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Interlayer correlated fractional quantum Hall state in the ν = 4/5 bilayer system
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We perform exact diagonalization studies for fractional quantum Hall states at filling factor 4/5 in a bilayer
system, on a torus with various aspect ratios and angles. We find that in the absence of tunneling, two weakly
coupled 2/5 layers undergo a phase transition into an interlayer-correlated regime, which is also Abelian with
the fivefold degeneracy on the torus. In the limit of zero layer separation, this phase becomes a singlet in the
pseudospin variable describing the layer degree of freedom. By studying the Chern-number matrix, we show
that the K matrix describing the interlayer-correlated regime requires a matrix dimension larger than two and this
regime is in particular not described by a Halperin state. A detailed analysis of possible 4 × 4 K matrices having
the requisite symmetries and quantum numbers shows that there is only one equivalence class of such matrices.
A model wave function representing this universality class is constructed. The role of separate particle number
conservation in both layers is discussed, and it is argued that this additional symmetry allows for the further
distinction of two different symmetry-protected Abelian phases in the interlayer correlated regime. Interlayer
tunneling breaks this symmetry and can drive the system into a single-layer regime when strong enough. A
qualitative phase diagram in the tunneling-layer separation parameter space is proposed based on our numerical
results.
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I. INTRODUCTION

Bilayer quantum Hall systems host extremely rich physics,
due to the electron’s (additional) internal degree of freedom
associated with the layer where it resides, as well as the
competition between inter- and intralayer electron-electron
interactions. In addition to double quantum well systems, a
single wide quantum well can also support a bilayer regime,
depending on system parameters. Recent experiments ob-
served a fractional quantum Hall (FQH) state at Landau filling
ν = 4/5 in such wide quantum well systems [1]. Obvious
candidates include the single-layer ν = 4/5 state which is
the particle-hole conjugate of the Laughlin ν = 1/5 state in
the single-layer regime, and two weakly coupled ν = 2/5
states (one for each layer) in the bilayer regime, with weak
interlayer interaction and correlation. Much more interesting
is the bilayer regime in which interlayer interaction strength is
comparable to intralayer interaction, and interlayer electron-
electron correlation cannot be neglected. In this regime,
several theoretical model states have been suggested, some
of which may be non-Abelian [2–4]. Motivated by these

experimental and theoretical developments, we perform de-
tailed numerical studies of a clean bilayer quantum Hall sys-
tem at total Landau filling ν = 4/5, with equal population of
the two layers and, in most cases, without interlayer tunneling.
The effects of interlayer tunneling will be briefly addressed in
Sec. IV.

II. MODEL AND NUMERICAL RESULTS

In our numerical calculations, we consider a bilayer elec-
tron system subject to a magnetic field B perpendicular to
the two-dimensional plane. We use torus geometry with two-
dimensional basis vectors Lx, Ly spanning the unit cell and
having an aspect angle θ between them. Unless otherwise
stated, numerical results presented in this paper correspond to
Lx = Ly and θ = π/2, i.e., square unit cell, although we will
also consider several other cell geometries. There is an integer
number of magnetic flux quanta Nφ = LxLy sin θ/2π�2 going
through the cell, where the magnetic length � = √

h̄c/eB is
chosen as the length unit and the energy is in units of e2/4πε�.
To reduce the size of the Hilbert space, we carry out our
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FIG. 1. Low-lying excitation spectra versus layer separation
for ν = 4/5 bilayer system with Ne = 12 and cell geometries of
(a) aspect angle θ = 60◦, aspect ratio r = Lx/Ly = 1.0 (hexagonal
cell); (b) θ = 80◦, r = 1.0; (c) θ = 90◦, r = 0.8; (d) θ = 90◦, r =
1.0 (square cell).

calculation within every pseudomomentum sector K =
(Kx, Ky) [5]. The magnetic field is assumed to be strong
enough so electrons can be regarded as spin polarized or
spinless [5,6] and confined to the lowest Landau level. The
Coulomb interactions are then projected onto the lowest Lan-
dau level [5] and can be written in the form

Hc = 1

Nφ

∑
q �=0,α,β

Vαβ (q)e−q2/2
∑
i< j

eiq (Rα,i−Rβ, j ). (1)

Here, α(β ) = 1, 2 are indices referring to the two layers.
The momentum q = (qx, qy) takes discrete values suitable for
the given unit cell and Rα,i is the guiding center coordinate
of the ith electron on layer α. Vα,α (q) = 1/q and Vα �=β (q) =
e−qd/q are the Fourier transforms of the intralayer and inter-
layer Coulomb interactions, respectively, and d is the layer
separation. In the present paper, we consider the layers with
zero width and performed exact diagonalization to obtain
the energy spectrum and eigenstates for a total number of
electrons Ne up to 12.

