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Abstract
Merging of isolated Bose–Einstein condensates (BECs) is an important topic due to
its relevance to matter-wave interferometry and the Kibble–Zurek mechanism. Many
past research focused on merging of BECs with uniform initial phases. In our recent
brief report (Kanai et al. in Phys Rev A 97:013612, 2018), we showed that upon
merging of rotating BECs with non-uniform initial phases, spiral-shaped dark solitons
can emerge. These solitons facilitate angularmomentum transfer and allow themerged
condensate to rotate even in the absence of quantized vortices. More strikingly, the
sharp endpoints of these spiral solitons can induce rotational motion in the BECs like
vortices but with effectively a fraction of a quantized circulation. This paper reports
our systematic study on the merging dynamics of rotating BECs. We discuss how the
relative winding number of the rotating BECs and the potential barrier that initially
separates the BECs may affect the profile and dynamics of the spiral solitons. The
number of spiral solitons created in the BECs is observed to always match exactly
the relative winding number of the two BECs. The underlying mechanism for which
the solitons can break up to form sharp endpoints with peculiar physical properties
and why the number of solitons matches the relative winding number is identified
and explained. These results improve our understanding of soliton dynamics, which
may allow better manipulation of these non-topological phase defects when they are
involved in various quantum transport processes.
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1 Introduction

Merging of isolated Bose–Einstein condensates (BECs) has been a topic of extensive
experimental and theoretical studies. The motivations of these studies include better
understanding of the processes involved in matter-wave interferometry [1–4], investi-
gating interesting nonlinear quantum hydrodynamics [5,6], and exploring the creation
of topological phase defects (i.e., quantized vortices) [7–9] and non-topological phases
defects (i.e., dark solitons) [10–12]. Especially, the creation of phase defects upon
merging of BECs has been utilized to test the celebrated Kibble–Zurek mechanism
[13–16]. Thismechanismexplains that the formation of phase defects following a rapid
second-order phase transition is due to the merging of isolated superfluid domains
with random relative phases [17,18]. So far, many studies on condensate merging
have focused on cases with condensates having uniform initial phases. Recently, we
carried out a study on the merging of two concentric condensates with axial symmetry
in two-dimensional (2D) space. One of the two condensates was set to carry a finite
angular momentum with non-uniform initial phases before merging occurs. We were
interested in how the angular momentum could be transferred from the rotating con-
densate to the initially static condensate and whether this transfer was accompanied
by the creation and transfer of quantized vortices. Some highlights of the simulation
results are briefly reported in a recent paper [19]. We observed the emergence of a
spiral dark soliton with a sharp endpoint during the merging process. This spiral dark
soliton enables the transfer of angular momentum between the two concentric con-
densates and allows the merged condensates to rotate even in the absence of quantized
vortices. More strikingly, an examination of the flow field around the sharp endpoint
of the dark soliton reveals that this endpoint can induce rotational motion in the con-
densate like a vortex point, but with effectively a fraction of a quantized circulation
that matches the phase step across the soliton boundary. In order to understand this
intriguing soliton dynamic, a systematic study of themerging process of 2D concentric
condensates under various conditions is indispensable. In this paper, we report such a
detailed study.

In Sect. 2, we discuss theGross–Pitaevskii equation (GPE) and the numericalmodel
used in our simulation work. In Sect. 3, we present our simulation results. The effect of
the potential barrier, which initially separates the two concentric BECs, on themerging
dynamics is discussed. The interesting rotational motion around the sharp endpoints
of the spiral solitons is revisited. We then show how the number of spiral solitons
created in the condensate is controlled by the initial relative winding number of the
two condensates. In Sect. 4, we discuss the underlying mechanism for the formation
of the spiral solitons and also comment on why the merged condensate can possess
angular momentum without quantized vortices. A brief summary is given in Sect. 5.
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2 Numerical Method

