can be
used to calculate the correlation function r(z̃), which is equivalent to the correlation function r(τ )
introduced in Sec. II if we put τ = �z̃/〈vn〉. The result, based on sets of data of the type displayed
in Fig. 8 is shown in Fig. 9.

Comparing this calculated correlation function with its experimental counterpart (Fig. 3), we see
that the ranges (in time or distance) are in approximate agreement, but that the forms of the function
are not. At the present time we do not know the reason for this disagreement. Our assumption that
the vortices are arranged in a completely random way may be wrong, and the fact that our vortex
configurations are unrealistic may also be relevant. However, it seems unlikely that our calculations
are misleading to such an extent that they lead to a correlation function that is so different in form
from that suggested by experiment: i.e., from a rather strange form in which there is almost complete
correlation over a time during which the tracing particle has moved a distance much greater than the
average spacing between the vortex lines, followed by a rather abrupt fall. But these experimental
data are, as we have already emphasized, subject to considerable uncertainty, so that we are led to
the conclusion that they need to be subject to further careful checking.

In spite of these reservations, there seems little doubt that disordered arrays of vortex lines
in the superfluid component in a thermal counterflow must lead to substantial inhomogeneities
(∼30%) in the normal-fluid velocity, as is observed. It seems likely that any adequate theory of
thermal counterflow ought to take account of these inhomogeneities, which has not so far been
the case. Judging from the effect of a local reduction in the velocity of the normal fluid when
it is associated with a normal fluid velocity profile in a channel of finite width [15], we guess
that the inhomogeneities in this velocity discussed here are likely also to result in a significant
inhomogeneities in the local vortex line density.
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There is one apparently possible, but very speculative, explanation of the observed correlation to
which we ought briefly to refer. The irregular flow of the normal fluid that underlies the correlation
function displayed in Fig. 9 is essentially laminar, since it is derived from a superposition of
laminar wakes. However, an effective Reynolds number for this flow, formed from the mean velocity
fluctuations and the mean vortex spacing, is typically about 10, which suggests that a transition to
turbulent flow might occur on scales a little larger than the vortex spacing. It might be thought
that this turbulent flow would be significantly less anisotropic than the laminar flow, leading to
disagreement with experiment. However, a recent theoretical study [16] has shown that this might
not be the case. As we mentioned in our Introduction, it is now well-established that at heat fluxes
greater than those involved in the present study there is large-scale, partly coupled, turbulence in the
two fluids, in addition to the small-scale tangled motion of the vortex lines that has been the basis of
our discussion here [3]. The study in Ref. [16] shows that this large-scale motion is quite anisotropic,
especially on a small scale, the anisotropy arising from mutual friction because the turbulent eddies
in each fluid are being continuingly pulled apart in the direction of the steady relative motion of
the two fluids. The possibility exists therefore that a transition to turbulence in our case, which
would involve only small-scales but would still be in the presence of a steady counterflow, would
also preserve the anisotropy, especially if it were to involve partially coupled turbulence in both
fluids. Such a turbulent flow might possibly lead to a correlation function similar to that observed.
However, the arguments in Ref. [16] were based on continuum approximations to the flow of the
superfluid component, and it is very doubtful whether they can apply on scales only a little larger
than the vortex spacing. Furthermore, this small-scale turbulence could well be too strongly damped
by mutual friction. It should be emphasized that, even if this small-scale turbulence were indeed to
be established, it would still fundamentally have its origin in the local dragging of the normal fluid
by the vortex cores.

The development of a better theory poses major problems. Such a theory must probably be based
on simulations that take account of realistic vortex configurations interacting realistically with the
normal fluid. Such a theory must probably be based on simulations in which both the normal fluid
and the superfluid velocity fields are treated fully as coupled systems, as was done recently in a
different context by Yui et al. [17], and must take account of the time-dependence of the vortex
configurations (to which we refer in the next section). However, the spatial resolution required in
the normal fluid velocity needs to be better than the vortex line spacing, �, and therefore significantly
better than that in the simulations of Yui et al. At the same time there is a clear need to improve the
experimental observations, especially of the normal-fluid velocity correlation function.