Figure 1 plots excitation energy spectra as functions of
layer separation for various unit cell geometries at a system
size of Ne = 12 with both layers equally occupied and without
interlayer tunneling. We start our discussion in the large-d
region, where the five lowest energy levels at the pseudomo-
mentum sector (0, 0) form a nearly degenerate group that is
clearly separated from higher energy states by a gap. Together
with the trivial fivefold center of mass (COM) degeneracy
on the torus, this indicates the existence of a 25-fold (nearly
degenerate) ground state (GS) manifold. In the d → ∞ limit
where two layers completely decouple, we note that these
manifold states become exactly degenerate. Each ν = 2/5
layer can be understood as a well-studied 2/5 FQH state,
carrying its own fivefold COM degeneracy.

Our numerical calculation shows that the system in
the large-d region is actually connected to the decoupled-
layer state in the d → ∞ limit, namely a state of two
weakly coupled 2/5 FQH layers. A separate calculation has

FIG. 2. Ne = 12 system at a given GS pseudomomentum sector
(0, 0): (a) Sum of squared wave function overlap between ground
state and model states versus layer separation. (b) Susceptibility of
group fidelity for the five lowest states versus layer separation.

confirmed that, as d grows to infinity, the excitation gap
above the GS manifold, 
Es = E6 − E5, approaches the gap
of a ν = 2/5 single layer, and the GS energy of the system
approaches twice that of the single layer. The connection can
also be exhibited through a comparison of wave functions as
shown in Fig. 2(a), where a model state constructed from
the single-layer 2/5 FQH states and the ground state �G

at pseudomomentum sector (0, 0) of the Ne = 12 system
are considered. The single-layer 2/5 FQH system of Ne = 6
has five degenerate ground states at sectors (0,3m) for m =
0, ..., 4. Then the five basis states �m for the bilayer system
at sector (0, 0) can be built as the direct product of these, i.e.,
�m = (0, 3m)

⊗
(0, k′

m) with k′
m = Mod(Nφ − 3m, Nφ ). The

model state of the bilayer system is considered as a linear
combination in this basis. As shown in the plot, the sum of
the squared wave function overlaps between �G and these �m

continuously evolve to unity in the d → ∞ limit.
The 25-fold degeneracy is of topological origin [10]. As

long as the system stays in the weakly coupled-layer phase,
it should remain exact in the thermodynamic limit. However,
this degeneracy could be lifted by finite-size effect for any d <

∞. As shown in Fig. 1, such lifting increases with decreasing
d . For nearly all systems at d = dc2 ∼ 1.5, the lifting becomes
comparable to the gap and mixing between states below and
above the gap starts. Besides of this spectrum feature, the
wave function overlap plot in Fig. 2(a) also exhibits a sharp
transition around dc2. These observation suggest a quantum
phase transition occurring at dc2. To probe the existence of the
phase transition at dc2, we performed a fidelity test for the five
lowest states ψi (i = 1, .., 5) at pseudomomentum sector (0,
0). The group fidelity f and its corresponding susceptibility χ

are defined as

f = 1

5

5∑
i, j=1

|〈ψi(d − δ)|ψ j (d )〉|2, (2)

χ = (1 − f )/δ2. (3)

The results show a sharp peak around dc2, signifying the
quantum phase transition occurring there.
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To investigate the nature of the transition at dc2, we
turn to the spectrum with d further decreasing. We note
that the lowest energy level does not engage in any mixing
with other levels, remaining separated by a gap except for
d = dc1 ∼ 0.5, where another transition occurs and we will
discuss it later. Correspondingly, the GS degeneracy changes
to become fivefold below dc2. Thus, the transition at dc2 can be
interpreted as a transition between the large-d phase of weakly
coupled 2/5 layers with 25-fold degenerate ground state, and a
topologically different phase with fivefold degenerate ground
state at smaller d . Such a transition would also require ex-
cited states to become gapless in the thermodynamic limit. A
softening of some exited states around d ∼ 1.5 is clearly seen
in the spectra. However, due to finite size effects, the mixing
between these softened modes and (some of) the ground states
still takes place at finite energy. At large d , the 25-fold ground-
state degeneracy signifies a stable topological phase, albeit
one with relatively large degeneracy. It is not unexpected that
moderate interlayer interactions (at intermediate d) suffice
to lower this degeneracy, leading into a different topological
phase, with, in this case, minimum COM degeneracy of five.
In the following discussion, we will refer to the regions with
d < dc2 collectively as the interlayer-correlated FQH regime.