The dynamical evolution of a BEC at zero temperature can be described accurately
by a nonlinear Gross–Pitaevskii equation (GPE) [20]. For BECs confined to two-
dimensional space, this equation is given by:

i�
∂ψ

∂t
=

[
− �

2

2M
∇2 + V (r, t) + g|ψ |2

]
ψ, (1)

where � is Planck’s constant, M is the mass of the particles that form the conden-
sate, ψ is the condensate wave function, V is the external potential that confines the
condensate, and g is the coupling constant that measures the strength of the particle
interactions. In numerical simulations, it is convenient to rewrite the above GPE in a
dimensionless form by introducing dimensionless parameters r = ξ r̃ , t = (�/ng)t̃ ,
and ψ = (

√
N/ξ)ψ̃ , where ξ = �/

√
2Mng is the healing length, N = ∫

d S|ψ |2 is
the total number of particles, and n = N/S is the particle number density averaged
over the system area S. It is straightforward to show that the original GPE now takes
the following form:

i
∂ψ̃

∂ t̃
=

[
−∇̃2 + Ṽ (r̃, t̃) + g̃|ψ̃ |2

]
ψ̃. (2)

The dimensionless coupling constant g̃ is given by g̃ = N/(nξ2) and simply equals
the dimensionless BEC area S/ξ2. The potential Ṽ = V /ng now measures the ratio
of the external potential V to the particle interaction strength (ng).

Our goal is to study the merging process of a disk condensate with a concentric ring
condensate. In our simulation, we set Ṽ = Ṽtrap+ Ṽw, where Ṽtrap represents the hard-
wall boxpotentialwith an axial symmetry that traps the condensates and Ṽw denotes the
concentric potential barrier that separates the disk and the ring condensates, as shown
in Fig. 1a. The potential trap Ṽtrap has a radius of 25ξ . This size is within the range of
typical condensate sizes in real experiments (i.e., about 10ξ −102ξ [8,15,21,22]). The
potential barrier Ṽw has a square profile with a width of 5ξ and is located at a position
such that the inner disk condensate is confined to have a radius of 10ξ . Note that in real
experiments, the height of the potential V for trapping or separating the condensates
depends on the frequency and the power flux of the laser beams, and the product ng
depends on the particle species and the particle number density. Using the parameters
reported in the literature, we find that the typical values for the dimensionless potential
Ṽ are in the range of 1–102 [8,15,21–24]. In our simulation, we vary the height of Ṽw

from 1 to 10 in order to examine the barrier height effect on the condensate merging
dynamics.

Our simulation is carried out in a region r̃ ∈ [−25, 25] × [−25, 25] with a mesh
grid of 500 × 500 nodes to ensure spatial convergence. The dimensionless time step
δt is chosen to be 1.0× 10−4. To prepare the steady initial state, we first evolve Eq. 2
in imaginary time [25]. Figure 1b shows an example of a typical initial condensate
density profile when there is no rotation in the disk and the ring condensates. We can
also set the condensates into rotation by either introducing a quantized vortex point at
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Fig. 1 a Schematic of the potential Ṽ (r̃, t̃) used in our GPE simulation. b The initial density profile of the
condensates when there is no rotation in the disk and the ring condensates (Color figure online)

the center of the disk condensate or prescribing a phase gradient in the ring condensate
such that the ring condensate carries a supercurrent. The circulation associatedwith the
supercurrent can be any integer m multiplied by the quantum circulation κ = h/M . At
time t̃ = 0, we then suddenly remove the energy barrier Ṽw and let the two condensates
merge. The dynamical evolution of the condensate wavefunction during merging can
be obtained by numerically integrating Eq. 2 using an alternating direction implicit
method [26].

We would like to emphasize that the condensate configurations adopted in our
simulation can be easily realized in BEC experiments. For instance, Corman et al. [15]
and Eckel et al. [27] utilized the interference patterns of a ring condensate and a disk
condensate during free expansion to study theKibble–Zurekmechanismand superfluid
weak links. Their setup can be adapted to examine the results of our simulation.

