
Rev. Sci. Instrum. 90, 121401 (2019); https://doi.org/10.1063/1.5123165 90, 121401

© 2019 Author(s).

Resonant ultrasound spectroscopy: The
essential toolbox 
Cite as: Rev. Sci. Instrum. 90, 121401 (2019); https://doi.org/10.1063/1.5123165
Submitted: 03 August 2019 . Accepted: 12 November 2019 . Published Online: 17 December 2019

Fedor F. Balakirev , Susan M. Ennaceur , Robert J. Migliori , Boris Maiorov , and Albert Migliori

COLLECTIONS

 This paper was selected as Featured

ARTICLES YOU MAY BE INTERESTED IN

An open-source high-frequency lock-in amplifier
Review of Scientific Instruments 90, 094701 (2019); https://doi.org/10.1063/1.5083797

Dual beam modulated magneto-optical measurement setup
Review of Scientific Instruments 90, 123001 (2019); https://doi.org/10.1063/1.5117304

Highly versatile laboratory X-ray scattering instrument enabling (nano-)material structure
analysis on multiple length scales by covering a scattering vector range of almost five
decades
Review of Scientific Instruments 90, 123103 (2019); https://doi.org/10.1063/1.5130061

https://images.scitation.org/redirect.spark?MID=176720&plid=1087099&setID=375687&channelID=0&CID=358626&banID=519863128&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=1d915e5fb657a2f896c5c88db90b05024e9aef73&location=
https://doi.org/10.1063/1.5123165
https://aip.scitation.org/topic/collections/featured?SeriesKey=rsi
https://doi.org/10.1063/1.5123165
https://aip.scitation.org/author/Balakirev%2C+Fedor+F
http://orcid.org/0000-0003-4887-5140
https://aip.scitation.org/author/Ennaceur%2C+Susan+M
http://orcid.org/0000-0003-3853-1301
https://aip.scitation.org/author/Migliori%2C+Robert+J
http://orcid.org/0000-0003-1473-3742
https://aip.scitation.org/author/Maiorov%2C+Boris
http://orcid.org/0000-0003-1885-0436
https://aip.scitation.org/author/Migliori%2C+Albert
http://orcid.org/0000-0001-8449-0876
https://aip.scitation.org/topic/collections/featured?SeriesKey=rsi
https://doi.org/10.1063/1.5123165
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5123165
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5123165&domain=aip.scitation.org&date_stamp=2019-12-17
https://aip.scitation.org/doi/10.1063/1.5083797
https://doi.org/10.1063/1.5083797
https://aip.scitation.org/doi/10.1063/1.5117304
https://doi.org/10.1063/1.5117304
https://aip.scitation.org/doi/10.1063/1.5130061
https://aip.scitation.org/doi/10.1063/1.5130061
https://aip.scitation.org/doi/10.1063/1.5130061
https://doi.org/10.1063/1.5130061


Review of
Scientific Instruments TUTORIAL scitation.org/journal/rsi

Resonant ultrasound spectroscopy: The essential
toolbox

Cite as: Rev. Sci. Instrum. 90, 121401 (2019); doi: 10.1063/1.5123165
Submitted: 3 August 2019 • Accepted: 12 November 2019 •
Published Online: 17 December 2019

Fedor F. Balakirev, Susan M. Ennaceur,a) Robert J. Migliori, Boris Maiorov, and Albert Migliorib)

AFFILIATIONS
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

a)Also at: Alamo Creek Engineering, Santa Fe, New Mexico 87506, USA.
b)Author to whom correspondence should be addressed: migliori@lanl.gov

ABSTRACT
Resonant Ultrasound Spectroscopy (RUS) is an ultrasound-based minimal-effort high-accuracy elastic modulus measurement technique.
RUS as described here uses the mechanical resonances (normal modes of vibration or just modes) of rectangular parallelepiped or cylindrical
specimens with a dimension of from a fraction of a millimeter to as large as will fit into the apparatus. Provided here is all that is needed so
that the reader can construct and use a state-of-the-art RUS system. Included are links to open-source circuit diagrams, links to download
Los Alamos National Laboratory open-source data acquisition software, links to request free analysis software, procedures for acquiring
measurements, considerations on building transducers, 3-D printed stage designs, and a full mathematical explanation of how the analysis
software extracts elastic moduli from resonances.
© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5123165., s