As a first step to investigate the interlayer-correlated,
small- to intermediate-d region, we carry out numerical stud-
ies on the pseudospin excitation in the d = 0 limit. In this
case, the inter- and intralayer interactions are identical, and the
system has a pseudospin SU(2)-symmetry when we identify
the layer degree of freedom as a spin-1/2 pseudospin-index
in the Sz-basis. Denoting the number of electrons at each
layer as N↑ = Ne/2 + 
N and N↓ = Ne/2 − 
N , we then
have a total of Sz = 
N for the entire system. As a result
of the SU(2)-symmetry, eigenstates can be labeled by SU(2)
quantum numbers, where states with pseudospin S come in
multiplets with −S � Sz � S. As the numerical results in
Fig. 3 show, the GS energy of a balanced-layer system (
N =
0 or Sz = 0) is found to be the lowest while the GS energy of
an imbalanced-layer system increases with 
N . Furthermore,
the GS energy of a |Sz| = 1 system exactly matches with the
energy of the first excited state of a balanced-layer system.
These overlaps in low-energy levels clearly indicate which
pseudo-spin sector the excitation of the system belongs to. On

FIG. 3. Comparison of low-lying energy spectra at different total
pseudospins |Sz| = 0, 1, 2 for Ne = 12 system with d = 0.

the other hand, the GS energy of a |Sz| = 2 system is higher.
These observations suggest that the ν = 4/5 system at d = 0
is a pseudospin-singlet state (S = 0), while the lowest-energy
excitations form a pseudospin triplet (S = 1).

III. TOPOLOGICAL ORDER OF THE
INTERLAYER-CORRELATED STATES

We now turn to a more in-depth study of the nature of
the topological phase(s) in the interlayer-correlated regime.
We first consider a generalized periodic boundary condi-
tion with twisted boundary phase angles 0 � θα

η < 2π along
η = x, y directions in layer α. After a unitary transforma-
tion � = exp[−i

∑
α

∑
i((θ

α
x /Lx )xα

i + (θα
y /Ly)yα

i )]�, where
the summation runs over all electrons of both layers, the
resulting many-body wave function � once again satisfies
(magnetic) periodic boundary conditions. Many-body topo-
logical Chern numbers are then well-defined, and can be given
as [7,8]

D Cα,β = 1

2π
Im

D∑
i=1

∫∫
dθα

x dθβ
y

〈
∂�i

∂θ
β
y

∣∣∣∣∂�i

∂θα
x

〉
, (4)

where the integral is over a phase unit cell of 0 � θα
x , θβ

y �
2π , D is the ground state degeneracy, and i is a label
running over a basis of ground states. For the bilayer sys-
tem with α(β ) = 1, 2, we thus have a 2 × 2 Chern num-
ber matrix (CNM) [8]. The off-diagonal matrix elements
C1,2 = C2,1 are relevant to the boundary-phase-averaged drag
Hall conductance. Applying common (opposite) boundary
phase on two layers, one can also get the boundary-phase-
averaged charge (pseudospin) Hall conductance in units of
e2/h̄ as Cq = C1,1 + C2,2 + C1,2 + C2,1 (Cs = C1,1 + C2,2 −
C1,2 − C2,1). The CNM has been proposed equal to the inverse
K matrix for several Halperin hierarchy states in bilayer
systems and topological flat bands [9].

We calculated the CNM of the ground states for all the cell
sizes, geometries, and ranges of the d parameter considered.
For d < dc1 , the numerical results consistently give a 2 × 2
matrix,

C1 =
(−4/5 6/5

6/5 −4/5

)
, (5)

whereas for dc1 < d � dc2 , the numerical results consistently
give

C2 =
(

6/5 −4/5
−4/5 6/5

)
. (6)

These two regions are separated by a clear gap-closing feature
in the spectrum at dc1 ≈ 0.5, where, even at finite system size,
the gap closes exactly for some boundary conditions, making
the change of CNM possible. Since this transition does not
involve a change in ground-state degeneracy, we suspect that
it is a symmetry-protected topological phase transition related
to the separate conservation of particle number in each layer, a
point we will further elaborate on later. For d � dc2 , the lowest
five energy states undergo mixing with 20 other states, and
the assumption D = 5 in Eq. (4) does not lead to consistent
results. However, working with the 25 lowest energy states
(setting D = 25), at sufficiently large d one recovers a CNM
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C3 with diagonal elements equal to 2/5 and zero off-diagonal
elements, as expected for two separated 2/5-filling system.
Results for Ne = 8 particles are very similar, except with
smaller intermediate region and earlier onset of the large-d
region, which we attribute to finite size effects.

We note that for the large-d system with two separate
layers at 2/5-filling, the inverse of the matrix C3 does not
correspond to a proper 2 × 2 K matrix. This system is actually
described by the 4 × 4 K matrix:

K =

⎛
⎜⎝

3 2 0 0
2 3 0 0
0 0 3 2
0 0 2 3

⎞
⎟⎠ . (7)

Similarly, the inverses of both matrices C1, C2 do not lead to
proper K matrices, either. This suggests that the interlayer-
correlated regime is not described by a Halperin state. Never-
theless, our numerical findings, in particular the fivefold (min-
imal) torus degeneracy, imply that the interlayer-correlated
regime is Abelian. On general grounds, it should then be
amenable to a description in terms of symmetric integer K
matrix, and a corresponding integer charge vector q. (For a
review, see Ref. [10].) The fact that matrices C1 and C2 are not
obtained as the inverses of proper K matrices suggests that the
dimension of the underlying K matrix must be larger than 2,
as in the case of C3 in the large-d limit.

A systematic search for a physically admissible K matrix
can be carried out as follows. Since the small-d phase seems
to be adiabatically connected to the singlet state at d = 0,
and since the U(1)-invariance generated by (pseudo-)Sz and
(pseudo-)spin flip invariance remain symmetries for any d , the
ground state must have Sz = 0 and be invariant under spin flip
for all d below the phase transition at dc1 . For the K matrix
to exhibit this spin flip (or Ising) symmetry, we require it to
be of even dimension 2n and commute with (0 1

1 0), where
1 ≡ 1n×n is the n × n-identity matrix. Furthermore, | det K|
must equal the ground-state degeneracy of 5, and qt K−1q must
equal the filling factor of 4/5. Finally, the components of q
must be coprime for there to be trivial charge-1, electronlike
excitations. There is then always a basis (the “symmetric
basis”) where all the components of q are 1, and in this
basis all diagonal components of K must be odd for the
electronlike charge-1 excitations to be fermionic. Indeed, one
finds no n = 1 (two-dimensional) K matrix that satisfies all
these requirements, consistent with our earlier finding that the
interlayer-correlated regime is not described by a Halperin
state.

For n = 2, the most general K matrix thus described has
the structure

K =

⎛
⎜⎝

a b d e
b c e f
d e a b
e f b c

⎞
⎟⎠ , (8)

with a and c odd, and we take q = (1, 1, 1, 1)t . We car-
ried out a brute force analysis of all such matrices with
entries −13 � a, . . . , f � 13. There are 447 such matrices

satisfying | det K| = 5 and qt K−1q = 4/5. However, all of
these matrices have been found to be congruent via unimod-
ular matrices that leave q invariant. That is, different K , K ′ in
this set are all related via K ′ = W KW t , where W is an integer
matrix with | det W | = 1 and W q = q. K and K ′ are then
physically equivalent [10]. These findings suggest that, up to
physical equivalence, there exists only one 4 × 4 K matrix
with the requisite properties, with a suitable representative
given by

K =

⎛
⎜⎝

1 2 1 1
2 1 1 1
1 1 1 2
1 1 2 1

⎞
⎟⎠ . (9)

Any hypothetic K matrix solving our problem while being
inequivalent to Eq. (9) would need to have entries larger than
13 in the symmetric basis. Thus, Eq. (9) can certainly be
viewed as the simplest solution, suggesting that it is, at the
very least, the most robust.

Note that Eq. (9) satisfies det K = +5, with two positive
and two negative eigenvalues, signifying two copropagating
and two counterpropagating bosonic edge modes. These are
direct consequences of the bulk topological order encoded
in the K matrix, which can be revealed by inspecting edge
excitation spectrum when studying disk geometry, or the
entanglement spectrum of the ground state itself.

It is prudent to ask what the relation is between the K ma-
trix of Eq. (9) here and the Chern-number matrices discussed
early. As mentioned, one of the defining features of Eq. (9)
is the relation qt K−1q = 4/5, which defines the filling factor,
and, at the same time, the Hall conductance. As such, it is the
sum of all matrix elements of the CNM. One may identify
q1 = (1, 1, 0, 0)t as the part of the charge vector associated to
the upper layer, and q2 = (0, 0, 1, 1)t the part of q associated
to the lower layer, such that q = q1 + q2. We thus expect the
CNM to be given by Ci, j = qt

i K
−1q j . Note that for Halperin

states, q1 = (1, 0)t , q2 = (0, 1)t , which indeed reduces to
CNM = K−1. With this, the K matrix of Eq. (9) gives matrix
C2 of Eq. (6), corresponding to the region dc1 < d < dc2 . But
it is inconsistent with the matrix C1 of Eq. (5) that we found
for d < dc1 . As already mentioned at the level of the K-matrix
description, all K matrices satisfying the constraints described
here are equivalent in the topological sense [10] (congruence
via unimodular matrices), but not all of these matrices yield
the same CNM via the above prescription. This may not be
surprising, as the CNM is only well-defined in the presence
of an additional U(1)-symmetry, and it is well appreciated
that symmetries may enrich [11] topological orders, i.e., they
may lead to distinctions between phases that are otherwise
topologically identical. Indeed, the equivalence class of K
matrices defined here does have representatives leading to the
CNM C1 of Eq. (5), the simplest being

K ′ =

⎛
⎜⎝

1 1 1 2
1 1 2 1
1 2 1 1
2 1 1 1

⎞
⎟⎠ . (10)
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Indeed, Eqs. (9) and (10) are congruent via the unimodular
matrix:

W =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎠ . (11)

In particular, they describe the same edge physics, as well as
bulk topological properties in terms of quasiparticle content
and statistics.

Finally, we intend to provide in particular the K ma-
trix of Eq. (9) with a simple wave-function interpretation:
The diagonal blocks represent, in each layer, a particle-hole
conjugate of the Laughlin-1/3 state, ψ2/3. The layers are
then coupled through a Jastrow-factor

∏
1�i, j�N (zi − w j ) (off-

diagonal block), where the z j (w j) are the complex coordi-
nates of the upper (lower) layer, thus

ψ (z1, . . . , zN ,w1, . . . ,wN )

=
∏

1�i, j�N

(zi − w j ) ψ2/3(z1, . . . , zN )

×ψ2/3(w1, . . . ,wN ) . (12)

We note that a similar wave-function form was also proposed
by composite fermion theory [2].

It is worth recalling that the K matrix and charge vector q,
by themselves, do not specify the topological shift [12] S of
the state, which is another important piece of the topological
data and is defined in N� = ν−1Ne − S with N� the number
of flux quanta in spherical geometry. However, the variational
wave-function interpretation of Eq. (12) does imply a definite
topological shift as follows: One may convince oneself that
the factor

∏
1�i, j�N (zi − w j ), applied to any (pseudo-)Sz = 0

state, does not affect the topological shift. The topological
shift of Eq. (12) must therefore be the same as that of the
2/3 state, which is S = 0. The shift S only requires rotational
invariance in order to be well-defined, but not the separate
conservation laws that lead to the distinction of the phases
d < dc1 and dc1 < d < dc2 . Hence, one may expect the entire
interlayer-correlated regime d < dc2 to have the same shift.
Thus, to the extent that the wave function of Eq. (12) is the
correct description of the intermediate phase dc1 < d < dc2 ,
we expect this shift to be zero in all of the interlayer-correlated
regime. A direct verification of this prediction on the sphere,
as well as predictions on the edge and entanglement spectra,
will provide further support to the topological order we have
discussed here. We will leave these considerations for future
work.

IV. EFFECTS OF INTERLAYER TUNNELING

We emphasize that well-defined CNMs of C1 and C2,
separating two distinct regions, can be obtained only in the
presence of separately conserved charges in the upper and
lower layer, respectively. Under these circumstances, any
change in CNM necessarily results in distinct regions sep-
arated by a critical point, as happens in the present case,
where the CNM changes from C2 to C1 at dc1 . On the other
hand, if these separate conservation laws are violated via
nonzero interlayer tunneling, one would expect that the region

FIG. 4. Magnetization plot for the expectation value of total
pseudospin Sx at pseudomomentum sector (0, 0) of Ne = 12 system.
The phase regions of A, B, C, intermediate phase, and their bound-
aries are described in the main text.

dc1 < d < dc2 may be adiabatically connected to the region
d < dc1 without gap closing. Shedding light on questions such
as this, and to further explore the physics of a bilayer system
at filling factor 4/5, motivates us to explore an extended phase
diagram including interlayer tunneling terms. Thus, we study
the following model Hamiltonian with interlayer tunneling
parameter t :

H ′ = Hc − t Sx + d S2
z /Nφ, (13)

where the total pseudospin Sx = ∑
i,α �=β a†

i,αai,β/2 with the

creation (annihilation) operator a†
i,α (ai,α) for the ith lowest

Landau-level orbital in the α layer, and the last term is
induced by an imbalance of the electron number in the two
layers with total pseudospin Sz [13]. This model will allow
us to investigate the phase evolution of the system under the
influence of both the layer separation and interlayer tunneling,
thus offering a more comprehensive understanding. Through
our numerical calculation, we note that the system GS is
mostly located at the pseudomomentum sector (0, 0) except
for a small parameter region enclosed by the white dashed
line in the diagram of Fig. 4. We interpret this to be a
spin-density-wave regime, which we argue removable via a
perturbation on the Coulomb interaction, e.g., due to layer
thickness. Therefore, in the following discussion, we will
focus on the ground state within the (0, 0) sector.

With the expectation value of total pseudospin Sx at sector
(0, 0) depicted as a background grayscale, we have tentatively
plotted an extended t − d phase diagram in Fig. 4 for the
Ne = 12 system with a square unit cell. The phase diagram
of the Ne = 8 system with a hexagonal cell has qualitatively
similar features. The red/blue/green boundary lines in the
diagram have been determined as locations of a level crossing
involving the GS in the (0, 0) sector. As is clearly seen from
the background grayscale, these crossings are concomitant
with jumps in the Sx-expectation value. Therefore, these lines
must be interpreted as lines of first-order phase transitions.
Details regarding the discontinuity of Sx in the (0, 0) sector
are shown in Fig. 5.
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FIG. 5. Low-lying excitation spectrum and expectation value of
Sx at pseudomomentum sector (0, 0) for Ne = 12 system. Five lowest
energy levels at sector (0, 0) are represented by colored curves in
the spectra. Plots of (a1)–(a4) stand for system at selected interlayer
tunneling parameters t = 0, 0.01, 0.03, 0.05; (b1)–(b4) for system at
selected layer separations d = 0, 0.5, 0.8, 1.6.

We first turn to the system with small interlayer tunneling
t � tc1 ≈ 0.015. As shown in Fig. 5(a2), spectral features are
very similar to those previously discussed for t = 0, with two
phase transitions as d increases. Furthermore, we note that the
system within the small t/small d corner, which we termed the
A phase, is adiabatically connected to the pseudospin singlet
state at t = 0, d = 0, with its Sx ≈ 0. This phase continues to
be separated via a gap closing from an intermediate regime
above the dc1 < d < dc2 line. This is at first surprising, since,
as we said initially, absent a well-defined Sz-quantum number
(charge conservation in each layer), one would not expect
these two regimes to be fundamentally distinct. However,
since we have strong evidence that the red phase boundary is
first order, there is no contradiction to the notion that these re-
gions can be adiabatically connected in a larger Hamiltonian-
space than presently considered. Moreover, the critical point
at dc1 , at which the CNM changes along the d axis, serves
as the natural second-order terminal point for this line of
first-order phase transitions.

We now turn to large layer separation d . Physically, even
with moderate finite interlayer tunneling, the bilayer system
in the limit d → ∞ will enter the phase represented by two

decoupled 2/5 layers, which we denoted as C phase in the
diagram. The (purple) boundary between this layer-decoupled
zone and the layer-correlated zone in Fig. 4 is determined
by scanning for the onset of a well-defined gap between
the lowest five energy levels and the remainder in the spec-
trum. It can also be determined by the forming signal of the
25-fold degeneracy in wave-function overlap and/or by the
group fidelity as we discussed in Sec. II. Based on numerical
data, there exists another (green) boundary in the diagram,
determined by the GS level crossing and/or Sx-discontinuity.
However, we note that the relative position between green and
purple boundaries varies for Ne = 8 system; the Sx discon-
tinuity at the bottom part of the green boundary is small as
t decreases and vanishes at t = 0 as shown in Figs. 5(a1),
5(a2), and 5(b4). Also, as shown in Figs. 5(a1)–5(a4), in
the large d region, the two crossing levels join the group
of the five degenerate ground states [within the (0, 0) sec-
tor], which are completely degenerate in the thermodynamic
limit. These observations lead us to argue that the separate
green and purple boundaries are due to finite-size effects and
that these boundary lines would merge into a single bound-
ary, at least below a certain t value, in the thermodynamic
limit.

Finally, we look at the limit of large t . For finite d and
in the limit t → ∞, the bilayer system effectively becomes
a single-layer system as single-particle orbitals must align
with the effective field in the x direction. We termed this
phase the B phase. The transition from a two-layer system
to a one-layer system can be exemplified in the d = 0 case,
where the symmetry is larger; in particular, the Sx symmetry
remains intact. At t � tc1, the system stays as a pseudospin
singlet with Sx = 0. Further increasing t , the system jumps
to a finite Sx and undergoes a sequence of GS level crossing
within the (0, 0) sector, ending with an Sx-saturated phase at
t = tc2 ≈ 0.038, in which Sx = Ne/2 and the system enters the
single-layer regime described by

K =
(

1 0
0 −5

)
, (14)

FIG. 6. Ground-state susceptibility at pseudomomentum sector
(0, 0) of Ne = 12 system with selected layer separations: d = (a) 0.5,
(b) 0.8, (c) 1.05.
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FIG. 7. Proposed t − d phase diagram for the ν = 4/5 bilayer
system.

corresponding to the particle-hole conjugate of Laughlin state
at ν = 1/5. Although the discontinuity in Sx and/or level
crossing in the spectrum are notable in both small-d and
large-d regions, as shown by the blue and green lines in
Fig. 4, respectively, we note there is no such signal when
we increase t in the intermediate-d region as shown in
Figs. 5(b2) and 5(b3). However, even along cuts in t with
d in this region, we must expect a purely topological phase
transition, without change in ground state degeneracy, as we
attribute a different K matrix to the dc1 < d < dc2 interval
on the d axis (Sec. III). We have tried to determine the
associated phase boundary in this intermediate region (the
orange curve in Fig. 4) using GS fidelity. As shown in Fig. 6,
when we scan the GS fidelity/susceptibility at a given d ,
there is a minimum/maximum signal, which we take to be
the transition point. This orange boundary merges with the
upper parts of the blue boundary and green boundary at its two
ends, separating the one-layer phase with Sx ≈ Ne/2 from the
bilayer phase(s).

In the end, we would like to summarize our findings in a
schematic t − d phase diagram, Fig. 7, for the ν = 4/5 bilayer
system as described by the model Hamiltonian Eq. (13): The
system remains a pseudospin-singlet in the small-t/small-
d region, becomes a decoupled two 2/5-layer system at
large d , and a quasi-single-layer at large t , with a correlated

bilayer of fivefold GS degeneracy in the intermediate
region.

V. CONCLUSION

We have presented detailed exact diagonalization studies
on various toroidal geometries for bilayer FQH states at filling
fraction 4/5, with up to Ne = 12 particles. We found that for
small enough layer separation d , the regime of two weakly
coupled 2/5 layers undergoes a phase transition into another
Abelian regime, characterized by fivefold (minimal) ground-
state degeneracy. The state at zero layer separation has been
shown to be a pseudo-spin singlet. We have discussed possible
K-matrix descriptions for the Abelian regime with small- to
intermediate-d , ruling out all 2 × 2 K matrices by analyzing
the Chern-number matrix in this regime. In the absence of ad-
ditional conservation laws, we find only one equivalence class
of 4 × 4 matrices with the proper quantum numbers. A model
wave function representing this class has been constructed,
consisting of two 2/3-states coupled by an interlayer Jastrow-
factor. In the presence of separate particle number conserva-
tion in each layer, our study suggests the existence of two
separate symmetry-protected Abelian phases with identical
topological quantum numbers, in particular, identical ground-
state degeneracy, but different Chern-number matrix. We have
further studied the fate of these phases in the presence of
finite interlayertunneling, finding in particular that all phase
boundaries survive finite tunneling, but in part become first
order. We are hopeful that these findings will stimulate further
investigation of this rich and interesting regime in both theory
and experiment.
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