3 Merging of Concentric 2D Condensates

3.1 Effect of Potential Barrier Height

We first study the effect of the potential barrier height Ṽw on the condensate merging
dynamics. Figure 2 shows representative snapshots of the dynamical evolution of the
dimensionless condensate density ρ̃ = |ψ̃ |2, following the removal of the potential
barrier Ṽw for the case where initially the inner disk condensate is static and the outer
ring condensate carries a supercurrent with a circulation of κ . Figure 2a is for Ṽw = 1,
and Fig. 2b is for Ṽw = 10. Similar to what we have reported [19], a spiral stripe
with depleted condensate density emerges in both cases. Across this stripe, there is an
abrupt phase step �φ. This stripe is a dark soliton that is similar in nature to the ring
dark solitons identified in the expansion of 2D disk and annular condensates [10–12].
It is known that a soliton stripe can drift in the condensate with a velocity vs that is
controlled by the phase step �φ as vs = v0 · cos(�φ/2), where v0 = (gρ/M)1/2

is the Bogoliubov speed of sound [28]. For a “black” soliton with complete density
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Fig. 2 Schematic of the potential Ṽ and representative snapshots showing the time evolution of the BEC
density ρ̃ for a Ṽw = 1 and b Ṽw = 10. The initial state is a static inner disk condensate with a rotating
outer ring condensate carrying a circulation of κ (Color figure online)

depletion (i.e., ρ̃ = 0 at the center), �φ = π and the soliton has zero velocity with
a thickness on the order of ξ . When �φ decreases, the soliton becomes shallower
and wider, and its speed increases. Comparing the soliton profiles in the snapshots for
Ṽw = 1 and Ṽw = 10, one can see that in both cases the spiral soliton develops a
sharp inner endpoint that spirals toward the condensate center. But the length of the
soliton stripe for Ṽw = 10 is obviously longer than that for Ṽw = 1. This result is
probably natural since in the Ṽw = 10 case the initial condensate density at t̃ = 0
drops steeply in the potential barrier region. This large density gradient provides more
potential energy for the formation of the soliton after Ṽw is removed. As the sharp
inner end of the soliton stripe approaches the center, snake instability occurs when the
local curvature radius of the inner end becomes comparable to ξ [29–31], and a vortex
point is nucleated near the center.

We have also studied the merging dynamics for an initially static outer ring conden-
sate with a rotating inner disk condensate that has a single vortex point at the center.
The results are shown in Fig. 3 for both Ṽw = 1 and Ṽw = 10 cases. Again, a spiral
soliton emerges and the length of the soliton stripe appears to be longer for Ṽw = 10.
As the inner end of the soliton stripe approaches the center, the vortex point can merge
into the soliton stripe, which renders the condensate completely vortex-free [19], as
depicted in Fig. 3 (i.e., at t̃ = 7 for Ṽw = 1 case and at t̃ = 6 for Ṽw = 10 case). In
long time evolution, the solitons observed in all cases eventually decay into vortices
via snake instability.

3.2 Transfer of Angular Momentum and Rotation

To study the angular momentum transfer, we define a dimensionless angular momen-
tum density L̃ z as

L̃ z = ξ2

�N

(
ψ∗ L̂ zψ

)
= 1

i
ψ̃∗

(
x̃

∂

∂ ỹ
− ỹ

∂

∂ x̃

)
ψ̃. (3)
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Fig. 3 Schematic of the potential Ṽ and representative snapshots showing the time evolution of the BEC
density ρ̃ for a Ṽw = 1 and b Ṽw = 10. The initial state is a static outer ring condensate with a rotating
inner disk condensate having a single vortex point at the center (Color figure online)

As reported in our previous publication [19], the angularmomentum initially contained
in the rotating condensate can spread to the initially static condensate region along
the spiral channel formed by the soliton stripe. Figure 4a shows example snapshots
of the condensate density ρ̃, phase φ, and angular momentum density L̃ z for the
Ṽw = 1 case reported in Fig. 2a. The transfer of angular momentum can occur in
the absence of quantized vortices, while the total angular momentum is conserved.
A careful examination of the flow shown in Fig. 4a reveals something interesting.
The flow in the initially rotating condensate is counterclockwise and so cannot enter
the outward spiral channel formed by the soliton. Therefore, the rotational motion in
the initially static disk condensate must be induced by a different mechanism that is
effective even without quantized vortices.