I. INTRODUCTION TO RUS AND ITS APPLICATIONS
IN SCIENCE AND ENGINEERING

Resonant ultrasound spectroscopy (RUS) is a process whereby
one measures the mechanical resonances or normal modes of a solid
object and uses them to compute all the components of the elastic
modulus tensor. The mechanical resonances of a solid object are
uniquely determined by its shape, elastic moduli, symmetry, and
density. One can reasonably expect that the correspondence between
measured resonances and those computed is of the order of 1 part
in 104. The difference between computed and measured is caused
by deviations in shape, homogeneity, and symmetry direction from
those assumed in the computation. The computation of moduli from
resonances is complicated—the two computational approaches are
finite-element based and Lagrangian minimization based. We focus
here only on cylindrical or rectangular parallelepiped (RPR) speci-
mens with symmetry of orthorhombic or higher and with symmetry
axes aligned with the geometric axes of the specimen. There are
two reasons for this. One is that it is easiest to make, measure the
dimensions of, and align the symmetry axes with those of the spec-
imen for cylinders or rectangular parallelepiped resonators (RPRs).
The other is that the computation of moduli from resonances can
be achieved without the need for a finite-element code by using

Lagrangian minimization codes which are available free and are very
fast.

To whet your appetite, we show a bit (10 out of 30 measured
resonances) of the final fit of computed to measured frequencies and
a RUS scan of a cylinder of polycrystalline gadolinium (Fig. 1) using
the hardware, data acquisition codes, and analysis codes described
here. We will explain all the features later (Fig. 2).

We describe here in sufficient detail the most common
approach to acquiring resonances and computing moduli from them
so that the reader can implement RUS on RPRs and cylinders with
no other information required but from this article.

RUS can also be exceptionally effective by observing the change
in resonance frequency of a single mode vs temperature. Because
the (adiabatic) elastic moduli are second derivatives of the internal
energy with respect to the strains, phase transitions always leave a
signature (or “feature”) in the moduli vs temperature. For exam-
ple, even in a second order phase transition (e.g., superconduc-
tivity), the bulk modulus is step discontinuous, while the shear
moduli exhibit a break in slope. Thus, a plot of resonance fre-
quency vs temperature can be used to map a phase boundary.
Figure 3 shows such a plot for the ferromagnetic phase transition
in the Gd specimen used for the example in Fig. 3. A clear break
in slope at about 292 K is apparent as are differing temperature
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FIG. 1. An RUS scan of a Gd cylinder. The crosses show the peaks detected by the data acquisition code.

dependencies between the high temperature paramagnetic state and
the low temperature ferromagnetic state. This particular mode has
components 23% compressional and 77% shear as seen in line 2
of the fit shown above/under the d ln f/d ln c11 and d ln f/d ln c44
columns which are the fractional dependencies of the frequency vs
elastic moduli.

Because the lowest RUS mode is often pure shear in an isotropic
specimen, one can measure several resonances, assume that the

lowest mode is shear, and then subtract its normalized temperature
dependence from that of another mode. If that second mode is not
pure shear, the remainder will be the temperature dependence of the
bulk modulus.

We note that there are three primary stumbling blocks to suc-
cess in a RUS measurement. They are inaccurate sample geometry
(including crystallographic alignment), high dissipation, and miss-
ing modes. Accurate geometry is under the control of the user in

FIG. 2. Actual code output of modulus fit to scan in Fig. 1.
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FIG. 3. An RUS scan of the temperature dependence of a mode of polycrys-
talline Gd. The ferromagnetic phase transition is clearly detected as a break in
slope.

the preparation of a cylinder or RPR, dissipation is controlled by
the material, but missing modes, that is, modes that for whatever
reason go undetected, feed a frequency set to the analysis code
that cannot correspond to any real object. This last is one where
we have taken great pains to maximize the dynamic range of the
electronics so that weak resonances can be extracted in the pres-
ence of strong ones and made provisions in the analysis codes
to indicate a missed mode. This last provision takes some prac-
tice to use. We will describe how best to deal with missing modes
below.

II. REQUIREMENTS OF THE SPECIMEN
TO BE MEASURED

It is necessary that the specimen be homogeneous. Internal
flaws such as voids or cracks, surfaces different from the interior,
variations in composition, and variations in texture are examples of
inhomogeneities. The specimen does not need to be isotropic. In
fact, one of the great strengths of RUS is the ability to determine
anisotropic elastic moduli in a single measurement. It is also nec-
essary that the elastic moduli be well defined. Moduli are not well
defined if dissipation is high, for example. Practically, this constrains
the quality factor Q to be above several hundred. Q is defined to be
the energy stored on resonance divided by 2π times energy lost per
cycle. It is computed from the resonance frequency divided by the
full width at half maximum of the resonance power. If the data are
the response voltage from a transducer, then the resonance power
is proportional to the square of the response voltage. Thus, Q is
equivalently the full width of the in-phase component of the volt-
age peak at points

√
2 of the maximum. A steel cylinder of about

∅ 6 mm by 5 mm long has a Q of about 2 × 104 for its lowest 30
modes.