G. The effect of vortex lifetimes and of the random motion of the vortices relative
to the average superfluid velocity

So far we have assumed in our model calculations that the vortices are not being continually
generated and destroyed in the thermal counterflow, and that they are at rest relative to the average
velocity of the superfluid component.

We note first that the vortices are moving in a random fashion, and that the corresponding random
vortex velocity can be obtained, at least to a reasonable approximation, from the local induction
approximation as follows [11]

v ∼ κ

4πR
ln

(
R

ξ0

)
, (5)

where ξ0 is the vortex core parameter, and where the mean value of 1/R2 is given by

〈(
1

R2

)〉
= c2

2�
−2, (6)
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where c2 is a constant equal to about 2. It follows that

v ∼ c2κ

�
. (7)

As a result of this random vortex motion the arrangement of vortices develops in time, the
characteristic time required for a significant change in this arrangement being given by

τe = �2

c2κ
. (8)

This random motion gives rise through mutual friction to dissipation [11,18], which is characterised
by a time constant given by

τD = 2π

χ2κL
= 2π�2

χ2κ
, (9)

where χ2 is a dimensionless parameter equal to about 3.5 at a temperature of 2 K [18]. The time
constants τe and τD are similar in magnitude, and either can be taken as defining the timescale over
which the arrangement of the vortices evolves. Using the numerical values set out in Sec. III(b), we
find that this timescale is about 38 ms at 2 K. We emphasize that this timescale relates to vortex
rearrangements on scales of order the vortex spacing; rearrangements on larger scales might well
take place more slowly.

Vortex rearrangements could, to take two extreme cases, either generate wiggles on a normal-
fluid wake or lead to the effective termination of the wake. The observed wakes seem to be
characterized by a timescale of about 100 ms. It is not yet completely clear whether this time scale
reflects the particular forms of vortex line inhomogeneities (so that, as we have assumed in earlier
sections, it is not determined by random motion of the vortices), or whether it is determined by
time-dependent vortex rearrangements. In any case it seems to be somewhat larger that 38 ms,
although not necessarily much larger. As we have just emphasized, rearrangement on scales larger
than the vortex spacing could take longer than 38 ms, and this does indeed appear to be the case.
Further progress requires more sophisticated simulations than we are able to carry out, such as
those of Yui et al., to which we have already referred [17]. We note that wiggles on the wakes might
account for the small transverse standard deviations shown in Fig. 2.

We must refer at this point to the work of Sergeev et al. [9]. They calculated the trajectories of
micron-sized tracer particles interacting with the normal-fluid velocity field near a single moving
rectilinear vortex line, expressing their results in terms of scattering cross-sections. As it turns out,
this work is probably not directly relevant to the experimental results described in Sec. II, because,
as we now see it, irregular motion of such tracer particles in a thermal counterflow is due more
to nonuniformity in vortex density than to the dragging of normal fluid by an isolated vortex. As
we have seen, the resulting irregular motion takes the form to a large extent of simply a spatial
variation in the component of the drift velocity in the direction of the heat flux, without significant
“scattering.”

IV. CONCLUSIONS

We have presented experimental results demonstrating that, even when the flow of the normal
fluid is laminar, thermal counterflow leads to nonuniformity in the velocity of the normal fluid.
Calculations are presented to show that probably this nonuniformity has its origin in the fact
that the force of mutual friction is concentrated near the cores of the quantized vortex lines (an
idea that is not new [2,6,7]), and that the characteristics of the observed nonuniformity can be
produced only by a disordered arrangement of these lines. Although these calculations are in many
ways unrealistic and based sometimes on questionable assumptions, we believe that they serve to
capture the essential physics and are at least qualitatively correct. Further developments will require
improved experimental data and more sophisticated theoretical analysis, as we have explained.
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A depressing conclusion relates to the fact that existing simulations of thermal counterflow
turbulence (see, for example, Ref. [19]) do not take into account the effects that we describe and
may therefore be unreliable. An interesting, if speculative, conclusion is that the inhomogeneities in
the normal fluid velocity that we describe may be a precursor of the large scale coupled turbulence
that is observed to set in at heat currents a little larger than those relevant to our present studies [3].
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APPENDIX

Here we set out a plausible derivation of the velocity field in the normal fluid generated by a
rectilinear quantized vortex moving with steady velocity U relative to that of the normal fluid at
infinity.

Let the force of mutual friction per unit length of vortex be f , and let the range of this force
from the center of the vortex be ξ . We shall start by writing down the known velocity field due to
a slowly-moving solid cylinder, of radius a, in a classical fluid of viscosity ηn and density ρn; this
field can be derived only if the nonlinear term in the Navier-Stokes equation is taken into account to
the extent assumed in the Oseen approximation [20]. We shall then make the plausible assumption
that the required velocity field at distances from the vortex considerably greater than both a and ξ

is the same as that generated by the cylinder if a is chosen to lead to same drag force f .
The velocity field due to the moving cylinder has a simple form in the limits when the distance r

from the cylinder is either much less than, or much greater than, the characteristic length λ = νn/2U ,
where νn = ηn/ρn.

In the former case the velocity field is given in cylindrical polar coordinates by [20]

ur = U cos θ

(
1 − C

2
ln

r

a
+ C

4
− Ca2

4r2

)
, uθ = −U sin θ

(
1 − C

2
ln

r

a
− C

4
+ Ca2

4r2

)
, (A1)

where the parameter C is related to the force, f , by the relation

f = 2πηnCU . (A2)

It turns out, however, that this form of the “near” velocity field cannot join a satisfactory solution
for the “far” velocity field unless the parameter C is given by

C = 2

ln (7.4λ/a)
. (A3)

It follows from Eqs. (A1)–(A3) that

ur = f cos θ

4πηn

(
− ln

r

7.4λ
+ 1

2
− a2

4r2

)
, uθ = − f sin θ

4πηn

(
− ln

r

7.4λ
− 1

2
+ a2

4r2

)
. (A4)

Although in the limit r � a these expressions for the velocity field do not depend explicitly on
a, we ought to require implicitly that the force f is equal to that corresponding to the mutual friction
force, ακρsU ; thus, we ought to check that this requirement does not lead to an unacceptable value
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of a. The required value of a is in fact given by

a = 7.4λ

exp (4πρνn/ακρs)
. (A5)

Using the numerical values for a temperature of 2 K set out in Sec. III(b), we find that a/λ =
3.11 × 10−4. The fact that this value is comparable with ξ means that it is indeed acceptable. We
conclude then that the Eq. (A4) can be taken to describe the perturbation in the normal-fluid velocity
field caused by a rectilinear vortex moving with velocity U relative to the normal fluid, in the
near-field limit λ � r � ξ, a.

In the far field limit, r � λ, the velocity field produced by a moving cylinder is given by (see,
for example, Mei in his Lecture Notes on Fluid Dynamics, MIT, Spring 2007)

ur = −CU

(
2πλ

r

)1/2

exp

(
− rθ ′2

8λ

)
+ 2CλU

r
, (A6)

where θ ′ = π − θ , and the product CU is still given in terms of f by Eq. (A2). The first term on the
right-hand side of Eq. (A6) describes a wake. The second term describes a small radial flow that is
required to satisfy mass continuity. As in the case of the near-field, we argue that this formula ought
to describe the far velocity field for the case of the moving vortex. In describing the far velocity field
it will prove convenient to use Cartesian coordinates, such that the vortex is along the x − axis and
U is directed along the z axis, so that for a well-developed narrow wake

ur (y, z) = − f

ηn

(
λ

2πz

)1/2

exp

(
− y2

8λz

)
+ f λ

πηn(y2 + z2)1/2
. (A7)

We can comment briefly on the physical interpretation of these results. In the near velocity
field there is a simple diffusion of vorticity away from the core of the vortex; the characteristic
logarithmic term arises straightforwardly from the two-dimensional diffusion equation in cylindrical
polar coordinates. The existence of the velocity U is unimportant as long as the front of the diffusing
region is moving at a speed greater than U . The velocity of this front is equal to 2νn/r. However,
as soon as this velocity, in the transverse direction, becomes less than U , the effect of U becomes
important and causes the front to swing round behind the moving cylinder or moving vortex, so
giving rise to the wake. Therefore, the wake starts to form when 2νn/r > U ; i.e., when r > 4λ.
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