This novel mechanism has been identified as due to the induced flow by the sharp
endpoint of the spiral soliton [19]. As illustrated in Fig. 4b, due to the phase step across
the boundary of the soliton, there exists a phase winding of �φ around the sharp inner
endpoint. This phase winding leads to a rotational motion in the condensate, making
the sharp endpoint effectively a “vortex point” that carries a fraction of a quantized
circulation given by (

�φ
2π )κ . We should emphasize that mathematically the circulation,

i.e., integral of the velocity along a closed contour around the endpoint, is still zero
due to the opposite phase velocity inside the soliton density depleted region. The flow
induced by the endpoint carries the condensate mass from the inner region to the
outer region guided by the spiral channel, which leads to a phase increment along the
soliton boundary. Consequently, this phase increment leads to a radial phase gradient
in the condensate that drives an inward mass flow. In the shallow tail part of the
soliton stripe, the condensate density in the soliton is not depleted and mass flow
from the outer region through the soliton boundary toward the inner region becomes
significant. A mass circulation that effectively mixes the condensates and transports
angular momentum is established.

To show that the inner endpoint does behave like a vortex point with a fractional
quantized circulation, we introduce a vortex charge parameter Z , defined as Z =
m
�
|r×v(r)| = m

�
rvθ , where vθ is the velocity along the azimuthal angle direction. For

the flow field induced by a vortex point at the center, Z is a constant and equals the
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Fig. 4 a Snapshots of the condensate density, phase, and angular momentum density L̃ z for the case shown
in Fig. 2a. b Schematics illustrating the underlyingmechanism for the mass and angular momentum transfer
(Color figure online)

winding number of the vortex. In Fig. 5, we show the calculated Z values along some
radial lines in the condensate when the inner endpoint of the spiral soliton is close to
the center. Near the endpoint, the Z values are about 0.4 for the Ṽw = 1 case and about
0.48 for the Ṽw = 10 case, which matches well with the measured phase step across
the soliton boundary near the endpoint (i.e.,�φ � 0.8π for Ṽw = 1 and�φ � 0.95π
for Ṽw = 10). In the tail region of the soliton where there are appreciable mass flows
across the soliton boundary from the outer region, Z starts to increase toward one, a
value expected for the flow in the initial ring condensate.

3.3 Merging of Condensates with Multiple Quantum Circulations

We have also examined the merging of a static inner disk condensate with a rotating
outer ring condensate that carries a uniform (i.e., axially symmetric) supercurrent with
multiple quantum circulations. Figure 6 shows typical snapshots of the time evolution
of ρ̃, φ, and L̃ z for the outer ring condensate having a circulation of 2κ (in Fig. 6a) and
5κ (in Fig. 6b) with Ṽw = 1. Interestingly, multiple spiral dark solitons are observed
in these cases. The number of soliton stripes match exactly the winding number of the
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Fig. 5 Calculated vortex charge
Z in the condensate along the
solid yellow lines that are shown
in the inset for a Ṽw = 1 and b
Ṽw = 10 (Color figure online)
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flow (i.e., number of quantum circulations) in the initial ring condensate. These spiral
solitons also develop sharp inner endpoints that induce rotationalmotion in the initially
static disk condensate, aiding the transfer of angular momentum in a similar way as
we have discussed in the previous section. As the local curvature radius near the inner
ends of the solitons keeps reducing, vortex points peel off from the soliton inner ends.
Note that when there are multiple soliton stripes and vortices in the condensate, the
flow field becomes very complex. Each soliton stripe can be strongly disturbed by the
flows induced by nearby solitons and vortices. Consequently, snake instability tends
to occur more easily and the inner ends of the solitons can break up into segments and
vortices (e.g., see Fig. 6a at t̃ = 12). In both cases presented in Fig. 6, the net vorticity
(i.e., counting all positive and negative vortices) in the condensate always matches the
number of quantum circulations in the initial outer ring condensate.

Further, we have tested cases where a static outer ring condensate merges with a
rotating inner disk condensate that has multiple vortex points in it. Similarly, spiral
solitons emerge from the condensate during merging. The number of soliton stripes
again match the number of vortices in the initial disk condensate. It appears that
the number of spiral soliton stripes created during condensate merging is controlled
by the relative winding number (or relative circulation) of the two condensates. We
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Fig. 6 Time evolution of the condensate density, phase, and angular momentum density L̃ z when the static
inner disk condensate merges with the rotating outer ring condensate that carries a circulation of a 2κ and
b 5κ . The potential barrier Ṽw = 1 (Color figure online)

shall discuss the underlying mechanism that is responsible for this interesting soliton
formation process in Sect. 4.

3.4 Merging of Condensates with Constant Phase Difference

The observations presented in the previous section suggest that the number of spiral
solitons is controlled by the relative winding number of the flows in the disk and the
ring condensates. It is therefore natural to ask what can happen if the two condensates
merge from an initial configuration that has no relative motion. One would expect that
no spiral soliton should emerge in this situation.We have examined two representative
cases as shown in Fig. 7. The first case (Fig. 7a) is for a static ring condensate merging
with a static disk condensate. The second case (Fig. 7b) is for a rotating ring condensate
that carries a circulation ofκ mergingwith a corotating disk condensate that has a single
quantizedvortex point at the center. In both cases, insteadof spiral solitons, ring-shaped
dark solitons are formed at the interface of the two condensates upon merging. These
ring dark solitons expand in radius, bounce back from the trap boundary, and shrink
toward the center of the condensate. They can undergo such expansion–shrinking
cycles many times. Despite the apparent differences in geometry, this observed soliton
dynamic is indeed very similar to the formation and propagation of planar solitons
observed in the merging of 3D condensates with constant phase difference [32]. At
long time evolution, fluctuations in the simulation build up such that snake instability
occurs. Eventually, the ring solitons in both cases break up into pairs of positive and
negative vortex points (e.g., see Fig. 7a at t̃ = 40 and Fig. 7b at t̃ = 32).
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Fig. 7 Snapshots showing the time evolution of the condensate density and phase during merging when
the initial phase difference between the ring and the disk condensates is constant across their interface. The
potential barrier Ṽw = 1. a is for the case where both condensates are initially static. b Is for the case where
the rotating ring condensate carries a circulation of κ merging with a corotating disk condensate that has a
single quantized vortex point at the center (Color figure online)

A notable difference between the ring solitons and the spiral solitons reported
in the previous sections is that the spiral solitons have sharp inner endpoints which
can induce rotational motion in the condensate like vortices. These sharp endpoints
make the angular momentum transfer between the two condensate regions possible.
When the two condensates are static or corotate without any relative motion, angular
momentum transfer between them is no longer necessary and the ring solitons remain
intact instead of breaking up to develop the spiral shape. We therefore emphasize that
although soliton formationuponmergingof condensates is awell-knownphenomenon,
the current simulation has confirmed an important point that it is the relative motion
between the condensates prior to merging that causes the solitons to break and develop
sharp endpoints. This novel soliton feature would not appear and be observed in early
simulation works that focused on merging of condensates with uniform phases and no
relative motion.

4 Discussion

The simulation results presented in the previous sections provide us some clues to
understand why the spiral solitons can form with the total number of soliton stripes
matching exactly the relative winding number of the two condensates. As an example,
let us consider the phase plot at t̃ = 0 for the case where the outer ring condensate
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Fig. 8 Schematics showing the underlyingmechanismonhowa soliton at the interface of the two condensate
domains breaks up and develops multiple spiral stripes (Color figure online)

carries a supercurrent with a circulation of 5κ , as shown in Fig. 8. The initial phase
of the inner disk condensate is constant (i.e., φ = 0), while the phase in the outer
ring condensate increases counterclockwise between the branch-cut lines. The phase
difference�φ across the interface between the two condensates therefore varies along
the interface. It is clear that there are five points (marked as red dots in the schematics)
across which the phase difference �φ changes sign. Note that in a condensate, a
soliton stripe travels opposite to the direction of the phase step �φ across the soliton
boundary at a speed given by vs = v0 · cos(�φ/2). Therefore, for a soliton stripe
forming at the interface between the ring and the disk condensates, the stripe on either
side of a red dot tends to move in opposite directions due to the change in sign of
the phase step. Consequently, the soliton stripe must break up at these locations. Note
that the breaking up of the soliton stripe occurs simultaneously with the formation of
the soliton. Therefore, one would not see the formation of a complete ring soliton and
then its breaking up into five pieces. Instead, one sees the gradual development of five
soliton stripes. These soliton stripes have two ends, with one end spiraling in and the
other end extending out.

In our simulation, we have observed that the merged condensate can carry angular
momentum in the axially symmetric potential trap even in the absence of quantized
vortices. This observation may appear a little counterintuitive at first sight. We would
like to make some brief comments to clarify the relevant concepts. Let us consider
the angular momentum carried by a ring element in the condensate, located between
r and r + dr , as shown schematically (i.e., the yellow ring area) in Fig. 9. The angular
momentum possessed by this ring area can be calculated as:

dLz =
∫

ρdldr
[
êz · (r × v)

] = rdr

[∮
ρdl · v

]
(4)
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Fig. 9 Schematic for evaluating
the angular momentum
contained in the merged
condensate in the axially
symmetric trap (Color figure
online)

dl

dr

r
v

If the condensate is highly incompressible (i.e., like for superfluid helium) with a
constant density ρ, the integral in the square brackets in Eq. 4 reduces to ρΓ , where
Γ is the circulation of the flow along the ring. Γ equals the quantum circulation κ

multiplied by the number of quantized vortices enclosed by the ring. Therefore, if
there are no vortices present in the condensate, the angular momentum contained in
the ring area in Fig. 9 should be zero. One can repeat this calculation for all concentric
rings in the axially symmetric condensate. As long as the density ρ is constant, the
condensate cannot carry angular momentum without quantized vortices in it.

However, for BECs or other superfluids that are highly compressible, the conden-
sate density ρ may evolve with time and can become spatially non-uniform. As a
consequence, the integral in Eq. 4 is not necessarily zero, even when the circulation
Γ is zero. Specifically, for the case that we are considering here, the major part of the
yellow ring carries a flow with a tangential velocity in the counterclockwise direction.
But due to the opposite phase gradient, the velocity of the yellow ring segment inside
the soliton region is clockwise. An integration of the velocity along the complete ring
therefore cancels when the circulation Γ = 0. However, when we evaluate the angular
momentum, the condensate density is nearly depleted in the soliton region but is finite
in the rest part of the ring. As a consequence, the integral in the square brackets in
Eq. 4 for evaluating angular momentum becomes finite.

5 Conclusion

We have conducted a systematic numerical study on the process of a disk condensate
merging with a concentric ring condensate. Our simulation results show that when
there exists relative motion between the two condensates, spiral solitons can emerge.
These solitons have sharp inner endpoints that can induce rotational motion in the
condensate like vortices but with effectively a fraction of a quantum circulation. The
length of the soliton stripe depends on the height of the potential barrier that initially
separates the BECs. These spiral solitons can facilitate the transfer of angular momen-
tum between the two condensate regions and allow the merged condensate to carry
angularmomentum even in the absence of quantized vortices. This angularmomentum
redistribution mechanism is general and should be applicable to condensates in 3D
as well. Our study also shows that the number of spiral solitons created during con-
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densate merging matches exactly with the initial relative winding number of the two
concentric condensates. The underlying mechanism for which the solitons can break
up at the condensate interface and the observed exact matching can be well explained
as due to the relative shear flows of the condensates at the interface. This important
understanding was developed through the studies described in Sect. 3C and D, which
has little overlap with our previous publications [19]. In a more general view, it is well
known in classical fluids that when there is velocity shear in a single fluid, or when
there is a velocity difference across the interface between two fluids, the so-called
Kelvin–Helmholtz (KH) instability can occur, which leads to the formation of peri-
odic vortical structures at the interface [33,34]. In superfluids, KH instability has been
observed at the interfaces between two superfluid components, such as at the inter-
face between superfluid 3He-A and superfluid 3He-B [35,36], and in two-component
BECs [37,38]. The mechanism that we have identified should be responsible for the
KH instability in a single component superfluid.We shall discuss the details in a future
publication.
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