The symmetry of the specimen is important. For exam-
ple, an isotropic solid has no symmetry axis, but for the other
symmetries handled by our Lagrangian minimization code (cubic,
hexagonal, tetragonal, orthorhombic, and for textured material,
fiber texture), the symmetry axes must be aligned with the sample

geometry. Errors in symmetry direction introduce cosine errors in
the result. That is, small errors will have less than proportional
effects on results.

There are two types of well-defined elastic moduli. They are adi-
abatic and isothermal. At low frequencies, the thermal penetration
depth is less than an ultrasonic wavelength. Thus, heat cannot propa-
gate from a compressional peak to trough in one period of the excita-
tion and the wave propagates adiabatically. At very high frequencies,
the thermal penetration depth is much greater than the wavelength,
and so, heat transfers across an ultrasonic wavelength in times much
less than the period and so the wave propagates isothermally. At zero
frequency (mechanical testing), moduli are also isothermal. There
can be a crossover between adiabatic and isothermal. In that fre-
quency region, dissipation is high. RUS as described here measures
adiabatic moduli.

III. HARDWARE
A. Less frequently used methods of acquiring
resonances

For a resonating solid, the frequency at which a Lorentzian
resonance is in phase with the drive, the maximum amplitude
of vibration, and the frequency measured during ring-down of
an impulse excited measurement all differ by of order 1/Q2. The
classes of excitation used for RUS fall into three general cate-
gories. They are swept-sine (that we will describe here), impulse,
and broadband noise excitation. Laser heating, electromagnetic
coupling, tiny hammers, and electronically generated white noise
have all been used, but we will not discuss such excitation
methods.

Methods of detecting and recording resonances also vary.
They include commercial so-called lock-in amplifiers, various
heterodyne-based systems, and precision rectifier based systems and
more. Some systems acquire only the amplitude of the resonance
signal. This is a substantial disadvantage when attempting to find
and analyze overlapping or weak resonances. By recording the in-
phase and quadrature signals from the transducers, no information
is lost, providing unambiguous input to software routines that fit
Lorentzians to the acquired data. In implementing a full phase-
sensitive RUS system, there are substantial advantages to an all-
digital detection and recording scheme1 and that is what we describe
here.

B. The Los Alamos piezoelectric-transducer-based
RUS system hardware overview

We describe the transducers and a simple stage for them,
the conditioning electronics, and the microcomputer-based digi-
tizing and signal processing. Features include a successful trans-
ducer design suitable from cryogenic temperatures to about 370 K,
a preamplifier design that is immune to cable length effects, a drive
amplifier that provides a robust 24 V peak-to-peak transducer drive,
and the microcomputer-based high-speed digitizer, its signal pro-
cessing, and conditioning. In Secs. V A and V B, we describe the
data acquisition software and the analysis codes that compute elas-
tic moduli from resonances. The circuit designs, data acquisition
software, and analysis codes are all available upon request as open
source.
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1. Piezoelectric transducer construction
There are several design considerations. One is that the elec-

tronics must detect vibrations of an object making essentially point
contact to the transducers with very little force applied. Weak con-
tact between transducers and the sample ensures that the sample is
as close to a free-body resonator as possible, a requirement for the
analysis codes to provide accurate results. However, weak contact
requires sensitive electronics. A consequence is that it is essential
that there be no electrical contact between the sample and trans-
ducer electrodes, else with a conducting sample, the drive signal
can leak, via ground return voltages generated in the shield cable
resistance, into the detect signal path. The alumina cup we dis-
cuss below ensures electrical isolation. It is also important that
the transducers do not generate much in the way of their own
resonances. It is impractical to make transducers with no reso-
nances at all. Note also that any technique for damping the intrin-
sic resonances of the transducer also generates Johnson noise just
like a resistor in an electrically resonant circuit. Finally, we note
that application of a voltage to the transducer element generates
a stress. The resulting strain depends on the mass and moduli of
the transducer material, and the frequency. The higher the fre-
quency, the greater the inertial effects, and the smaller the result-
ing strain, and it is the strain that drives the specimen resonances.
The transducers described here do have resonances, but they are
weak and broad, hence easily separated from those of the sample.
We show the electrical response of the transducers described here
in Fig. 4.

2. Construction details
Note that although we use “piezoelectric” to describe the

transducers, in fact those described here are not piezoelectrics but
are lead-zirconate-titanate ferroelectrics, used because they have
higher dielectric constants and stronger response and are cheaper
than piezoelectric crystals. There are three steps to assemble the

FIG. 4. The complex electrical impedance of a transducer of the type described
here. Trace 1 is the noisier trace.

FIG. 5. The transducers for drive and detect are identical. They have four compo-
nents: an SMA female barrel (left), an aluminum tube 8 mm ