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Metallic state in bosonic systems with continuously degenerate dispersion minima
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In systems above one dimension, continuously degenerate minima of the single-particle dispersion are realized
due to one or a combination of system parameters such as lattice structure, isotropic spin-orbit coupling, and
interactions. A unit codimension of the dispersion minima leads to a divergent density of states which enhances
the effects of interactions, and may lead to novel states of matter as exemplified by Luttinger liquids in one-
dimensional bosonic systems. Here we show that in dilute, homogeneous bosonic systems above one dimension,
weak, spin-independent, interparticle interactions stabilize a metallic state at zero temperature in the presence of
a curved manifold of dispersion minima. In this metallic phase, the system possesses a quasi-long-range order
with nonuniversal scaling exponents. At a fixed positive curvature of the manifold, increasing either the dilution
or the interaction strength destabilizes the metallic state toward charge density wave states that break one or more
symmetries. The magnitude of the wave vector of the dominant charge density wave state is controlled by the
product of the mean density of bosons and the curvature of the manifold. We obtain the zero-temperature phase
diagram, and identify the phase boundary.
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I. INTRODUCTION

In the absence of disorder, weakly interacting bosons
have a strong tendency of Bose condensing, resulting in a
superfluid ground state that spontaneously breaks the global
U(1) symmetry associated with particle-number conservation
[1]. Stronger interaction can result in a number of different
phases. The simplest is a trivial Mott insulator phase that does
not break any symmetry, and is possible only when bosons
are loaded in a preexisting lattice with integer lattice filling
[2,3]. More generally, insulating states of bosons result from
spontaneously breaking either continuous or discrete transla-
tion symmetry. A tantalizing possibility, namely, coexisting
spontaneously broken translation and U(1) symmetries that
result in a supersolid phase, has been discussed extensively
theoretically and explored experimentally [4–6]. Thus, other
than the trivial Mott insulator phase, all known phases formed
by interacting bosons break one or more symmetries sponta-
neously above one dimension (1D).

The situation is quite different in 1D. Due to enhanced
fluctuations, spontaneously broken continuous symmetry is
forbidden, and consequently neither superfluid nor crystalline
states are stable, and the generic state is a critical metallic
phase, known as the Luttinger liquid, with power-law decay
of both superfluid and crystalline order parameters [7]. A
long-standing question in condensed matter physics is if such
a metallic phase is possible above 1D. The purpose of this
paper is to show that the answer is in the affirmative for
weakly interacting dilute bosonic systems in the presence
of continuously degenerate single-particle dispersion min-
ima. Such highly degenerate minima may be realized in the
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honeycomb lattice [8,9], in the presence of isotropic spin-orbit
coupling (SOC) [10–15], or in Bose metal states [16–21]. For
a concrete context, here we consider the case of isotropic
SO-coupled bosons.

The role of SOC in determining the properties of matter has
been extensively investigated in solid-state systems [22]. Ow-
ing to a dearth of naturally occurring SOC bosonic systems,
the effect of SOC in determining properties of interacting
bosons received a significant impetus only after the advent
of ultracold atom systems where synthetic SOC in bosonic
systems became accessible [23,24]. Indeed, a recent surge
of theoretical investigations into SO-coupled bosonic systems
has predicted multiple novel many-body states in both trapped
and homogeneous systems, including many-body “cat” states
[25], density wave states [26–28], composite fermion liquid
[29], various vortex states [30–32], and superfragmented con-
densates [33].

In this paper, we focus on a homogeneous, interacting
system of Rashba SO-coupled pseudospin- 1

2 bosons. The
pseudospin degree of freedom is associated with internal
levels of an atom. An SOC between these pseudospin states is
generated by dressing them with photons through the Raman
effect [34]. In these experimental setups an anisotropic SOC,
which may be interpreted as an equal mixture of Rashba and
Dresselhaus SOC, is more readily generated, and it leads to
a doubly degenerate dispersion minima along the direction of
the counterpropagating laser beams. Therefore, for their im-
mediate experimental relevance, systems with such extremely
anisotropic SOC have been extensively investigated [35]. It is
comparatively more complicated to realize an isotropic SOC
with only Rashba or Dresselhaus terms due to the higher
symmetry of the SOC [10–15]. In the presence of isotropic
SOC, however, a qualitatively novel situation arises with
the dispersion obtaining a continuously degenerate minima
along a ring in space dimensions d = 2 (Rashba SOC), and
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FIG. 1. The single-particle dispersion in the absence (dashed
curve) and presence (solid curves) of spin-orbit coupling. In the
absence of spin-orbit coupling the spectrum is doubly degenerate.
The spin-orbit coupling lifts the degeneracy, and leads to an upper
and a lower [given by E (K ) in Eq. (2)] branch. Here, we focus on
the lower branch by considering energies that are smaller than the
spin-orbit energy scale Eκ (dotted line). For a weakly interacting
dilute system perturbation theory breaks down below a scale Eλ

(dotted-dashed line). We utilize a bosonization-based method to
access the physics below Eλ.

a spherical shell in d = 3 (Weyl SOC) [36]. We note that
the existence of such a branch of the dispersion is a general
property of spinful bosons, and the analysis developed here
can be applied to a spin-S bosonic system within a suitably
chosen parameter regime. Since we consider the asymptotic
low-energy behavior of the system which is controlled by the
lowest branch of the dispersion, the specific choice of S is
not expected to lead to qualitatively new low-energy behavior
within the parameter regime explored here.

For concreteness we consider a nonrelativistic Hamiltonian
of N bosons in two space dimensions, in the presence of
Rashba SOC and a spin-independent interaction

H =
N∑

n=1

[(
− ∇2

n

2m
+ Eκ

)
σ0 − i

κ

m
σ · ∇n

]

+ V0

N∑
n>m=1

δ(rn − rm), (1)

where rn denotes position of the nth boson, m is the mass
of a boson, κ

m
is the SOC strength, Eκ ≡ κ2

2m is the energy
scale associated with SOC, σ0 is the 2 × 2 identity matrix,
and σ ≡ (σx, σy) are Pauli matrices. The σμ matrices act on
the pseudospin degree of freedom. Here, we have shifted the
single-particle energies by Eκ to make the energy eigenvalues
positive semidefinite. The SOC removes the twofold degener-
acy of the single-particle spectrum (dashed curve in Fig. 1),
and leads to two distinct branches (solid curves in Fig. 1). The
lower branch disperses as

E (K ) = 1

2m
(|K| − κ )2, (2)

where K is two-dimensional momentum. Therefore, the pa-
rameter κ corresponds to the radius of the ring over which the
energy is minimized (see Figs. 1 and 2). We note that the most
general set of interactions in the density-density channel is
given by Hint = ∑

s1,s2

∫
drCs1,s2 n̂s1 n̂s2 , where n̂s is the local

FIG. 2. The momentum scales in the low-energy model. The
solid (blue) circle represents the ring-shaped dispersion minima of
radius κ (see Fig. 1). The effective theory in Eq. (8) is defined below
an energy cutoff Eλ, which is represented by the momentum scale λ.

density operator of the pseudospin species s, and C is a the
coupling matrix. The spin-independent interaction in Eq. (1)
is realized in the critical subspace of the space of couplings
where all Cs1,s2 = V0. In order to explore the low-energy
properties of the system, we deduce an appropriate effective
theory that governs the long-wavelength behavior from Eq. (1)
in Sec. II.

The unit codimension of the ring minima and the quadratic
dispersion in its vicinity result in the single-particle density
of states to diverge as 1/

√
E (K ). This is reminiscent of

one-dimensional bosonic systems, and the origin of the en-
hanced fluctuations that suppress superfluid order. Therefore,
interactions among bosons are expected to play a key role
in determining the fate of the system. Indeed, the divergent
density of states completely depletes a noninteracting BEC
in an isotropic SOC system in both two and three dimen-
sions [25,37]. In the presence of a spin-dependent repulsive
interaction, i.e., the off-diagonal elements of Cs1,s2 �= V0, a
plane-wave BEC or a stripe-ordered phase is stabilized at
T = 0 [26]. At any finite temperature, however, both states are
unstable, and the system develops a quasi-long-range order
[37,38]. Interestingly, as shown in Appendix A, the plane-
wave and striped-ordered condensates become degenerate as
the interaction becomes spin independent [39]. Numerical
simulations show that the degeneracy obtained at the mean-
field level remains robust against fluctuations [39]. Therefore,
the model in Eq. (1) possesses intriguing zero-temperature
behavior where the system does not appear to develop a
true long-range order. Furthermore, when interpreted as a
description of a quantum critical point, Eq. (1) is expected
to control the finite-T behavior over an extended region of the
phase diagram [40].

In general, a systematic understanding of the nontrivial
behavior of isotropic SOC bosons is challenging, owing to a
lack of control over the effects of interactions in the presence
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FIG. 3. The T = 0 phase diagram as a function of bare interac-
tion strength V0 (measured in units of m−1), and two-dimensional
mean density ρ̄ (measured in units of κ2). The solid curve is the phase
boundary which has the asymptotic form obtained in Eq. (55).

of the high single-particle degeneracy resulting from the ring
minima. Due to the presence of degenerate mean-field states
that break different symmetries, the present model is more
complex. Since methods based on variational wave functions
and mean-field theories are a priori biased towards specific
states, usually with fixed patterns of symmetry breaking, it
is likely that these methods may prove to be insufficient
when applied to situations where distinct orderings com-
pete [41,42]. In this work, we utilize the analogy with one-
dimensional bosonic systems to develop a high-dimensional
generalization of (1D) bosonization (as discussed in Sec. III),
which is an unbiased and nonperturbative method that does
not assume a specific broken-symmetry state. Using this
multidimensional bosonization, we show that weak repulsive
interactions can take advantage of the divergent single-particle
density of states to stabilize a metallic state that resembles
a Luttinger liquid. As the interaction strength increases, the
metal becomes unstable against various charge density wave
(CDW) states. Our method allows for an unbiased analysis
of these competing instabilities based on scaling analysis, and
finds the leading instability is toward a CDW state with a wave
vector of magnitude 2πρ1D, where ρ1D ≡ ρ̄/κ with ρ̄ being
the mean density of the bosons. This CDW state is stabilized
by the backscatterings that arise from the nonchiral dynamics
in the vicinity of the ring minima. We obtain the phase
diagram in Fig. 3, and provide details of its determination in
Secs. IV and V.

II. LOW-ENERGY EFFECTIVE THEORY

In this section we introduce a low-energy effective model,
that is appropriate for a system of dilute, weakly interacting
bosons in two space dimensions in the presence of Rashba
SOC. Since the key elements of the physics explored here is
closely tied to the ring minima, we set the associated energy
scale Eκ to be the largest energy scale in the low-energy

FIG. 4. Schematic representation of the region Rλ (shaded re-
gion) which contains the high-energy modes that are integrated out
to generate the effective action in Eq. (8).

sector of the model. The two remaining energy scales arising
from the mean density (ρ̄) and the interaction strength (V0)
are assumed to be small enough to allow us to focus on the
vicinity of the ring to access the low-energy dynamics of the
system:

1 � ρ̄/κ2, 1 � mV0. (3)

In order to construct the effective model, we consider a
homogeneous system in the thermodynamic limit from the
perspective of effective field theory, and focus on universal
features. Since the ring minima play a progressively important
role as the energy of the system (E ) decreases with respect to
Eκ , we project the dynamics to the lower branch by integrating
out all modes that carry energy above an effective ultraviolet
(UV) energy scale Eλ ≡ λ2

2m with λ being a momentum scale.
These high-energy modes can be separated into two regions,
E > Eκ and Eκ > E > Eλ, with the latter corresponding to
momenta lying in the region Rλ = {K | |K| < κ − λ} ∪ {K |
2κ > |K| > κ + λ} (see Fig. 4). We assume that the bare
interaction is weak enough to allow us to (i) completely ignore
the renormalizations produced by the modes at energies E >

Eκ ; (ii) find a small enough λ to enable modes at energies
Eκ > E > Eλ to produce perturbatively small but finite renor-
malizations. In order for the effective theory with cutoff λ

to be weakly renormalized compared to the bare theory, the
quantum corrections generated by integrating out high-energy
modes must be small compared to the bare parameters. As
shown in Appendix B, the quantum corrections produced by
the one-loop processes in Fig. 5 are on the order of mκV 2

0 λ−1.
Therefore, the requirement of weak renormalization implies
λ > mκV0 which is satisfied by the choice

λ = mV0

ρ̄/κ2
Bλκ, (4)

with Bλ ∼ 1 being a positive constant. Moreover, for the
effective theory to be a description of the dynamics of the
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FIG. 5. Quantum fluctuations at one-loop order that contribute
to the effective interaction vertex. The solid (dotted) lines represent
boson propagators (bare interaction vertex).

modes lying close (compared to κ) to the ring, the two scales
λ and κ must be well separated (i.e., λ 	 κ), which requires
the bare interaction to be weak enough to satisfy

ρ̄/κ2 � mV0. (5)

This is the condition for weak coupling, and it is analogous to
the condition for weak coupling in one-dimensional bosonic
systems [43]. For future convenience we define the ratio

K ≡ ρ̄/κ2

mV0
(6)

to quantify the effective strength of interaction.
The dilute limit is enforced by setting the chemical poten-

tial to be the smallest energy scale μ 	 Eλ 	 Eκ . Since the
chemical potential is related to the mean density as μ ∼ ρ̄V0,
we obtain the parameter regime where the analysis to follow
is well controlled:

1 � ρ̄

κ2
� mV0 �

(
ρ̄

κ2

)3

. (7)

To summarize, the first inequality from the left is necessary for
tying the low-energy physics to the ring minima; the second
inequality sets the condition for weak coupling; the third
ensures that μ is the smallest energy scale in the problem.
The effective action we deduce below in Eq. (8) governs the
low-energy dynamics in the regime defined by Eq. (7).

In principle, the coarse graining both renormalizes the
overall magnitude of the bare parameters, and generates
momentum dependencies of the effective parameters. For
parameters in vertices that are “local” in momentum space,
the effective momentum dependence can be ignored within
a weak-coupling expansion as they are irrelevant in a renor-
malization group sense. In the presence of degeneracy in the
single-particle spectrum, however, the effective momentum
dependencies of the parameters in “nonlocal” vertices are
nontrivial as they are sensitive to the degeneracy. Indeed the g-
ology in one-dimensional metals, and the Landau parameters
in Fermi liquids follow from such considerations. Since the
interaction among the modes in Rλ is weak and we coarse
grain toward the ring minima, we ignore the renormalizations
to the overall magnitude of all parameters, but retain the
momentum dependence of the coupling function to obtain the

effective action for the low-energy dynamics of interacting
bosons at zero temperature with E � Eλ:

Sλ =
∫

dK �λ(K ) [ik0 − μ + E (K )]|	(K )|2

+ 1

2

∫ (
4∏

n=1

dKn�λ(Kn)

)
δ(3)(K1 − K2 + K3 − K4)

×V (K1, K2, K3, K4) 	∗(K1)	(K2)	∗(K3)	(K4). (8)

Here, k0 is the Euclidean frequency, dK ≡ dk0dK
(2π )3 , �λ(K ) is a

cutoff function that suppresses modes with ||K| − κ| > λ, 	

represents the low-energy bosonic modes, and V ({Kn}) is the
effective interaction potential for scattering among the bosons.
In Appendix B we sketch a derivation of the functional form of
V ({Kn}) for the bare interaction potential V0({Kn}) = V0. We
note that Eq. (8), however, serves as a low-energy effective
theory for more general bare interactions.

Lowering the UV cutoff below λ generates quantum cor-
rections that are comparable or larger than the bare coupling.
It signals a breakdown of conventional perturbation theory
that was used to obtain Eq. (8). In general, accounting for
nonperturbative effects of scatterings that do not break any
symmetry requires a reorganization of perturbation theory,
leading to an expansion around a new fixed point. Here, we
use higher-dimensional bosonization to absorb all forward
scatterings into an effective Gaussian theory in analogy to 1D
bosonization. In the following sections we develop and apply
this method to uncover a critical state that is not smoothly
connected to the noninteracting limit as evidenced by diver-
gent scaling exponents in the V0 → 0 limit, and nonanalytic
dependencies on V0.

III. MULTIDIMENSIONAL BOSONIZATION

In this section we introduce a bosonization method that is
analogous to multidimensional bosonization developed in the
context of Fermi liquid theory [44–49]. An apparent similarity
between our system and a Fermi liquid is that the low-energy
modes reside along a ring (in 2D) in both cases. It is impor-
tant to note that the ring minima of single-boson dispersion,
although superficially similar to a Fermi surface, differs from
it in a crucial way: the lower branch curves away parabolically
from the ring. This leads to the low-energy dynamics in the
neighborhood of the ring to be nonchiral. Thus, our method
differs from those applied in the study of Fermi liquid theory
through the usage of nonchiral hydrodynamic modes which
leads to fundamentally new physics. In subsequent sections
we apply the formalism developed here to identify the low-
energy behavior of Eq. (8).

A. Patch approximation

Here, we introduce an approximation which involves de-
composing the ring into a collection of flat, linear segments
of equal length (patches). This operation is equivalent to
approximating the ring by a polygon.

We assume that at sufficiently low energy we can decom-
pose the annular cutoff of width 2λ around the ring into a
collection of 2N rectangular patches of length 2
 along the
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FIG. 6. The flat-patch approximation to the ring. The dotted
circle is the ring minima in Fig. 2. Here, it is approximated by a 2N-
sided polygon with each side of length 2
. The shaded rectangles
represent the restriction on the scatterings at each patch.

ring and width 2λ (shown in Fig. 6). The value of 
 = πκ
2N

is fixed by the requirement that the area of the patches must
add up to yield the area of annulus, such that the total number
of low-energy modes is preserved. At each patch we define
a local, orthonormal coordinate system with respect to its
center,

v̂α = cos

(
π

N
(α + 1/2)

)
x̂ + sin

(
π

N
(α + 1/2)

)
ŷ,

ûα = − sin

(
π

N
(α + 1/2)

)
x̂ + cos

(
π

N
(α + 1/2)

)
ŷ, (9)

where α is an integer that labels the patch and −N � α �
N − 1, (̂x, ŷ) represents the global reference frame defined
with respect to the center of the disk enclosed by the ring,
v̂α (̂uα) points along the normal (tangent) to the ring at the
center of the αth patch. In the local coordinate system a two-
dimensional momentum that lies closer to the center of the
αth patch than any other patch is decomposed as K = Kα + k,
where Kα ≡ κ v̂α and k ≡ k⊥v̂α + k‖ûα . The dispersion at the
αth patch takes the form

εα (k) ≡ E (Kα + k) = 1

2m
k2
⊥ + O

(
k⊥
κ

k2
‖ ,

k2
‖

κ2
k2
‖

)
. (10)

The truncation above amounts to approximating the patch to
be locally flat. It is valid under the assumption that typically
k⊥ � k2

‖/κ , which is true when the UV cutoff λ � 
2/κ .
Therefore, the weakness of the local curvature of patches
bounds the number of patches N from below.

Since at low energies the bosonic modes carry momenta
that are centered around Kα for some α ∈ [−N, N − 1], we
define patch fields φα through the mode decomposition

	(τ, r) ≈
N−1∑

α=−N

eir·Kα φα (τ, r). (11)

(a)

(b)

FIG. 7. Suppression of corner processes. (a) Within a patch, in
the presence of a UV cutoff λ, the phase space available for scattering
from a state with momentum P to another state with momentum P′

is weakly dependent on P̂ · P̂
′

as long as |P − P′| � λ (represented
by the shaded region around P). If |P − P′| > λ (i.e., P′ lies on the
dashed curve), however, the phase space is suppressed by a factor of
δθ = 2 sin−1(λ/|P − P′|) due to a restriction on P̂ · P̂

′
arising from

the finiteness of λ. (b) The same constraint applies to processes
in the neighborhood of the interface of adjacent patches. When

 � λ, the contribution from scatterings that involve both patches
is subdominant to purely intrapatch scatterings.

In terms of the patch fields, the noninteracting part of the
action in coordinate space takes the form

S0 =
N−1∑

α=−N

∫
dτ dr φ∗

α (τ, r)

[
∂τ − 1

2m
(̂vα · ∇)2 − μ

]
φα (τ, r),

(12)

where r is conjugate to k. We note that the dynamics at
each patch is effectively one dimensional which we utilize in
Sec. III B to bosonize the action.

Although the flat-patch approximation bounds N from
below, it allows for an arbitrarily large N . Indeed in the
extreme limit N → ∞, each patch corresponds to a point on
the ring, and the patch is trivially flat as 
 → 0 [45]. In this
limit, however, the typical momentum exchange in scattering
processes greatly exceeds 
 in magnitude, and neighboring
patches mix substantially. Thus, formulation of the interacting
theory in terms of flat patches becomes highly nonlinear
owing to the importance of multiparticle processes involving
adjacent patches as illustrated in Fig. 7. Therefore, in order
to avoid complications arising from such nonlinearities at
leading order, it is necessary to introduce an upper bound on
N . This is achieved by restricting λ 	 
 which leads to a
suppression of interpatch mixing by factor(s) of λ/
 [44].
The momentum scales that we have introduced so far are
constrained as 1 � λ/
 � 
/κ ∼ N−1, which implies that
the number of patches is constrained by√

κ

λ
	 N 	 κ

λ
. (13)

The separation of scales in Eq. (13) is satisfied by the
choice N = bcKc with 1/2 � c � 1 and K was defined in
Eq. (6). Here, bc is a c-dependent positive number that is con-
strained by K1/2−c 	 bc 	 K(1−c). Since interpatch mixing
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(controlled by λ/
) is minimized by choosing the smallest
possible value of c, we set c = 1

2 which implies

N = BN

√
K. (14)

Here, BN ≡ b1/2 and 1 	 BN 	 √
K. We note that Bλ and BN

are both effective parameters.
In the patch representation the interaction term in Eq. (8)

takes the form

SI ≈ 1

2

N−1∑
α1,...,α4=−N

∫ (
4∏

n=1

dkn

)
δ(k10 − k20 + k30 − k40)

× δ
(
Kα1 − Kα2 + Kα3 − Kα4 + k1 − k2 + k3 − k4

)
×V

(
Kα1 , Kα2 , Kα3 , Kα4

)
φ∗

α1
(k1)φα2 (k2)φ∗

α3
(k3)φα4 (k4),

(15)

where we have expanded the effective coupling function about
the ring, and retained only the most relevant pieces. The reso-
lution of the second δ function in the presence of the ring leads
to strong kinematic constraints which select three classes of
scatterings as dominant interaction channels in the low-energy
limit (λ 	 κ) [50,51]:

(i) direct scattering (DS): Kα1 = Kα2 and Kα3 = Kα4 ;
(ii) Exchange scattering (ES): Kα1 = Kα4 and Kα3 = Kα2 ;
(iii) BCS scattering (BCS): Kα1 = −Kα3 and Kα2 =

−Kα4 .
While the DS and ES channels conserve particle number

at each patch, the BCS channel does not. We note that the
nomenclature above is defined with respect to momentum
transfers on the order of κ; in an isolated patch, where κ

does not play any role, it is possible to have intrapatch
backscatterings because the quadratically curved dispersion at
each point on the ring admits a change of sign of the velocity
∇E (K ). The intrapatch backscatterings are not kinematically
suppressed in the low-energy limit as they constitute a subset
of the non-BCS scatterings defined above. In subsequent parts
of the paper we will explore the importance of these scattering
processes.

In order to construct a minimal theory that captures the
most important physics, we include only interactions in the
DS and ES channels and define the dimensionless interaction
matrix

�α,β = �
(DS)
α,β + �

(ES)
α,β (16)

with

�
(DS)
α,β ≡ V −1

0 V (Kα, Kα, Kβ, Kβ ),

�
(ES)
α,β ≡ V −1

0 V (Kα, Kβ, Kβ, Kα ). (17)

Thus, in coordinate-space representation the minimal interac-
tion takes the form

SI |minimal = V0

2

∑
α,β

∫
dτ dr �α,β |φα (τ, r)|2 |φβ (τ, r)|2.

(18)

We take advantage of the rotational symmetry along the ring
to characterize the interaction matrix by N + 1 parameters,

FIG. 8. Analogy between the dynamics at an isolated patch and
a stack of wires. The vertical solid (blue) line on the left represents
a patch in momentum space, while the horizontal lines on the right
represent the wires in coordinate space. In the absence of interwire
hoppings the wire model admits a one-dimensional manifold of
single-particle energy minima that is analogous to a patch.

{gn}, that are generally independent,

�α,β = g0δα,β +
N∑

n=0

δ|α−β|,n gn. (19)

We note that gn are dimensionless by construction.

B. One-patch theory

Since the minimal interaction conserves particle number
at each patch, the intrapatch dynamics plays a key role in
determining the physical properties of a weakly interacting
theory. Here, we focus on the physical properties of the
fundamental entity of the patched theory: an isolated patch.

The dynamics at the αth patch is governed by the action

Sα =
∫

dτ dr φ∗
α (τ, r)

[
∂τ − 1

2m
∂2

x − μ

]
φα (τ, r)

+ V0g0

∫
dτ dr|φα (τ, r)|4, (20)

where we have chosen a local orthogonal coordinate sys-
tem such that v̂α · x̂ = 1. By expressing the noninteracting
part of Sα in momentum space, Sα;0 = ∫

dk[ik0 + k2
x /(2m) −

μ]|φα (k)|2 we note that the single-particle dynamics is one
dimensional, which allows us to interpret the y component
of position in Eq. (20) as a flavor index, and Sα as a the-
ory of multiflavored one-dimensional bosons without flavor
mixing. Since the momentum component that is conjugate
to the y coordinate is transverse to the patch, it is bound as
ky ∈ [−
,
]. Therefore, the y axis is analogous to a one-
dimensional lattice with a lattice spacing π
−1 [52]. Thus,
Eq. (20) is analogous to a theory of isolated wires stacked
along ûα (i.e., the y axis) as shown in Fig. 8.

Assuming a uniform mode occupancy along the ring min-
ima, the mean density at each patch is ρ̄/(2N ). Invoking
the analogy with a stack of wires with interwire spacing
π
−1 = 2N/κ , we obtain ρ̄/(2N ) = ρ1D κ/(2N ) where ρ1D

is a one-dimensional density that is analogous to the mean
density of each wire. Thus, the one-dimensional density is
related to the two-dimensional density through

ρ1D = ρ̄

κ
. (21)
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Further utilizing the analogy we bosonize the patch field by
introducing nonchiral hydrodynamic modes associated with
the fluctuations of φα [53]:

φα (τ, r) = A
√

ρ1D + v̂α · ∇ϕα (τ, r) eiϑα (τ,r), (22)

where A is a dimensionful parameter, and ϕα and ϑα are
patchwise density and phase fluctuations, respectively. Since
in the static limit |φα|2 = ρ̄/(2N ),

A =
√


/π =
√

κ/(2N ). (23)

Thus, in terms of the hydrodynamic modes the one-patch
theory takes the form

Sα � A2

2

∫
dy
∫

dτ dx

[
2i(∂xϕα )(∂τϑα )

+ ρ1D

m
(∂xϑα )2 + 2A2V0g0 (∂xϕα )2

]
, (24)

where we have suppressed the functional dependencies of ϕα

and ϑα for notational convenience. The two hydrodynamic
fields are conjugate to each other, and an effective description
in terms of ϕα (ϑα) may be obtained by integrating out
ϑα (ϕα). Thus, Sα describes a set of decoupled Luttinger
liquids that are parametrized by the y coordinate. Equation
(24) does not include intrapatch backscatterings which are
associated with momentum transfers on the order of ρ1D.
These backscatterings can potentially destabilize the Luttinger
liquid phase governed by Sα . We postpone further discussion
of these destabilizing effects to Sec. IV B 2.

As noted below Eq. (15), the intrapatch interaction was
obtained by ignoring momentum dependence of the cou-
pling function on the order of λ. If such dependencies are
retained, then the interaction takes a more general form
V0
∫

dτ dr dr′g0(r − r′)|φα (τ, r)|2|φα (τ, r′)|2, which can lead
to a sliding Luttinger liquid state as long as “interwire”
hoppings are irrelevant [54–56] and g0(r − r′) is short ranged
[57]. In our case, the single-particle degeneracy along the
patch guarantees the absence of “interwire” hoppings, which
would otherwise lift this degeneracy.

C. Rashba-Luttinger liquid

We use the analogy between the dynamics at individ-
ual patches and the coupled-wire system discussed above
to formulate a low-energy effective description in terms of
the hydrodynamic modes introduced in Eq. (22). Adding
the contribution from the forward scattering channels to the
noninteracting part in Eq. (12) we obtain the minimal action
in terms of the hydrodynamic modes

S = A2

2

N−1∑
α,β=−N

∫
dτ dr

[
δα,β

{
2i(∂τϕα )(̂vα · ∇ϑα )

+ ρ1D

m
(̂vα · ∇ϑα )2

}
+A2V0�α,β (̂vα · ∇ϕα )(̂vβ · ∇ϕβ )

]
,

(25)

where we have suppressed the coordinate dependence of the
fields for notational convenience. The minimal action is a
two-dimensional analog of Luttinger liquid, which we call

a Rashba-Luttinger liquid (RLL) to underscore its origin in
Rashba SOC, and to distinguish it from other types of possible
higher-dimensional Luttinger liquids. In analogy to Luttinger
liquids [58], here the ratio

(ρ1D/m)

A2V0
= 2BNK3/2 (26)

plays a role similar to the Luttinger parameter and, as derived
below, all scaling exponents can be expressed in units of the
ratio. The interaction matrix � plays a role that is analogous to
the Landau parameters in Fermi liquid theory [1]. Therefore,
the state governed by Eq. (25) shares similarities with both
Luttinger and Fermi liquids. We note that Eq. (13) controls the
regime where Eq. (25) is the minimal truncation of Eq. (8).
Here, “minimal” implies (i) a well-defined starting point
which is not inherently unstable; (ii) the impact of terms
that are present in Eq. (8) but absent in Eq. (25) can be
systematically studied as perturbations to the latter.

In order to arrive at Eq. (25), we have excluded contribu-
tions from scatterings in the BCS channel, and higher harmon-
ics of the patch density which modulate with wave vectors
2nπρ1D with n �= 0 being an integer. The impact of these
approximations can be partially elucidated by contrasting the
symmetries of the actions in Eqs. (8) and (25). In addition
to translational, rotational, and time-reversal invariances, the
action in Eq. (8) is invariant under a global U(1) symme-
try 	 �→ eiθ0	 with θ0 a real number, which corresponds
to particle-number conservation. The action in Eq. (25) is
invariant under (ϑα, ϕα ) �→ (ϑα, ϕα ) + (ϑ (0)

α , ϕ(0)
α ), where, in

general, {ϑ (0)
α , ϕ(0)

α } are patch-dependent real constants. The
special case where all ϑ (0)

α are equal corresponds to the global
U(1) symmetry, while the case where {ϑ (0)

α } are distinct corre-
sponds to an emergent U(1)2N symmetry which is associated
with particle-number conservation at each patch. We note that
the U(1)2N symmetry is a subgroup of the U(1)∞ symmetry
associated with particle-number conservation at each point on
the ring. This U(1)∞ symmetry is identical to the one that
emerges at the Fermi liquid fixed point. The invariance under a
shift of ϕα is reminiscent of the emergent “sliding symmetry”
in sliding Luttinger liquids [54,59]. Analogously it is associ-
ated with translation invariance along v̂α . These symmetries
guarantee the presence of the RLL state. The stability of the
RLL state, however, is contingent on its robustness against
interaction vertices that break the emergent symmetries of
Eq. (25), but are allowed by the symmetries of Eq. (8). In
particular, the BCS vertex breaks the U(1)2N symmetry, while
the density wave vertices resulting from backscatterings break
the sliding symmetry. In the rest of the paper, we deduce
the properties of the RLL state, and its stability against the
excluded interaction vertices.

IV. SPECIAL CASES OF THE INTERACTING MODEL

Since the mathematical results in the presence of the most
general interaction potential turn out to be rather complicated,
in this section we consider two limiting cases of the inter-
action matrix that allow for a simpler analysis. In spite of
their simplicity, these special cases elucidate key qualitative
properties of the more general interacting model. In particular,
the peculiarities of the spin-orbit-coupled bosonic system that
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distinguish it from conventional higher-dimensional bosonic
and fermionic systems are already apparent at these simplified
limits.

A. Decoupled patches

The simplest example of the interaction matrix occurs
when it is diagonal, i.e., gn �=0 = 0 in Eq. (19) which implies

�α,β → �′
α,β = 2g0δα,β . (27)

Since the diagonal components of � generate a stiffness for
intrapatch density fluctuations which leads to a well-defined
interacting limit, �′ is the simplest interaction in patch space
that stabilizes the system. We note that, in this limit, the inter-
acting problem reduces to a set of decoupled flat patches with
nonparallel normals. Since individual patches in the presence
of interactions host a type of sliding Luttinger liquid, we
expect the resultant state to be a higher-dimensional Luttinger
liquid as well.

On including only intrapatch interactions, the action be-
comes diagonal in patch space:

S′ = A2

2

N−1∑
α=−N

∫
dk

[
2ik0 (̂vα · k) ϕα (−k)ϑα (k)

+ ρ1D

m
(̂vα · k)2 ϑα (−k)ϑα (k)

+ 2A2V0g0 (̂vα · k)2 ϕα (−k)ϕα (k)

]
, (28)

where dk ≡ dk0dk
(2π )3 . We note that compared to fermions at finite

density, the bosonic theory becomes well defined only after
the inclusion of intrapatch interactions; the noninteracting
limit is ill defined due to the divergent density of states as the
ring is approached. It is straightforward to obtain the effective
action for the density (phase) fluctuations by integrating out
the phase (density) field

S′
ϕ = A2

2

∑
α

∫
dk f −1

α (k) g(ϕ)
α (k, 2V0g0) ϕα (−k)ϕα (k),

S′
ϑ = A2

2

∑
α

∫
dk f −1

α (k) g(ϑ )
α (k, 2V0g0) ϑα (−k)ϑα (k),

(29)

where

g(ϕ)
α (k, g) = k2

0

(ρ1D/m)
+ A2g (̂vα · k)2,

g(ϑ )
α (k, g) = k2

0

A2g
+ ρ1D

m
(̂vα · k)2, (30)

and we have introduced the cutoff function fα (k) to enforce
|̂vα · k| � λ and |̂uα · k| � 
 [60]. Since ϕα is conjugate to
ϑα , S′

ϕ is dual to S′
ϑ . Depending on the correlation function

of interest, it is usually convenient to use either the S′
ϕ or S′

ϑ

representation of S′. Thus, the propagators of ϕα and ϑα are

G′(ϑ )
α,β = A−2 fα (k)δα,β

g(ϑ )
α (k, 2V0g0)

, G′(ϕ)
α,β = A−2 fα (k)δα,β

g(ϕ)
α (k, 2V0g0)

. (31)

Since there are no off-diagonal (i.e., interpatch) terms, it is
easy to derive the propagator of the microscopic bosons,

〈	(0, r)	†(0, 0)〉 ∼ ρ̄/
√
K

(λ|r|)2η′
	

(
N−1∑

α=−N

δ|v̂α ·r̂|,1 eiKα ·r
)

, (32)

with

η′
	 = 1

4π

√
g0

BN
K−3/4, (33)

where we have expressed A, ρ1D, and N in terms of the
microscopic parameters, and we recall that the ratio K =
ρ̄/κ2

mV0
. The power-law decay of the boson propagator suggests

an absence of a condensate or BEC. Instead, we obtain a
critical state that closely resembles a Luttinger liquid. It is
characterized by a set of (anomalous) scaling exponents, and
supports gapless excitations. Unlike in a Fermi liquid, the
RLL exponents are nonuniversal, and depend on both single-
particle and interaction parameters.

From the term in the parentheses in Eq. (32) we conclude
that only those patches whose normals are either parallel or
antiparallel to r contribute. This restriction results from an
additional symmetry within each patch which arises from the
absence of local curvature at each patch. The symmetry is
a consequence of the combination of particle-number con-
servation and translation invariance along each wire in the
wire-lattice picture discussed in Sec. III B as illustrated in
Fig. 9. We emphasize that this selection rule does not imply
an absence of rotational symmetry because the choice of the
direction of v̂α=0 is arbitrary, and it can be always chosen to

(a)

(b)

FIG. 9. A consequence of flat-patch approximation. Individual
patches (blue horizonal line) may be considered as the dispersion
of a lattice of wires (set of parallel black lines) that lie along the
normal v̂α of the patch in the absence of interwire hoppings (see
Fig. 8). (a) The patch whose normal is parallel (or antiparallel) to
the spatial separation r (red vertical arrow) between two operators
in an autocorrelation function contribute to it. (b) If r makes a
finite angle with v̂α , i.e., r · ûα �= 0, then the correlation function
vanishes due to a symmetry that is analogous to the combination of
particle-number conservation and translation invariance on each wire
in the wire-lattice picture.
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point along r. In this sense, multidimensional bosonization
may be interpreted as a method for extracting the leading scal-
ing behavior of correlation functions of the original theory,
instead of a method for approximating it.

In contrast to the scaling dimension obtained in the patch-
diagonal theory of Fermi liquids [46–49], here Luttinger-
liquid-like scaling exponents are already present in the cor-
relation functions of an isolated patch. This is a consequence
of the nonchiral dynamics at each patch, which naturally gives
rise to nontrivial anomalous dimensions of various operators.

Although we considered only a subset of forward scatter-
ings to obtain the results in this section, as we shall show in
subsequent sections, the scaling behavior of the RLL obtained
after the inclusion of all forward scatterings is qualitatively
similar to those obtained from Eq. (29) due to a suppres-
sion of the contributions from interpatch interactions. The
dominance of the scaling exponents obtained in the limit
of decoupled patches is analogous to that in Fermi liquids
[46–49]. In the present case, however, the scaling exponents
are more sensitive to interactions than those in Fermi liquids,
since in the latter the chiral dynamics at individual patches
provides additional protection against scatterings. We note
that such protections due to chiral dynamics is more generic,
and applies to chiral metallic states in one [61] and two
dimensions [62,63]. While no such protection exists in the
present case, the global curvature of the ring minima greatly
reduces the effect of interpatch interaction in the forward
scattering channels.

In the absence of interpatch interactions, scatterings in the
BCS channel are absent. The higher harmonics of the intrap-
atch density operator, however, leads to intrapatch backscat-
terings which can potentially destabilize the critical state. We
defer a discussion of such intrapatch-backscattering-induced
instabilities to the next subsection where a wider set of such
scatterings will be analyzed.

B. Coupled patches: Quasi-long-range effective interaction

In this section we consider a simple extension of the
decoupled-patch model to include interpatch interactions. In
order to motivate the model, we consider a specific form of
the effective potential V ({Kn}), where it is assumed to be
a function of momentum transfer only. In coordinate-space
representation the effective interaction vertex takes a simple

form

S̆I = 1

2

∫
dτ dR dr V̆ (r)|	(R − r)|2|	(R + r)|2, (34)

where R and r are the center of mass and relative coordinate,
respectively. We further assume V̆ (r) to be isotropic with a
range a:

V̆ (r; a) = V0
exp −(|r|/a)2

(a
√

π )2
. (35)

This potential has the property lima→0 V̆ (r; a) → V0δ(r). We
assume that the effective range a is generated by integrating
out high-energy modes as discussed in Sec. II, and a ∼ λ−1.
In the present case, the DS and ES channels take the forms

�̆
(DS)
α,β = 1

V0

∫
dr V̆ (r; a) = 1;

�̆
(ES)
α,β = 1

V0

∫
dr eir·(Kα−Kβ ) V̆ (r; a) = e−(aκ )2ζ 2

α,β , (36)

where ζα,β = sin ( |θα−θβ |
2 ). While �̆

(DS)
α,β contributes equally to

the interaction between all pairs of patches, �̆
(ES)
α,β contributes

dominantly to intrapatch interactions. We note that the net
interaction in the forward scattering channel �̆

(DS)
α,β + �̆

(ES)
α,β

decays as the separation between patches increases, which is
consistent with the behavior of the net interaction potential
discussed in Sec. II.

The interactions in the forward scattering channels sim-
plify substantially in the limit aκ � 1 since limaκ→∞ �̆

(ES)
α,β →

π (aκ )−2δα,β . Here, we will consider aκ to be finite but large
[64]. Since aκ ∼ κ

λ
� N � 1, the interpatch contributions of

�̆
(ES)
α,β are suppressed by at least a factor of exp −(aκ/N )2

compared to its intrapatch contribution. Thus, we focus on the
limiting case where the interaction potential in Eq. (35) is long
ranged enough to ignore contributions from the ES channel to
interpatch scatterings. For this case the minimal interaction is
constituted by scatterings in the DS channel and the intrapatch
component of the ES channel. With the help of Eq. (36) we
obtain the interaction matrix

�̆α,β = δα,β + 1. (37)

We note that in terms of Eq. (19) the interaction matrix
here corresponds to setting all gn = 1. Moreover, ignoring
the contribution of the DS channel reduces Eq. (37) to be
proportional to the interaction matrix in Sec. IV A.

The matrix �̆α,β in Eq. (37) is readily invertible, and leads to the effective actions for the hydrodynamic modes

S̆ϕ = A2

2

∑
α,β

∫
dk
[
δα,β g(ϕ)

α (k,V0) f −1
α (k) + A2V0 (̂vα · k)(̂vβ · k)

]
ϕα (−k)ϕβ (k),

S̆ϑ = A2

2

∑
α,β

∫
dk

[
δα,β g(ϑ )

α (k,V0) f −1
α (k) − 1

2N + 1

k2
0

A2V0

]
ϑα (−k)ϑβ (k). (38)

In addition to generating interpatch interactions, the DS channel also modifies the intrapatch terms beyond those obtained
in Eq. (29). By comparing the intrapatch terms, we note that the DS channel strongly renormalizes the density fluctuations,
but leads to a perturbative correction (recall that N � 1) to the dynamics of phase fluctuations. The propagators of the two
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hydrodynamic modes are derived in Appendix C, and they are given by

Ğ(ϕ)
α,β (k) = δα,β fα (k)

A2g(ϕ)
α (k,V0)

− V0(v̂α · k)(v̂β · k) fα (k) fβ (k)

[1 + ϒ̆ϕ (k)]g(ϕ)
α (k,V0)g(ϕ)

β (k,V0)
,

Ğ(ϑ )
α,β (k) = δα,β fα (k)

A2g(ϑ )
α (k,V0)

+ k2
0

A4V0(2N + 1)

fα (k) fβ (k)

[1 − ϒ̆ϑ (k)]g(ϑ )
α (k,V0)g(ϑ )

β (k,V0)
, (39)

where

ϒ̆ϕ (k) = A2V0

∑
μ

(v̂μ · k)2 fμ(k)

g(ϕ)
μ (k,V0)

,

ϒ̆ϑ (k) = k2
0

A2V0(2N + 1)

∑
μ

fμ(k)

g(ϑ )
μ (k,V0)

. (40)

The first term in each propagator is independent of the mo-
mentum transverse to a given patch, and survives as interpatch
interactions vanish. In contrast, the second term explicitly
arises from interpatch interactions, and produces a depen-
dence on the transverse component of momentum at each
patch. Both terms in each propagator contribute to the scaling
exponents of correlation functions. The contribution of the
first term is proportional to that obtained in Sec. IV A. A
similar straightforward analysis of the second term is hindered
by the presence of the ϒ̆ factors, which contain contribu-
tions from all patches that satisfy |v̂μ · k| � λ for a fixed k.
Their presence, however, does not qualitatively alter the small
frequency-momentum behavior of the respective propagators,
and the propensity of the second term in the propagators to
contribute to anomalous dimensions of various operators is
not controlled by the ϒ̆ factors. Nevertheless, we will retain
the ϒ̆ dependence of the propagators since it determines the
relative magnitude of contributions from the first and second
terms in the propagators as shown in Appendix D. For β �= α

or ᾱ (the label ᾱ is such that K ᾱ = −Kα) the second term
does not contribute to anomalous dimensions owing to two-
dimensional dynamics which is nonsingular. For the special
values of β = α or ᾱ, however, the second term contains
a dynamically one-dimensional part which contributes to
anomalous dimensions. We demonstrate both properties of the
second term explicitly for a four-patch model in Appendix E.
In the rest of the subsection we investigate key physical
properties and instabilities of the fixed point governed by
Eq. (38).

1. Physical properties

Here, we characterize the long-wavelength properties of
the fixed point described by the set of actions in Eq. (38). We
begin with the computation of the equal-time propagator of
the “microscopic” boson field 	(τ, r) by utilizing Eqs. (11)
and (22):

〈	(τ, r1)	†(τ, r2)〉 ≈ A2ρ1D

∑
α,β

eiKα ·r1 e−iKβ ·r2

× e− 1
2 〈[ϑα (τ,r1 )−ϑβ (τ,r2 )]2〉. (41)

Due to particle-number conservation at each patch,
〈[ϑα (τ, r1) − ϑβ (τ, r2)]2〉 ∝ δα,β , which implies that only

the diagonal terms of the phase-propagator contributes to the
propagator of 	. Thus,

〈	(τ, r1)	†(τ, r2)〉 ∼ ρ̄√
K

cos(κ|r1 − r2|)
(λ|r1 − r2|)2η̆	

, (42)

where the scaling dimension of 	,

η̆	 = 1

4π

1√
2BNK3/4

[
1 + 1

4BN

√
K

+ O(K−1)

]
. (43)

While the first term results from the intrapatch dynamics
and is proportional to η′

	, the second term is a result of
interpatch couplings resulting from the DS channel and it is
parametrically smaller than the intrapatch contribution. The
presence of interpatch couplings enhances the scaling dimen-
sion, resulting in a faster decay of the propagator of 	, which
pushes the system away from a phase-coherent state. Owing
to the algebraic decay of the propagator, the system exhibits
a Luttinger-liquid-like behavior, and it does not support a
superfluid state. This is similar to one-dimensional interacting
bosons without spin-orbit coupling [58].

The density-density response function carries information
about the two intrinsic momentum scales present in the system
κ and ρ1D. We express the density operator as

ρ(τ, r) = ρdiag(τ, r) + ρ ′(τ, r), (44)

where ρdiag(τ, r) = ∑
α ρα (τ, r) and ρ ′(τ, r) =∑

α �=β ei(Kβ−Kα )·rφ∗
α (τ, r)φβ (τ, r). While the long-wavelength

fluctuations of ρdiag(τ, r) are intrapatch density fluctuations,
those of ρ ′(τ, r) are a combination of density and phase
fluctuations. Therefore, the autocorrelation of ρdiag(τ, r)
[ρ ′(τ, r)] modulates with a wave vector of magnitude
2nπρ1D (2κ) with n � 0. In order to explicitly compute the
autocorrelation of ρdiag(τ, r) we use the full expression of
patch density operator [53]:

ρα (r) = A2[ρ1D + v̂α · ∇ϕα (r)]

×
∞∑

n=−∞
exp 2in[πρ1Dv̂α · r + ϕα (r)]. (45)

The n = 0 mode of ρα (r) was used for bosonizing the patch
fields in Eq. (22). The autocorrelation function has a uniform
part that is obtained from the n = 0 mode of Eq. (45), and an
oscillatory part resulting from n �= 0 modes. In contrast, the
autocorrelation of ρ ′(τ, r) lacks a uniform part, and receives
strongest contributions from terms with β = ᾱ. Thus, in the
limit λ|r| � 1 we obtain

〈ρ(0, 0)ρ(0, r)〉 ≈ ρ̄2 − c1

B3/2
N K1/4

κ2

|r|2 + ρ̄2

B2
NK

cos (2κ|r|)
(λ|r|)4η̆	

+ ρ̄2

B2
NK

∑
n�1

cos (2nπρ1D|r|)
(λ|r|)2η̆diag(n) , (46)
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where c1 > 0 is a real constant

η̆diag(n) =
√

2BN

π
K3/4

[
1 − π2

32BλB2
N

− O(K−1)

]
n2, (47)

and η̆	 was defined in Eq. (33). Here, we have utilized the
small curvature limit which dictates BN � 1. In the extreme
weak-coupling limit K → ∞ and BNK3/2 � 1, which results
in the 2κ component of density modulation to have the slowest
decay. Thus, in the RLL state both the phase and density
fluctuations show quasi-long-range order, and the respective
correlation functions spatially oscillate over a period con-
trolled by κ−1. At sufficiently stronger coupling, however,
the density fluctuation is dominated by the component that
modulate over (2πρ1D)−1. In the next subsection we will see
that this crossover of the characteristic momentum scale from
κ to ρ1D, in fact, signals an instability of the metallic state
toward a CDW state. We note that, in general, κ is not an
integer multiple of ρ1D, i.e., the corresponding length scales
are incommensurate. Moreover, the first inequality in Eq. (7)
implies κ � ρ1D.

In the RLL state the gapless collective excitations disperse
linearly, which leads to a unity dynamical critical exponent.
This is in contrast to the quadratically dispersing bosons in
the noninteracting limit. From the algebraic decay of single-
particle correlation function in Eq. (42), we deduce the mo-
mentum distribution to scale as

n(k) ∼ |k|−2(1−η̆	 ), (48)

where k is the deviation of momentum away from the ring.
The presence of the ring minima implies that only momentum
deviations perpendicular to the ring changes energy, which in
turn implies that the free-energy density scales as F ∼ T 2,
where T is temperature. This is in contrast to two-dimensional
superfluids and crystalline states where F ∼ T 3 due to the
presence of Goldstone modes. The discrepancy is an example
of hyperscaling violation with a unity “hyperscaling violation
exponent” [65,66], and it arises from the presence of the ring
minima. Therefore, in the RLL state the specific heat and
entropy density scale as ∂TF ∼ T . Thus, the RLL is a first ex-
ample of a bosonic system above 1D which exhibits T -linear
specific heat. We note that Fermi liquids are characterized by
a T -linear specific heat as well, and it originates from the
presence of unity codimension Fermi surface.

2. Instabilities

In this section we investigate the stability of the RLL
state described by the minimal action, Eq. (25). In particular,
we consider the effects of the BCS channel that was not
included in Eq. (25), as well as density-density backscattering
interactions that may drive density wave instabilities. Unlike
fermionic systems, attractive interactions in a bosonic system
lead to a trivial state where all bosons condense at a single
point in coordinate space. Moreover, in the presence of repul-
sive interactions bound states cannot form and, thus, the BCS
channel does not lead to a nontrivial symmetry-broken state.
Therefore, we focus only on the effects of the backscattering
interactions which are expected to lead to charge density wave
states.

Due to the presence of two momentum scales, κ and ρ1D,
in principle, the RLL can become unstable toward the forma-
tion of density wave states carrying momenta of magnitudes
2πnρ1D, 2κ , and 2κ ± 2πnρ1D with n �= 0 being a positive
integer. The corresponding vertices arise from the backscat-
tering components of local interactions with Lagrangian den-
sities

∑
α ρ2

α (r) and
∑

α ρα (r)ρᾱ (r), where r ≡ (τ, r). We
decompose the patch-density operator as shown in Eq. (45)
and consider contribution to the Lagrangian densities from
n �= 0 modes. Thus, we obtain three interaction vertices

S(|n|)
ρ1D

= g(|n|)
ρ1D

N−1∑
α=−N

∫
dr cos {2nϕα (r) + 2πρ1Dnv̂α · r};

(49)

S(|n|)
κ = 1

2
g(|n|)

κ

N−1∑
α=−N

∫
dr cos {2n[ϕα (r) + ϕᾱ (r)]}; (50)

S(n1,n2 )
κ±ρ1D

= g(n1,n2 )
κ+ρ1D

N−1∑
α=−N

∫
dr cos{2[n1ϕα (r) + n2ϕᾱ (r)]

+ 2πρ1D(n1 − n2)v̂α · r}, (51)

where, by definition, n �= 0 in S(|n|)
ρ1D

and S(n)
κ , and n1 �= n2 �= 0

in S(n1,n2 )
κ±ρ1D

. The asymptotic behavior of the respective equal-
time autocorrelation function of the Lagrangian densities in
Eqs. (49)–(51) are

C (n)
ρ1D

(r) ∼ cos (2πρ1Dn|r|)
(λ|r|)2ηρ1D (n) , (52)

C (n)
κ (r) ∼ (λ|r|)−2ηκ (n)

C (n1,n2 )
κ±ρ1D

(r) ∼ cos [2πρ1D(n1 − n2)|r|]
(λ|r|)2ηκ±ρ1D (n1,n2 ) , (53)

where

ηρ1D (n) =
√

2BN

π
K3/4

(
1 − π2

32BλB2
N

)
n2,

ηκ (n) = 2
√

2BN

π
K3/4n2,

ηκ±ρ1D (n1, n2) =
√

2BN

π
K3/4

(
n2

1 + n2
2 − π2(n1 − n2)2

32BλB2
N

)
.

(54)

Since the leading instability is driven by the operator
with the smallest scaling dimension, we compare the relative
magnitudes of the scaling exponents obtained above. With
the help of the tree-level scaling dimension of the couplings,
[gX ] = 2 − ηX , we find that the operator corresponding to
|n| = 1 in S(n)

ρ1D
drives the dominant instability. The resultant

CDW state arises entirely from intrapatch backscatterings,
and modulates with a wave vector of magnitude 2πρ1D. In
addition to translational invariance, it also breaks rotational
symmetry as a specific direction for the modulation is spon-
taneously chosen. Although the simplest such state displays
a stripe ordering pattern, more complex ordering patterns
resulting from superposition of CDWs with distinct directions
of wave vectors may be realized as well. We note that a finite
interaction strength is necessary for driving the instability
since at arbitrarily weak coupling g(1)

ρ1D
is irrelevant with
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FIG. 10. An example of a potential CDW instability driven by
backscatterings resulting from interaction vertices of the form ραρβ

with α �= β or β̄. The circle (arrow) represents the ring minima (wave
vector of the CDW state). Such CDW instabilities are expected to be
suppressed by a lack of phase space.

ηρ1D (±1) > 2. Therefore, at weak coupling the RLL state
is stable as illustrated in the phase diagram in Fig. 3. An
asymptotic expression for the phase boundary is obtained
from the condition ηρ1D (±1) = 2, which leads to(

ρ̄

κ2

)3/2

= 2π2

BN

[
1 − π2

32BλB2
N

]−2

(mV0)3/2. (55)

The phase boundary is represented by the solid curve in Fig. 3.
In principle, higher harmonics of ραρβ with β �= α or

ᾱ can drive finite-coupling CDW instabilities as shown in
Fig. 10. The autocorrelation functions of such backscattering
operators, however, vanish identically due to the emergent
symmetry associated with the flat-patch approximation (see
Fig. 9). This is analogous to the fate of the BCS vertex in
the bosonized description of Fermi liquids. Therefore, the
vanishing of the autocorrelation function does not necessarily
imply an absence of the instability. In particular, within a

Wilsonian renormalization group (RG) scheme these vertices
can obtain finite quantum corrections which may lead to
nontrivial RG flow. Although a detailed RG analysis of this
class of CDW operators lies beyond the scope of this work, we
emphasize that, within the bosonization framework developed
here, these vertices are strongly irrelevant at weak coupling.
Consequently, we do not expect them to affect the low-energy
behavior of the system at the leading order in the weak
coupling limit.

V. GENERAL SHORT-RANGE INTERACTION

In this section we explore a general interpatch interaction
in the forward scattering channel. For computational conve-
nience we express the interaction matrix in Eq. (19) as

�α,β = g0δα,β + Uα,β, (56)

where

Uα,β ≡
N∑

n=0

δ|α−β|,n gn. (57)

We note that the models discussed in Secs. IV A and IV B
correspond to the special cases of Eq. (56), where Uα,β =
g0δα,β and Uα,β = g0 = 1, respectively. Here, Uα,β is treated
as the interaction potential that couples distinct patches, along
with enhancing the intrapatch interaction.

Unlike the case where Uα,β = 1, we cannot obtain a gen-
eral expression of the matrix elements of U −1. Thus, we resort
to the angular harmonics of Uα,β ,

Ũl =
∑

α

cos(θα0l )Uα,0, (58)

where θαβ = θα − θβ = π
N (α − β ), and we have used the fact

that Uα,β depends on {α, β} only through |α − β|. In the
minimal action (25), we replace �α,β by Eq. (56) with

Uα,β = 1

2N

N−1∑
l=−N

cos(θαβ l ) Ũl (59)

to obtain

S = A2

2

∑
α

∫
dk

[
2ik0 (̂vα · k) ϕα (−k)ϑα (k) + ρ1D

m
(̂vα · k)2 ϑα (−k)ϑα (k) + A2V0g0 (̂vα · k)2 ϕα (−k)ϕα (k)

]

+ A4V0

2

∑
α,β

∑
l

∫
dk

Ũl

2N
cos(θαβ l ) (̂vα · k)(̂vβ · k) ϕα (−k)ϕβ (k). (60)

The propagators of the density and phase fluctuations are derived in Appendix F, and they are as follows:

G(ϕ)
α,β (k) = fα (k) δα,β

A2g(ϕ)
α (k,V0g0)

− V0 fα (k) fβ (k)(v̂α · k)(v̂β · k)

g(ϕ)
α (k,V0g0)g(ϕ)

β (k,V0g0)

∑
l,l ′

ŨlŨl ′

2N

[
�

(ϕ,c)
l,l ′ (k) cos(θαl ) cos(θβ l ′)+�

(ϕ,s)
l,l ′ (k) sin(θαl ) sin(θβ l ′)

]
,

G(ϑ )
α,β (k) = fα (k) δα,β

A2g(ϑ )
α (k,V0g0)

+ k2
0

A2V0g0

fα (k) fβ (k)

A2g(ϑ )
α (k,V0g0)g(ϑ )

β (k,V0g0)

×
∑
l,l ′

ŨlŨl ′

2Ng0

[
�

(ϑ,c)
l,l ′ (k) cos(θαl ) cos(θβ l ′) + �

(ϑ,s)
l,l ′ (k) sin(θαl ) sin(θβ l ′)

]
, (61)
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where the inverses of the � matrices are

[�(ϕ,c)(k)]−1
l,l ′ = Ũlδl,l ′ + ŨlŨl ′

2N

[∑
μ

A2V0(v̂μ · k)2 fμ(k)

g(ϕ)
μ (k,V0g0)

cos(θμl ) cos(θμl ′)

]
,

[�(ϕ,s)(k)]−1
l,l ′ = Ũlδl,l ′ + ŨlŨl ′

2N

[∑
μ

A2V0(v̂μ · k)2 fμ(k)

g(ϕ)
μ (k,V0g0)

sin(θμl ) sin(θμl ′)

]
, (62)

[�(ϑ,c)(k)]−1
l,l ′ = Ũl

(
1 + Ũl ′

2g0

)
δl,l ′ + ŨlŨl ′

2g0
δl,−l ′ − k2

0

A2V0g0

ŨlŨl ′

2Ng0

[∑
μ

fμ(k) cos(θμl ) cos(θμl ′)

g(ϑ )
μ (k,V0g0)

]
,

[�(ϑ,s)(k)]−1
l,l ′ = Ũl

(
1 + Ũl ′

2g0

)
δl,l ′ − ŨlŨl ′

2g0
δl,−l ′ − k2

0

A2V0g0

ŨlŨl ′

2Ng0

[∑
μ

fμ(k) sin(θμl ) sin(θμl ′)

g(ϑ )
μ (k,V0g0)

]
. (63)

Here, by construction, �(ϕ,c)(k) and �(ϑ,c)(k) are 2N × 2N
matrices, while �(ϕ,s)(k) and �(ϑ,s)(k) are (2N − 1) × (2N −
1) matrices due to the absence of the l, l ′ = 0 components in
the latter set of matrices. Consequently, �(ϕ,s)(k) and �(ϑ,s)(k)
do not depend on the s-wave component of U .

A. s-wave only model

In order to connect the general model with the discussion
in Sec. IV B, we focus on the simplest case where only the
s-wave component of the interaction U is nonvanishing. The
propagators simplify to

G(ϕ)
α,β (k) = δα,β fα (k)

A2g(ϕ)
α (k,V0g0)

− V0Ũ0[1 + ϒϕ (k)]−1

2N

× (v̂α · k)(v̂β · k) fα (k) fβ (k)

g(ϕ)
α (k,V0g0)g(ϕ)

β (k,V0g0)
,

G(ϑ )
α,β (k) = δα,β fα (k)

A2g(ϑ )
α (k,V0g0)

+ Ũ0[1 − ϒϑ (k)]−1

2N (1 + Ũ0)A4V0

× k2
0 fα (k) fβ (k)

g(ϑ )
α (k,V0g0)g(ϑ )

β (k,V0g0)
, (64)

where

ϒϕ (k) = A2V0Ũ0

2N

∑
μ

(v̂μ · k)2 fμ(k)

g(ϕ)
μ (k,V0g0)

,

ϒϑ (k) = Ũ0

2N (1 + Ũ0)

k2
0

A2V0

∑
μ

fμ(k)

g(ϑ )
μ (k,V0g0)

. (65)

Since Ũ0 = g0 + gN + 2
∑N−1

n=1 gn, the model discussed in
Sec. IV B is a special case of the s-wave only model with
all gn = 1. The scaling behavior of the s-wave only model
is qualitatively similar to those discussed in Sec. IV B. In
particular, the phase boundary is given by(

ρ̄

κ2

)3/2

= F0

(
Ũ0

g0
,



λ
, N

)
(mV0)3/2

BN
, (66)

where

F0(x0, y, z) = 2π2

[
1 − x0

4zy(1 + x0)

− π

8zy

∫ y

1

dt

2/(πx0) + sin−1(1/t )

]
. (67)

In the limit (Ũ0/g0) � (
/λ) � 1 it is identical to Eq. (55)
at the leading order.

B. Robustness of leading scaling behavior

Here, we show that the inclusion of harmonics of U beyond
s wave does not alter the leading-order scaling behavior ob-
tained above as long as the effect of Ũl �=0 is perturbative, i.e.,
Ũl �=0 	 Ũ0. In the interest of brevity and to directly connect
the results in this section to the phase diagram, we focus
only on the dynamics of density fluctuations where the equal-
time correlation function 〈[ϕα (r) − ϕα (0)]2〉 plays a central
role.

Since the propagator depends on Ũl through the second
term, we focus on the � factors in Eq. (62). Let us define

�
(ϕ,c)
l,l ′ (k) = 1

2N

∑
μ

A2V0(v̂μ · k)2 fμ(k)

g(ϕ)
μ (k,V0g0)

cos(θμl ) cos(θμl ′),

�
(ϕ,s)
l,l ′ (k) = 1

2N

∑
μ

A2V0(v̂μ · k)2 fμ(k)

g(ϕ)
μ (k,V0g0)

sin(θμl ) sin(θμl ′).

(68)

In order to extract the coefficients of the ln(λ|r|) term in
〈[ϕα (r) − ϕα (0)]2〉, we set k0 = 0 in the � factors. In the
zero-frequency limit Eq. (68) simplifies to

�
(ϕ,c)
l,l ′ (k) = 1

2N

∑
μ

fμ(k) cos(θμl ) cos(θμl ′),

�
(ϕ,s)
l,l ′ (k) = 1

2N

∑
μ

fμ(k) sin(θμl ) sin(θμl ′). (69)

Due to the oscillatory factors in the summands, we con-
clude that |�(ϕ,c)

0,0 (k)| � |�(ϕ,c)
l,l ′ (k)| for |l| + |l ′| �= 0. Thus,

Ũ0Ũl�
(ϕ,c)
l,0 (k) are the dominant elements in the matrix
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([�(ϕ,c)(k)]−1 −∑
l ŨlE (l ) ), where E (l ) is a 2N × 2N matrix

with E (l )
i, j = δi,lδ j,l . The summand in �

(ϕ,s)
l,l ′ (k) always contains

oscillatory factors which implies |�(ϕ,c)
0,0 (k)| � |�(ϕ,s)

l,l ′ (k)|.
Moreover, both �

(ϕ,c)
l,l ′ and �

(ϕ,s)
l,l ′ vanish if |l + l ′| is an odd

integer. Therefore, the s-wave propagators in Eq. (64) dom-
inate over contributions from higher angular harmonics, and
in the limit of negligible patch curvature the leading-order
contribution to the coefficient of ln(λ|r|) is obtained from
the first term in the respective propagators. Consequently, the
phase diagram remains qualitatively identical to Fig. 3 with
the phase boundary satisfying(

ρ̄

κ2

)3/2

= F

(
Ũ0

g0
,

Ũ1

g0
, . . . ,

ŨN

g0
,



λ
, N

)
(mV0)3/2

BN
, (70)

where F (x0, x2, . . . , xN , y, z) ∼ 1 is a dimensionless function.
We verify the arguments presented above by explicitly

computing the expression of the phase boundary by including
the p-wave component of U with the condition Ũ0 � Ũ±1.
Since the scaling behavior is controlled by the diagonal ele-
ments of the propagator, we obtain

G(ϕ)
α,α (k) � fα (k)

A4g0V0|k|2
[

1

Gα (χ (k,V0g0))

− 1

N

{
Ũ0/2

g0 + Ũ0�
(ϕ,c)
0,0 (λ/|k|) + Ũ1

g0
−O((Ũ1/g0)2)

}

× cos2(θα )

(Gα (χ (k,V0g0)))2

]
(71)

up to singular terms. Here, χ (k, g) = mk2
0

A2gρ1D|k|2 and Gα (χ ) =
χ + cos2(θα ). We check that in the limit Ũ1 = 0, Eq. (71)
reduces to the corresponding term in Eq. (64). The leading
behavior of the scaling dimension of backscattering operators
is proportional to that obtained in Sec. IV B, and the phase
boundary is given by

(ρ̄/κ2)3/2 = 2π2

BN

[(
1 − Ũ1

2Ng0

)
− π2

32BλB2
N

]−2

(mV0)3/2.

(72)

VI. CONCLUSION

In this paper we deduced the phase diagram of dilute,
homogeneous, weakly interacting bosonic systems which host
continuously degenerate single-particle dispersion minima.
As a concrete example, we considered a pseudospin- 1

2 bosonic
system in the presence of weak, short-range, spin-independent
repulsive interaction, and Rashba spin-orbit coupling (SOC).
We take advantage of the one-dimensional dynamics along the
radial direction to develop a multidimensional bosonization
scheme, which allows for an unbiased nonperturbative analy-
sis of the low-energy behavior. We show that at weak coupling
a symmetric critical state (the Rashba-Luttinger liquid or
RLL) is realized through a combined effect of SOC and inter-
action. The RLL phase is characterized by quasi-long-range
order with nonuniversal scaling exponents, and a T -linear
specific heat. While the RLL state is nominally degenerate

with both plane-wave and stripe-ordered condensates, it has
the virtue of lending itself to a systematic stability analysis.
In particular, within a tree-level scaling analysis the RLL is
found to be stable at weak coupling. Strengthening of the SOC
or the interaction at a fixed density enhances various charge
density wave (CDW) fluctuations which eventually destabilize
the RLL. The dominant instability drives the system to a CDW
state with a wave vector whose magnitude is controlled by the
ratio of the mean density of bosons and the spin-orbit coupling
strength ρ1D ≡ ρ̄/κ . We summarize our main results through
the phase diagram in Fig. 3, and deduce the asymptotic form
of the phase boundary. We note that more conventional CDWs
with wave vectors of magnitude ∼κ [23,26,28] are subdomi-
nant instabilities, and become relevant further away from the
phase boundary on the symmetry-broken side of the phase
diagram. Furthermore, since the RLL is a symmetric state that
is introduced at an intermediate energy, it can be considered
as a “parent state,” out of which a symmetry-broken state may
emerge at lower energies. Interestingly, a BEC is an unlikely
candidate for such a symmetry-broken state due to an absence
of condensation energy gain.

The RLL is similar to “Bose metals” that are conjectured
to exist in various solid-state systems, viz., near the boundary
of superconductor-insulator transitions [16,17], quantum spin
liquids [18–20], and frustrated lattices [21]. Aside from not
breaking any symmetries, the Bose metal also hosts an ex-
tended zero-energy manifold in momentum space (the “Bose
surface”), which is analogous to the ring minima studied
in this paper. In contrast to the ring minima whose origin
is single-particle dispersion, a Bose surface emerges at low
energies only in the presence of interactions. Despite their
dissimilar origin, the ring minima and the Bose surface lead
to similar physical properties like linear-T specific heat, and
entanglement entropy scaling. In particular, as pointed out in
Ref. [67], the presence of Bose surface(s) leads to logarithmic
violation of entanglement entropy area law, similar to what
happens in a free Fermi gas [68–70] or Fermi liquid [71]. Such
violation offers a diagnostic of the RLL phase in numerical
studies. Even the shape of the Bose surface can be determined
by detailed studies of the entanglement entropy [72].

A generalized version of our analysis can be utilized to
access the low-energy behavior of three-dimensional bosonic
systems with symmetric (or Weyl) SOC. In the presence
of Weyl SOC the single-particle energy is minimized on a
spherical shell of radius κ . In order to bosonize the interacting
model, the “shell” minima are approximated by a polyhedron.
The faces of the polyhedron correspond to two-dimensional
flat patches of area ∼
2. Due to the unit codimension of the
the shell minima, each flat patch supports one-dimensional
dynamics which is similar to a 2D lattice of decoupled
quantum wires. Thus, a suitable generalization of Eqs. (11)
and (22) leads to the bosonization of the effective theory.
Consequently, a three-dimensional analog of the RLL state is
expected to be stabilized at weak coupling and low density,
with various competing CDW instabilities arising at stronger
interaction.

Although we established the phase diagram through a
tree-level scaling analysis, the RLL phase and the region
close to the phase boundary on the symmetry-broken side are
expected to be robust against quantum corrections. Deeper
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into the symmetry-broken side of the phase diagram, other
CDW operators become relevant at the RLL fixed point.
Generally, in the presence of multiple relevant operators, the
dominant instability is determined by a combination of the
bare interaction strength of these operators and their scaling
dimensions [57]. Various relevant operators, however, may
mix under renormalization group (RG) flow to give rise
to features that are unanticipated in our tree-level analysis.
Therefore, a systematic RG analysis is required to fully char-
acterize the phase diagram on the symmetry-broken side of the
phase boundary. An obvious choice of RG scheme within the
hydrodynamic framework would be a coordinate-space-based
method, analogous to that applied to the sine-Gordon model.
It is, however, nontrivial to use such a scheme in the presence
of the constraint in Eq. (13). A method based on simultaneous
mode elimination and increasing the number of patches may
lead to a consistent scheme [73,74]. We leave such consider-
ations to future work. We note that the phase diagram may
also be modified in the region where the bare parameters
no longer satisfy the constraints under which the effective
theory was bosonized. In particular, the gapped mean-field
state proposed in Refs. [9,29] has a lower symmetry and
energy per particle than the RLL, but it is realized in a stronger
coupling regime (mV0 > ρ̄/κ2) where our method anticipates
symmetry-broken states. Finally, in the presence of weak
anisotropies that lift the degeneracy along the ring, the RLL
state can, in principle, be realized in the regime where the
interaction strength overcomes the energy difference due to
the anisotropy. In contrast, if an anisotropy produces a generic
smooth deformation of the ring, then our methods are still
applicable and the RLL state is expected to be realized.
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APPENDIX A: MEAN-FIELD SOLUTIONS

The continuum model for two-component bosons in the
presence of short-ranged interactions is given by

H =
∫

dr 	†(r)

[
−∇2

2m
+ i

κ

m
(σx∂x + ησy∂y)

]
	(r)

+
∫

dr[u0(	†(r)σ0	(r))2 + uz(	†(r)σz	(r))2],

(A1)

where 	 is the two-component boson field, κ is the SOC
strength, η is an anisotropy in the SOC, u0 and uz are inter-
action strengths, and σ0 and σn are the 2 × 2 identity matrix
and Pauli matrices, respectively. We note the following about
the model in Eq. (A1):

(i) The ring-shaped dispersion minima are obtained at
η = 1. An η �= 1 lifts the degeneracy along the ring, and
leaves behind two degenerate points.

(ii) The interaction becomes spin independent at uz = 0.
Since we are interested in an isotropic SOC, we set η = 1.

From the mean-field solution [38,39]

	0(r; φ) =
√

ρ̄

2

[
cos φ eiκ·r

(
1

−eiθκ

)
+ sin φ e−iκ·r

(
1

eiθκ

)]
(A2)

(here φ is a variational parameter, ρ̄ is the 2D mean density,
κ is a momentum vector that lies on the ring minima, and θκ

identifies the angular position of κ) we obtain the mean-field
interaction energy

Hint;0(φ) = ρ̄2
∫

dr[u0 + uz sin2 (2φ) cos2(κ · r)]. (A3)

We note the following:
(a) For uz < 0 the second term lowers energy. Therefore,

the ground state corresponds to φ = π/4. This is the stripe-
ordered phase as the bosons condense into a superposition of
two plane-wave states.

(b) For uz > 0 the second term increases energy. There-
fore, the ground state corresponds to φ = 0 or π/2. This leads
to a single plane-wave condensate, which breaks inversion and
time reversal.

(c) The energy becomes independent of φ when uz = 0.
Therefore, both the above states become degenerate at the
quantum critical point (QCP) achieved by tuning gz → 0 (also
see Fig. 2 of Ref. [38]).

Since ρ̄ = N /V with N and V being, respectively, the total
number of particles and volume of the system, the interaction
energy per particle at the QCP,

Hint;0(φ)

N = ρ̄ u0. (A4)

This is identical to the “mean-field” energy per particle of the
Rashba-Luttinger liquid (RLL) where μ = ρ̄V0.

APPENDIX B: DERIVATION OF EFFECTIVE ACTION

In this Appendix we derive the effective action in Eq. (8),
along with the estimate for the UV cutoff λ. We begin with the
single-particle Hamiltonian (1), which we quote here in terms
of κ:

H0 =
( |K|2

2m
+ κ2

2m

)
σ0 + κ

m
σ · K. (B1)

With the change of coordinates (Kx, Ky) �→ (K cos θk,

K sin θk ), we obtain the two branches of the spectrum

E±(K ) = 1

2m
(K ± κ )2, (B2)

with respective eigenvectors

	±(θk ) = 1√
2

(±e−iθk

1

)
. (B3)

Let b↑ = (1, 0)ᵀ and b↓ = (0, 1)ᵀ be the two pseudospin basis
states. Thus, the two branches can be expressed as a linear
combination of the pseudospin fields

	±(θk ) = b↓ ± e−iθk b↑, (B4)

and they are of opposite helicities.

024519-15



SHOUVIK SUR AND KUN YANG PHYSICAL REVIEW B 100, 024519 (2019)

FIG. 11. The nature of the effective vertex and its computation. (a) Determination of the minimum magnitude of the external momentum
P for which the particle-hole diagrams (PH, B, and P) do not vanish. Here the solid (blue) circle is the ring minima of radius κ , the long-dashed
circles mark the UV cutoff, κ ± λ for the low-energy effective theory, and the short-dashed circles represent the scales κ ± √

2mμ. The (red)
cross marks a generic point K in Rλ, and the (green) circle around it represents possible values of K + P with a fixed |P|. Within the area
enclosed by the short-dashed circles (shaded region), the energy E (K + P) < μ. Thus, when a part of the (green) circle intersects the
shaded region, the particle-hole diagrams become nonvanishing. The smallest such circle corresponds to |K| = κ ± λ and |P| = λ − √

2mλ.
(b) Functional dependence of CPH(P) (measured in units of m) on P (measured in units of κ). The filled circles are numerically evaluated values
of CPH(P), while the solid curve is a guide for the eye. For the numerical integration we used λ = 10−2κ , μ = 10−5Eκ , and approximated
�(x) → [ 1

π
tan−1(x/a) + 1

2 ] with a = 10−13. We note that CPH(P) becomes appreciable only when |P| � λ, as anticipated in (a). (c) Behavior
of CPP(P) at large |P|/κ showing its sensitivity to the size of ring. A clear enhancement of the scatterings at |P| ≈ 2κ demonstrates the
dependence of the interaction vertex on the wave vector of the bosons near the ring minima.

In order to construct the effective action in Eq. (8), we
proceed in two steps. In the first step we integrate out
modes for which E > Eκ (see Fig. 1). This includes the
entire upper branch 	+ and modes on the lower branch
with momenta,|K| > 2κ . This cannot be done exactly owing
to the presence of quartic vertices |	±|4. For a sufficiently
weak bare interaction strength V0, however, the renormaliza-
tions can be ignored in comparison to the bare parameters.
Therefore, the effective theory that describes the dynamics for
E < Eκ is expressed in terms of the lower branch,

Sκ ≈
∫

dK �κ (K ) [ik0 + E (K ) − μ]|	(K )|2

+V0

∫ (
4∏

n=1

dKn�κ (Kn)

)
δ(K1 − K2 + K3 − K4)

×	†(K1)	(K2)	†(K3)	(K4), (B5)

where
∫
κ

implies ||K| − κ| < κ , dK ≡ dk0dK
(2π )3 , �κ (K ) is a

cutoff function that suppresses modes with ||K| − κ| > κ , and
	 denotes the low-energy modes.

In the second step we integrate out modes that lie in the
region Rλ and carry energy Eκ > E > Eλ as shown in Figs. 1
and 4. The quantum corrections to the interaction vertex at
quadratic order in V0 are obtained from the interaction part of
Eq. (B5):

δSint = − 1
2 〈Sint〉Rλ

. (B6)

The four scattering processes in Fig. 5 contribute to δSint ,

δSint = −V 2
0

2

∫
dK dK ′dQ�λ(K )�λ(K ′)�λ(K + Q)

×�λ(K ′ + Q) 	∗(K + Q)	(K )	∗(K ′)	(K ′ + Q)

× [2CPP(K + K ′ + Q) + 4CPH(K ′ − K )

+ 4CB(Q) + 4CP(Q)], (B7)

where we have used the momentum independence of the
coupling in Eq. (B5). The vertex corrections CPP, CPH, CB, CP

result from Figs. 5(a)–5(d), respectively, and they are given
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by

CPP(P) =
∫
Rλ

dK G(−k0,−K )G(k0, K + P),

CPH(P) = CB(P) = CP(P) =
∫
Rλ

dK G(k0, K )G(k0, K + P).

(B8)

Here,
∫
Rλ

implies that K ∈ Rλ while k0 ∈ (−∞,∞). Since
λ acts as an infrared (IR) cutoff and λ � √

2mμ, E (K ) =
E (−K ) > μ for all K ∈ Rλ. Thus, the frequency integral in
CPH(P) is nonvanishing only if |P| > (λ − √

2mμ) for which
E (K + P) < μ. We show a schematic of the determination of
minimum |P| in Fig. 11(a).

In order to determine the order of magnitude of the quan-
tum corrections we evaluate CPP at the BCS configuration
(P = 0)

CPP(0) =
∫

dk0

2π

∫
Rλ

dK

× 1

[ik0 + E (K ) − μ][−ik0 + E (−K ) − μ]
(B9)

= m

π

(κ

λ
− 1

)
≈ mκ

πλ
. (B10)

After integrating over frequency the particle-hole diagrams
take the form

CPH(P) = −
∫
Rλ

dK
�[μ − E (K + P)]

E (K ) − E (K + P)

≈ −
∫
Rλ

dK
�[μ − E (K + P)]

E (K )
, (B11)

where we utilized the fact E (K + P) 	 E (K ) to approximate
CPH(P). We note that CPH(P) depends on P through |P|. We
evaluate the dependence numerically (using the Cuba library
for numerical integration in Mathematica) and plot the result

in Fig. 11(b). The scale at which CPH(P) becomes finite is
controlled by λ, and CPH(P) decays with increasing magnitude
of P. Thus, the effective vertex

V (K, K ′, Q) = V0 − V 2
0 [CPP(K + K ′ + Q) + 2CPH(K ′ − K )

+ 2CB(Q) + 2CP(Q)] (B12)

is dependent on all three external momenta. For V0 > 0, up
to second order in perturbation theory, it is enhanced (sup-
pressed) by scatterings in the particle-hole (particle-particle)
channel. We note that, unlike the UV interaction potential,
V0(Q) = V0, which mediates only contact interactions, the
effective potential V (K, K ′, Q) has a finite range in coordinate
space and leads to more general scatterings among the bosons
at low energies.

APPENDIX C: PHASE PROPAGATOR OF Uα,β = 1 MODEL

In this Appendix we derive the expressions of the propaga-
tors of the model Sec. IV B. Let us consider the action

A−2Sϑ [ξα] = 1

2

∑
α,β

∫
dk

[
δα,β

g(ϑ )
α (k)

fα (k)
− W k2

0

]
ϑα (−k)ϑβ (k)

+ 1

2

∑
α

∫
dk[ξα (−k)ϑα (k) + ϑα (−k)ξα (k)],

(C1)

where ξα is a source for ϑα and W−1 = A2V0(2N + 1). Let us
define

χ (k) = k0

√
W
∑

α

ϑα (k), (C2)

such that

Sχ ≡ A2

2

∫
dk χ (−k)χ (k)

= −A2

2
W
∫

dk k2
0

∑
α,β

ϑα (−k)ϑβ (k). (C3)

We introduce auxiliary fields to decompose the χ2 term as

e−Sχ �
∫

da exp −A2

2

∫
dk[a(−k) + iχ (−k)][a(k) + iχ (k)] − A2

2

∫
dk χ (−k)χ (k) (C4)

=
∫

da exp −A2

2

∫
dk{a(−k)a(k) + i[a(−k)χ (k) + χ (−k)a(k)]}. (C5)

Thus, using Eq. (C2), we obtain

Sϑ [ξα] = A2

2

∑
α

∫
dk

g(ϑ )
α (k)

fα (k)
ϑα (−k)ϑα (k) + A2

2

∫
dk a(−k)a(k) + A2

2

∑
α

∫
dk[Lα (−k)ϑα (k) + ϑα (−k)Lα (k)], (C6)

where

Lα (k) = ξα (k) + i
√
W k0 a(k). (C7)

We integrate out ϑα (k) for each α to obtain

A−2Sϑ [ξα] = −1

2

∑
α

∫
dk

fα (k)

g(ϑ )
α (k)

Lα (−k)Lα (k) + 1

2

∫
dk a(−k)a(k) (C8)
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= 1

2

∫
dk

[(
1 −

∑
α

W fα (k)k2
0

g(ϑ )
α (k)

)
a(−k)a(k) + i

∑
α

fα (k)
√
Wk0

g(ϑ )
α (k)

[a(−k)ξα (k) − ξα (−k)a(k)]

]

− 1

2

∑
α

∫
dk

fα (k)

g(ϑ )
α (k)

ξα (−k)ξα (k). (C9)

Since N > 1, g(ϑ )
α (k) > Wk2

0 for all (k0, k), which implies that the coefficient of a2 is positive definite for generic frequency and
momentum. Integrating out a(k) leads to

A−2Sϑ [ξα] = −1

2

∑
α,β

∫
dk

⎡⎢⎣δα,β fα (k)

g(ϑ )
α (k)

+ W k2
0 fα (k) fβ (k)(

1 −∑
μ

W fμ(k) k2
0

g(ϑ )
μ

(k)

)
g(ϑ )

α (k)g(ϑ )
β (k)

⎤⎥⎦ξα (−k)ξβ (k). (C10)

Therefore, the propagator of ϑα is

A2G(ϑ )
α,β = δα,β fα (k)

g(ϑ )
α (k)

+ W k2
0 fα (k) fβ (k)(

1 −∑
μ

W fμ(k) k2
0

g(ϑ )
μ

(k)

)
g(ϑ )

α (k)g(ϑ )
β (k)

. (C11)

The derivation of the propagator of ϕα proceeds in analogy to Appendix F 2.

APPENDIX D: KINEMATIC CONSTRAINTS DUE TO THE CURVATURE OF THE RING MINIMA

The sums over patches in the ϒ̆ factors depend on the magnitude of the momentum k. In particular, for large enough |k|,
the cutoff function fμ(k) suppresses contributions from patches with normals almost parallel to k. As a limiting case let us
assume that there exists a patch α such that v̂α · k = 0. Thus, k is entirely transverse at the αth patch (i.e., k = |k|̂uα), which
implies that its maximum allowed magnitude is |k| ∼ 
. Given this choice of the orientation of k, it can be carried by a boson
at the βth patch only if |̂vβ · k| � λ. Assuming the maximum possible magnitude of k, this implies a constraint on the angular
separation between the αth and βth patches, |̂vβ · ûα| � λ



	 1, for both patches to contribute to the sum. Since |̂vβ · ûα| =

| sin(θα − θβ )|, we deduce that for |k| ∼ 
, |α − β| ≈ 0 (mod N ) which allows for either nearly parallel or nearly antiparallel
pairs of patches. As the magnitude of k decreases, patches at progressively larger angular distance from α contribute to the sum,
with all patches contributing when |k| � λ. In this Appendix we explicitly derive these results, and identify the most singular
parts of the propagators that contribute to the scaling exponents.

For its simplicity we demonstrate the procedure with the help of the model in Sec. IV B. We start with the derivation of the
leading behavior (in an expansion in 1/N) of the ϒ̆ terms in Eq. (40):

ϒ̆ϑ (k) = k2
0

A2V0(2N + 1)

N−1∑
μ=−N

fμ(k)

g(ϑ )
μ (k,V0)

; ϒ̆ϕ (k) = A2V0

N−1∑
μ=−N

(v̂μ · k)2 fμ(k)

g(ϕ)
μ (k,V0)

. (D1)

Here, we choose

fμ(k) = �(λ − |v̂μ · k|) �(
 − |ûμ · k|). (D2)

Although max |k| = √

2 + λ2, we can set �(
 − |ûμ · k|) = 1 while extracting the coefficient of the ln (λ|r|) term in

correlation functions because the (v̂μ · k) = 0 mode does not contribute to the coefficient. Since N � 1 we replace the sum
over μ by an integral with the choice v̂μ=0 · k̂ = 1:

ϒ̆ϑ (k) ≈ 2Nk2
0

A2V0(2N + 1)

∫ π

−π

dθ

2π

�(λ − |k|| cos θ |)
k2

0/(A2V0) + (ρ1D/m)|k|2 cos2 θ
,

ϒ̆ϕ (k) ≈ 2NA2V0

∫ π

−π

dθ

2π

�(λ − |k|| cos θ |) |k|2 cos2 θ

k2
0/(ρ1D/m) + (A2V0)|k|2 cos2 θ

. (D3)

Therefore, as the magnitude of k increases, the contribution from those patches with v̂α · v̂0 ≈ 1 are suppressed. In order to
evaluate the integrals, it is convenient to define the ratio

χ (k, g) = mk2
0

A2gρ1D|k|2 , (D4)

such that

ϒ̆ϑ (k) = 2N

2N + 1
χ (k,V0)

∫ π

−π

dθ

2π

�(λ/|k| − | cos θ |)
cos2 θ + χ (k,V0)

= 1

2N + 1

4N

π

[
�

(
λ

|k| − 1

)
fϑ (χ (k,V0), 1) + �

(
1 − λ

|k|
)

fϑ (χ (k,V0), λ/|k|)
]
, (D5)
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ϒ̆ϕ (k) = 2N
∫ π

−π

dθ

2π

�(λ/|k| − | cos θ |) cos2 θ

cos2 θ + χ (k,V0)

= 4N

π

[
�

(
λ

|k| − 1

)
fϕ (χ (k,V0), 1) + �

(
1 − λ

|k|
)

fϕ (χ (k,V0), λ/|k|)
]
, (D6)

where

fϑ (a, b) =
∫ b

0

dy√
1 − y2

a

y2 + a
, fϕ (a, b) =

∫ b

0

dy√
1 − y2

y2

y2 + a
. (D7)

It is easy to check that as b → 0 both f functions are suppressed, which embodies the kinematic suppression due to the curvature
of the ring minima.

In order to isolate the parts of the propagators that contribute to the scaling exponents, we identify the asymptotic behavior of
the f functions as a function of a:

lim
a→0

fϑ (a, b) = π
√

a

2
− O(a), lim

a→∞ fϑ (a, b) = sin−1(b) + O(a−1), (D8)

lim
a→0

fϕ (a, b) = sin−1(b) − π
√

a

2
+ O(a), lim

a→∞ fϕ (a, b) = sin−1(b) + O(a−1). (D9)

Since both propagators at most ∼k−2
0 as |k0| → ∞ at fixed k, the frequency integrations are UV finite irrespective of the

magnitude of |k|. The finiteness of |k|, however, is important for the IR finiteness of the frequency integrations. Therefore,
the singular dependence of the result of the frequency integrations on |k| arises from the k0 ≈ 0 sector. Thus, we isolate the most
singular terms (in the above sense) in the propagator

Ğ(ϕ)
α,β (k) = δα,β fα (k)

A2g(ϕ)
α (k,V0)

− V0(v̂α · k)(v̂β · k) fα (k) fβ (k)[
1 + ϒ̆

(0)
ϕ (k)

]
g(ϕ)

α (k,V0)g(ϕ)
β (k,V0)

+ ϒ̆ϕ (k) − ϒ̆ (0)
ϕ (k)[

1 + ϒ̆
(0)
ϕ (k)

]
[1 + ϒ̆ϕ (k)]

V0(v̂α · k)(v̂β · k) fα (k) fβ (k)

g(ϕ)
α (k,V0)g(ϕ)

β (k,V0)
,

(D10)

Ğ(ϑ )
α,β (k) = δα,β fα (k)

A2g(ϑ )
α (k,V0)

+ k2
0

A4V0(2N + 1)

fα (k) fβ (k)[
1 − ϒ̆

(0)
ϑ (k)

]
g(ϑ )

α (k,V0)g(ϑ )
β (k,V0)

+ ϒ̆ϑ (k) − ϒ̆
(0)
ϑ (k)[

1 − ϒ̆
(0)
ϑ (k)

]
[1 − ϒ̆ϑ (k)]

k2
0

A4V0(2N + 1)

fα (k) fβ (k)

g(ϑ )
α (k,V0)g(ϑ )

β (k,V0)
, (D11)

where

ϒ̆ (0)
ϕ (k) ≡ ϒ̆ϕ (k0 = 0, k) = 4N

π

[
�

(
λ

|k| − 1

)
π

2
+ �

(
1 − λ

|k|
)

sin−1(λ/|k|)
]
,

ϒ̆
(0)
ϑ (k) ≡ ϒ̆ϑ (k0 = 0, k) = 0. (D12)

While the terms in the first line of each propagator contribute to the coefficient of ln(λ|r|), the term in the second line does not
because the numerator produces additional suppression in the k0 → 0 limit.

APPENDIX E: FOUR-PATCH THEORY

In this Appendix we analyze the singularity structure of the propagators for the case where N = 2, i.e., four patches. This is
the simplest two-dimensional approximation to the Bose ring, and elucidates certain key features of two-dimensional scattering
processes which aids the simplification of the general-N case as discussed in the main text. For computational convenience,
we define the centers of the four patches to lie at angular positions θ = −π,−π/2, 0, π/2. Considering each patch to be
dynamically identical, the scattering matrix � is characterized by three parameters (couplings) corresponding to intrapatch
scattering (g0), scattering between antipodal patches (g2), and other interpatch scatterings (g1), such that

�α,β = g0δα,β +
2∑

n=0

δ|α−β|,n gn. (E1)
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It is straightforward to integrate out the phase fields (the quadratic term is diagonal in patch index) to obtain the effective action
in terms of density fluctuations

Sϕ = A2

2

1∑
α,β=−2

∫
d3k

(2π )3

[
δα,β

k2
0

(ρ1D/m)
+ A2V0�α,β (̂vα · k)(̂vβ · k)

]
ϕα (−k)ϕβ (k). (E2)

A similar operation leads to the effective action for the phase

Sϑ = A2

2

1∑
α,β=−2

∫
d3k

(2π )3

[
(A2V0)−1�−1

α,β k2
0 + δα,βm

−1ρ1D(̂vα · k)2
]
ϑα (−k)ϑβ (k). (E3)

As a representative case we focus on the dynamics of ϑα . The propagator is

G(ϑ )
α,β (k) = A−2

[
δα,β

gα (k)
+ (1 − δα,β − δᾱ,β )

W1 k2
0

D(k)
+ (δα,β + δᾱ,β )

W2k0
2D(k) + 2gα (k)

(
W1k2

0

)2

D(k)gα (k)
[
gα (k) − 2W2k2

0

] ], (E4)

where ᾱth patch is antipodal to αth patch, and

gα (k) = k2
0/(A2V0)

2g0 − g2
+ m−1ρ1D(v̂α · k)2;

W0 = 1

A2V0

(2g0 + g2)2g0 − 2g2
1

(2g0 − g2)
[
(2g0 + g2)2 − 4g2

1

] , W1 = 1

A2V0

g1

(2g0 + g2)2 − 4g2
1

,

W2 = 1

A2V0

(2g0 + g2)g2 − 2g2
1

(2g0 − g2)
[
(2g0 + g2)2 − 4g2

1

] ;

D(k) = [
(W0 − W2)k2

0 + m−1ρ1Dk2
x

][
(W0 − W2)k2

0 + m−1ρ1Dk2
y

]− (
2W1k2

0

)2
. (E5)

The first term in Eq. (E4) is the renormalized intrapatch
correlation, which is purely one dimensional. The other two
terms introduce two-dimensional dynamics through D(k). We
note that on setting g1 = 0, W1 vanishes which results in an
effective one-dimensional dynamics. Thus, g1 �= 0 is crucial
for retaining the two-dimensional dynamics of the boson.
D(k) and gα (k) are positive definite away from the origin
of the frequency-momentum space in the parametric region
2g0 > 0, 2g0 > g2, and 2g0 + g2 > 2g1. This restriction is
important for the determinant of the propagator to not vanish,
which is crucial for the absence of nonpropagating modes. In-
teraction potentials that lead to a dominant intrapatch forward
scattering naturally satisfy these constraints.

Correlation functions of vertex operators obtain anoma-
lous dimensions through those components of the propagator
which logarithmically diverge in the IR, viz.,

∫
d3k Gα,β (k) ∝

ln(
L), where L−1 (
) is a IR (UV) cutoff. The first term in
Eq. (E4) is IR divergent in the above sense, while the second is
not. The third term possesses a hidden one dimensionality. In
order to isolate this hidden divergence, we simplify the third
term to obtain

G(ϑ )
α,β (k)

A2
= δα,β

gα (k)
+ δα,β + δᾱ,β

2

[
1

gα (k) − 2W2k2
0

− 1

gα (k)

]

+ (δα,β + δᾱ,β )
2
(
W1k2

0

)2

D(k)
{
gα (k) − 2W2k2

0

}
+ (1 − δα,β − δᾱ,β )

W1k2
0

Dϑ (k)
. (E6)

The terms in the first line diverge in the IR when integrated
over (k0, k), the rest of the terms are IR finite (this is similar

to the situation in crossed sliding Luttinger liquids discussed
in Ref. [55]). Thus, we conclude that (a) the only sources of IR
divergence are intrapatch correlation, and correlation between
antipodal patches; (b) the anomalous exponents are indepen-
dent of W1. Further, we note that, had we set g1 = 0, we
would have obtained IR divergences from the same sources
since the processes relevant for generating the divergences are
one dimensional. Therefore, the effect of g1 is parametric in
nature as it does not generate new IR divergences.

APPENDIX F: PROPAGATORS FOR
THE GENERAL Uα,β MODEL

In this Appendix we derive the propagators for the phase
and density fluctuations described by Eq. (60). The key
method is a generalization of the one used in Appendix C
which is based on the one developed in Ref. [49]. While
the phase field can be integrated out easily to obtain the
effective action for the density fluctuations, the opposite is
more complicated since it is generically hard to determine
the structure of the elements of U −1. Changing to the angular
momentum basis, however, simplifies the procedure and the
effective action for phase fluctuations is obtained without any
approximations. We will first derive the propagator of the
phase, and then move on to the derivation of the propagator
of density fluctuations.

1. Propagator of the phase

We proceed in two steps: first we obtain the effective action
for the phase field, then we obtain the propagator of the phase.
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a. Integrating out density fluctuations

Recall that the action is given by

A−2S = 1

2

∑
α

∫
dk

[
2ik0 (̂vα · k) ϕα (−k)ϑα (k) + ρ1D

m
(̂vα · k)2 ϑα (−k)ϑα (k) + A2V0g0 (̂vα · k)2 ϕα (−k)ϕα (k)

]

+ 1

2

∑
α,β

∑
l

∫
dk

A2V0Ũl

2N
cos(θαβ l ) (̂vα · k)(̂vβ · k) ϕα (−k)ϕβ (k). (F1)

We use the identity cos{(θα − θβ )l} = cos(θαl ) cos(θβ l ) + sin(θαl ) sin(θβ l ) to express the ϕα-dependent terms in Eq. (F1) as

A−2S1 ≡ 1

2

∑
α

∫
dk[2ik0 (̂vα · k) ϕα (−k)ϑα (k) + A2V0g0 (̂vα · k)2 ϕα (−k)ϕα (k)]

+ 1

2

∑
l

∑
α,β

∫
dk

A2V0Ũl

2N

(
cl
αcl

β + sl
αsl

β

)
(̂vα · k)(̂vβ · k) ϕα (−k)ϕβ (k), (F2)

where we have introduced {cl
α, sl

α} ≡ {cos(θαl ), sin(θαl )} for notational convenience. Let us introduce

χ
(c)
l (k) =

∑
α

cl
α (̂vα · k)ϕα (k), χ

(s)
l (k) =

∑
α

sl
α (̂vα · k)ϕα (k), and (F3)

ξα (k) = ik0 (̂vα · k)ϑα (k). (F4)

Thus, S1 takes the form

A−2S1 = 1

2

N−1∑
α=−N

∫
dk[ξα (k)ϕα (−k) + ξα (−k)ϕα (k) + A2V0g0 (̂vα · k)2 ϕα (−k)ϕα (k)]

− 1

2

N−1∑
l=−N

∫
dk

A2V0Ũl

2N

(
χ

(c)
l (−k)χ (c)

l (k) + χ
(s)
l (−k)χ (s)

l (k)
)
. (F5)

We note that ξα (k) acts as a source for ϕα (k). By introducing auxiliary fields A(c)
l (k) and A(s)

l (k) we decouple the terms in the
second line to obtain

S1 = 1

2

N−1∑
α=−N

∫
dk[ξα (k)ϕα (−k) + ξα (−k)ϕα (k) + A2V0g0 (̂vα · k)2 ϕα (−k)ϕα (k)]

+ 1

2

N−1∑
l=−N

∫
dk

A2V0Ũl

2N

[
A(c)

l (−k)A(c)
l (k) + A(c)

l (−k)χ (c)
l (k) + A(c)

l (k)χ (c)
l (−k) + (c) �→ (s)

]
(F6)

= 1

2

N−1∑
α=−N

∫
dk A2V0g0 (̂vα · k)2 ϕα (−k)ϕα (k)

+ 1

2

N−1∑
α=−N

∫
dk

[{
ξα (k) − (v̂α · k)

2N

∑
l

A2V0Ũl
(
cl
αA(c)

l (k) + sl
αA(s)

l (k)
)}

ϕα (−k)

+
{

ξα (−k) + (v̂α · k)

2N

∑
l

A2V0Ũl
(
cl
αA(c)

l (−k) + sl
αA(s)

l (−k)
)}

ϕα (k)

]

+ 1

2

N−1∑
l=−N

∫
dk

A2V0Ũl

2N

[
A(c)

l (−k)A(c)
l (k) + A(s)

l (−k)A(s)
l (k)

]
. (F7)

With the definition

Bα (k) = 1

A2V0g0 (̂vα · k)2

[
ξα (k) − (v̂α · k)

2N

∑
l

A2V0Ũl
(
cl
αA(c)

l (k) + sl
αA(s)

l (k)
)]

, (F8)
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we note that the Lagrangian density for ϕα is

1

2

∑
α

A2V0g0 (̂vα · k)2[ϕα (−k)ϕα (k) + Bα (k)ϕα (−k) + Bα (−k)ϕα (k)] (F9)

= 1

2

∑
α

A2V0g0 (̂vα · k)2[ϕα (−k) + Bα (−k)][ϕα (k) + Bα (k)] − 1

2

∑
α

A2V0g0 (̂vα · k)2Bα (−k)Bα (k). (F10)

Integrating out ϕα leads to

A−2S1 = 1

2

∑
l

∫
dk

A2V0Ũl

2N

[
A(c)

l (−k)A(c)
l (k) + A(s)

l (−k)A(s)
l (k)

]− 1

2

∑
α

∫
dk A2V0g0 (̂vα · k)2Bα (−k)Bα (k). (F11)

Now, ∑
α

A2V0g0 (̂vα · k)2Bα (−k)Bα (k)

=
∑

α

⎡⎣ ξα (−k)ξα (k)

A2V0g0 (̂vα · k)2
−
∑
l,l ′

(A2V0)2Ũl Ũl ′

(2N )2A2V0g0

(
cl
αA(c)

l (−k) + sl
αA(s)

l (−k)
)(

cl ′
αA(c)

l ′ (−k) + sl ′
αA(s)

l ′ (−k)
)

+
∑

l

A2V0Ũl ξα (k)

2NA2V0g0 (̂vα · k)

(
cl
αA(c)

l (−k) + sl
αA(s)

l (−k)
)−

∑
l

A2V0Ũl ξα (k)

2NA2V0g0 (̂vα · k)

(
cl
αA(c)

l (k) + sl
αA(s)

l (k)
)]

(F12)

= −
∑

α

k2
0

A2V0g0
ϑα (−k)ϑα (k) −

∑
l,l ′

(A2V0)2ŨlŨl ′

4NA2V0g0

[{δl,l ′ + δl,−l ′ }A(c)
l (−k)A(c)

l ′ (k) + {δl,l ′ − δl,−l ′ }A(s)
l (−k)A(s)

l ′ (k)
]

+ i

2N

∑
l

[
�

(c)
l (−k)A(c)

l (k) + �
(c)
l (k)A(c)

l (−k) + �
(s)
l (−k)A(s)

l (k) + �
(s)
l (k)A(s)

l (−k)
]
, (F13)

where we have used the identities∑
α

cl
αcl ′

α = N (δl−l ′,0 + δl+l ′,0);
∑

α

sl
αsl ′

α = N (δl−l ′,0 − δl+l ′,0);
∑

α

cl
αsl ′

α = 0, (F14)

and defined

�
(c)
l (k) = A2V0Ũlk0

A2V0g0

∑
α

cl
αϑα (k); �

(s)
l (k) = A2V0Ũlk0

A2V0g0

∑
α

sl
αϑα (k). (F15)

Thus,

A−2S1 = 1

2

∑
α

∫
dk

k2
0

A2V0g0
ϑα (−k)ϑα (k) + 1

2

1

2N

∑
l,l ′

∫
dk
[
M (c)

l,l ′A
(c)
l (−k)A(c)

l ′ (k) + M (s)
l,l ′A

(s)
l (−k)A(s)

l ′ (k)
]

− 1

2

i

2N

∑
l

∫
dk
[
�

(c)
l (−k)A(c)

l (k) + �
(c)
l (k)A(c)

l (−k) + �
(s)
l (−k)A(s)

l (k) + �
(s)
l (k)A(s)

l (−k)
]
, (F16)

where

M (c)
l,l ′ = A2V0Ũl

(
1 + A2V0Ũl ′

2A2V0g0

)
δl,l ′ + (A2V0)2Ũl Ũl ′

2A2V0g0
δl,−l ′ ; M (s)

l,l ′ = A2V0Ũl

(
1 + A2V0Ũl ′

2A2V0g0

)
δl,l ′ − (A2V0)2Ũl Ũl ′

2A2V0g0
δl,−l ′ .

(F17)

We note that M (c,s) are real and symmetric matrices.
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Integrating out A(c,s)
l fields leads to

S1

A2
= 1

2

∑
α

∫
dk

k2
0

A2V0g0
ϑα (−k)ϑα (k) + 1

2

1

2N

∑
l,l ′

∫
dk
[
(M (c) )−1

l,l ′�
(c)
l (−k)�(c)

l ′ (k) + (M (s) )−1
l,l ′�

(s)
l (−k)�(s)

l ′ (k)
]

(F18)

= 1

2

∑
α,β

∫
dk

k2
0

A2V0g0

⎡⎣δα,β − 1

2N

∑
l,l ′

(A2V0)2Ũl Ũl ′

A2V0g0

{
(M (c) )−1

l,l ′c
l
αcl ′

β + (M (s) )−1
l,l ′s

l
αsl ′

β

}⎤⎦ϑα (−k)ϑβ (k). (F19)

Adding to the ϑα-dependent term of Eq. (F1) we obtain the effective action for phase fluctuations

Sϑ = A2

2

∑
α,β

∫
dk [G−1

ϑ (k)]α,β ϑα (−k)ϑβ (k), (F20)

where Gϑ = A2Gϑ , and[
G−1

ϑ (k)
]
α,β

= f −1
α (k)g(ϑ )

α (k,V0g0) δα,β − k2
0

2NA2V0g0

∑
l,l ′

(A2V0)2Ũl Ũl ′

A2V0g0

{
(M (c) )−1

l,l ′c
l
αcl ′

β + (M (s) )−1
l,l ′s

l
αsl ′

β

}
(F21)

with

g(ϑ )
α (k,V0g0) = k2

0

A2V0g0
+ ρ1D

m
(v̂α · k)2. (F22)

We note that we have introduced the UV regulator fα (k) (defined in the main text) to introduce the finiteness of the patches.

b. Derivation of the propagator

In order to obtain the propagator of the phase fields we need to invert the matrix G−1
ϑ (k) defined in Eq. (F21). Let us first

introduce sources J (ϑ )
α for the phase fields

Sϑ [Jϑ ] = A2

2

∑
α,β

∫
dk(Gϑ (k))−1

α,βϑα (−k)ϑβ (k) + A2

2

∑
α

∫
dk
[
J (ϑ )
α (−k)ϑα (k) + J (ϑ )

α (k)ϑα (−k)
]

= −1

2

∑
α,β

∫
dk(Gϑ (k))α,βJ (ϑ )

α (−k)J (ϑ )
β (k). (F23)

In the rest of the section we will derive the second equation from the first, and in the process compute the exact expression of
the propagator Gϑ (k) for any N .

Let us introduce (
ζ

(c)
l (k)

ζ
(s)
l (k)

)
= A2V0Ũl |k0|

A2V0g0

√
2N

∑
α

(
cl
α

sl
α

)
ϑα (k) (F24)

such that
Sϑ [Jϑ ]

A2
= 1

2

∑
α

∫
dk f −1

α (k)g(ϑ )
α (k,V0g0)ϑα (−k)ϑα (k) + 1

2

∑
α

∫
dk
[
J (ϑ )
α (−k)ϑα (k) + J (ϑ )

α (k)ϑα (−k)
]

− 1

2

∫
dk[ζ (c)(−k)ᵀ[M (c)]−1ζ (c)(k) + ζ (s)(−k)ᵀ[M (s)]−1ζ (s)(k)] (F25)

= 1

2

∑
α

∫
dk f −1

α (k)g(ϑ )
α (k,V0g0)ϑα (−k)ϑα (k) + 1

2

∑
α

∫
dk
[
J (ϑ )
α (−k)ϑα (k) + J (ϑ )

α (k)ϑα (−k)
]

+ 1

2

∫
dk[a(c)(−k)ᵀM (c)a(c)(k) + a(s)(−k)ᵀM (s)a(s)(k)]

+ 1

2

∫
dk[ζ (c)(−k)ᵀa(c)(k) + ζ (c)(k)ᵀa(c)(−k) + ζ (s)(−k)ᵀa(s)(k) + ζ (s)(k)ᵀa(s)(−k)] (F26)

= 1

2

∫
dk[a(c)(−k)ᵀM (c)a(c)(k) + a(s)(−k)ᵀM (s)a(s)(k)] + 1

2

∑
α

∫
dk f −1

α (k)g(ϑ )
α (k,V0g0)ϑα (−k)ϑα (k)
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+ 1

2

∑
α

∫
dk

[{
J (ϑ )
α (−k) + |k0|

A2V0g0

√
2N

∑
l

A2V0Ũl
(
cl
α a(c)

l (−k) + sl
α a(s)

l (−k)
)}

ϑα (k)

+
{

J (ϑ )
α (k) + |k0|

A2V0g0

√
2N

∑
l

A2V0Ũl
(
cl
α a(c)

l (k) + sl
α a(s)

l (k)
)}

ϑα (−k)

]
, (F27)

where a(c,s)
l are auxiliary fields, and X represents a column vector, while Y represents a matrix. Integrating out the phase yields

Sϑ

A2
= 1

2

∫
dk[a(c)(−k)ᵀM (c)a(c)(k) + a(s)(−k)ᵀM (s)a(s)(k)]

− 1

2

∑
α

∫
dk

fα (k)

g(ϑ )
α (k,V0g0)

[
J (ϑ )
α (−k) + |k0|

A2V0g0

√
2N

∑
l

A2V0Ũl
(
cl
α a(c)

l (−k) + sl
α a(s)

l (−k)
)]

×
[

J (ϑ )
α (k) + |k0|

A2V0g0

√
2N

∑
l ′

A2V0Ũl ′
(
cl ′
α a(c)

l ′ (k) + sl ′
α a(s)

l ′ (k)
)]

(F28)

= −1

2

∑
α

∫
dk

fα (k)

g(ϑ )
α (k,V0g0)

J (ϑ )
α (−k)J (ϑ )

α (k)

− 1

2

∑
α,l

∫
dk

|k0| fα (k)

A2V0g0

√
2N

A2V0Ũl

g(ϑ )
α (k,V0g0)

[(
cl
α a(c)

l (−k) + sl
α a(s)

l (−k)
)
J (ϑ )
α (k) + (

cl
α a(c)

l (k) + sl
α a(s)

l (k)
)
J (ϑ )
α (−k)

]
− 1

2

∑
l,l ′

∫
dk

k2
0

A2V0g0

(A2V0)2ŨlŨl ′

2NA2V0g0

[(∑
α

cl
αcl ′

α fα (k)

g(ϑ )
α (k,V0g0)

)
a(c)

l (−k)a(c)
l ′ (k) +

(∑
α

sl
αsl ′

α fα (k)

g(ϑ )
α (k,V0g0)

)
a(s)

l (−k)a(s)
l ′ (k)

]

+ 1

2

∫
dk[a(c)(−k)ᵀM (c)a(c)(k) + a(s)(−k)ᵀM (s)a(s)(k)]. (F29)

Owing to the factor of g(ϑ )
α (k,V0g0) in the denominator, we cannot simply sum over α in the third line of Eq. (F29). We could,

however, use parity under α �→ α + N to eliminate cross terms cl
αsl ′

α .
Let us define

[�̄(ϑ,c)(k)]−1
l,l ′ = M (c)

l,l ′ − k2
0

A2V0g0

(A2V0)2ŨlŨl ′

2NA2V0g0

(∑
α

cl
αcl ′

α fα (k)

g(ϑ )
α (k,V0g0)

)
;

[�̄(ϑ,s)(k)]−1
l,l ′ = M (s)

l,l ′ − k2
0

A2V0g0

(A2V0)2ŨlŨl ′

2NA2V0g0

(∑
α

sl
αsl ′

α fα (k)

g(ϑ )
α (k,V0g0)

)
, (F30)

such that after integrating out a(c,s) we obtain

Sϑ [Jα]

A2
= −1

2

∑
α

∫
dk

fα (k)

g(ϑ )
α (k)

J (ϑ )
α (−k)J (ϑ )

α (k)

− 1

2

∑
l,l ′

∫
dk

[
A2V0Ũl |k0|
A2V0g0

√
2N

∑
α

cl
αJ (ϑ )

α (−k) fα (k)

g(ϑ )
α (k,V0g0)

]
�̄

(ϑ,c)
l,l ′

⎡⎣ A2V0Ũl ′ |k0|
A2V0g0

√
2N

∑
β

cl ′
βJ (ϑ )

β (k) fβ (k)

g(ϑ )
β (k,V0g0)

⎤⎦
− 1

2

∑
l,l ′

∫
dk

[
A2V0Ũl |k0|
A2V0g0

√
2N

∑
α

sl
αJ (ϑ )

α (−k) fα (k)

g(ϑ )
α (k,V0g0)

]
�̄

(ϑ,s)
l,l ′

⎡⎣ A2V0Ũl ′ |k0|
A2V0g0

√
2N

∑
β

sl ′
βJ (ϑ )

β (k) fβ (k)

g(ϑ )
β (k,V0g0)

⎤⎦ (F31)

− 1

2A2

∑
α,β

∫
dk G(ϑ )

α,β (k)J (ϑ )
α (−k)J (ϑ )

β (k), (F32)

where

A2G(ϑ )
α,β (k) = δα,β fα (k)

g(ϑ )
α (k,V0g0)

+ k2
0 fα (k) fβ (k)

g(ϑ )
α (k,V0g0)g(ϑ )

β (k,V0g0)

∑
l,l ′

ŨlŨl ′

2Ng2
0

[
�̄

(ϑ,c)
l,l ′ cl

αcl ′
β + �̄

(ϑ,s)
l,l ′ sl

αsl ′
β

]
. (F33)

Therefore, G(ϑ )(k) is the propagator for the phase fluctuations.
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2. Propagator of density fluctuations

Here, we derive the propagator for density fluctuations. We start with the action in Eq. (F1), and integrate out the ϑα fields.
Since the action is diagonal in ϑα , this is straightforward, and in the presence of sources J (ϕ)

α , we obtain

A−2Sϕ

[
J (ϕ)
α

] = 1

2

∑
α,β

∫
dk

[
f −1
α (k)g(ϕ)

α (k,V0g0)δα,β +
∑

l

A2V0Ũl

2N

(
cl
αcl

β + sl
αsl

β

)
(v̂α · k)(v̂β · k)

]
ϕα (−k)ϕβ (k)

+ 1

2

∑
α

∫
dk
[
J (ϕ)
α (−k)ϕα (k) + J (ϕ)

α (k)ϕα (−k)
]
. (F34)

In order to decouple the off-diagonal terms in ϕα , we introduce auxiliary fields a(c,s)
l , which act as sources for

χ
(c)
l (k) =

∑
α

cl
α (v̂α · k)ϕα (k); χ

(s)
l (k) =

∑
α

sl
α (v̂α · k)ϕα (k). (F35)

Integrating out ϕα leads to

Sϕ

[
J (ϕ)
α

]
A2

= −1

2

∑
α

∫
dk fα (k)

J (ϕ)
α (−k)J (ϕ)

α (k)

g(ϕ)
α (k,V0g0)

+ 1

2

∑
l

∫
dk

A2V0Ũl

2N

[
a(c)

l (−k)a(c)
l (k) + a(s)

l (−k)a(s)
l (k)

]

+ 1

2

∑
l,l ′

∫
dk

(A2V0)2ŨlŨl ′

(2N )2

[(∑
α

cl
αcl ′

α (v̂α · k)2 fα (k)

g(ϕ)
α (k,V0g0)

)
a(c)

l (−k)a(c)
l ′ (k)

+
(∑

α

cl
αsl ′

α (v̂α · k)2 fα (k)

g(ϕ)
α (k,V0g0)

)
a(c)

l (−k)a(s)
l ′ (k) + (c ↔ s)

]

− 1

2

∑
l

∫
dk

A2V0Ũl

2N

[(∑
α

cl
α (v̂α · k) fα (k)

g(ϕ)
α (k,V0g0)

J (ϕ)
α (k)

)
a(c)

l (−k)

+
(∑

α

sl
α (v̂α · k) fα (k)

g(ϕ)
α (k,V0g0)

J (ϕ)
α (k)

)
a(s)

l (−k) + (k → −k)

]
. (F36)

By symmetry under α �→ α + N the cross terms, containing cl
αsl ′

α , vanish when summed over α. Let us define

[�̄(ϕ,c)]−1
l,l ′ = A2V0Ũl

2N
δl,l ′ + (A2V0)2ŨlŨl ′

(2N )2

(∑
α

(v̂α · k)2 fα (k)

g(ϕ)
α (k,V0g0)

cl
αcl ′

α

)
,

[�̄(ϕ,s)]−1
l,l ′ = A2V0Ũl

2N
δl,l ′ + (A2V0)2ŨlŨl ′

(2N )2

(∑
α

(v̂α · k)2 fα (k)

g(ϕ)
α (k,V0g0)

sl
αsl ′

α

)
, (F37)

and integrate out the auxiliary fields to obtain

Sϕ

[
J (ϕ)
α

] = −A2

2

∑
α

∫
dk fα (k)

J (ϕ)
α (−k)J (ϕ)

α (k)

g(ϕ)
α (k,V0g0)

+ A2

2

∑
l,l ′

∫
dk

(A2V0)2ŨlŨl ′

(2N )2

[∑
α

cl
α (v̂α · k) fα (k)

g(ϕ)
α (k,V0g0)

J (ϕ)
α (k)

]
�̄

(ϕ,c)
l,l ′

⎡⎣∑
β

cl ′
β (v̂β · k) fβ (k)

g(ϕ)
β (k)

J (ϕ)
β (k)

⎤⎦
+ A2

2

∑
l,l ′

∫
dk

(A2V0)2ŨlŨl ′

(2N )2

[∑
α

sl
α (v̂α · k) fα (k)

g(ϕ)
α (k,V0g0)

J (ϕ)
α (k)

]
�̄

(ϕ,s)
l,l ′

⎡⎣∑
β

sl ′
β (v̂β · k) fβ (k)

g(ϕ)
β (k)

J (ϕ)
β (k)

⎤⎦ (F38)

= −1

2

∑
α

∫
dk G(ϕ)

α,β (k)J (ϕ)
α (−k)J (ϕ)

α (k), (F39)

where

A2G(ϕ)
α,β (k) = δα,β fα (k)

g(ϕ)
α (k,V0g0)

− (v̂α · k)(v̂β · k) fα (k) fβ (k)

g(ϕ)
α (k,V0g0)g(ϕ)

β (k,V0g0)

∑
l,l ′

(A2V0)2ŨlŨl ′

(2N )2

[
�̄

(ϕ,c)
l,l ′ cl

αcl ′
β + �̄

(ϕ,s)
l,l ′ sl

αsl ′
β

]
(F40)

is the propagator of the density fluctuations.
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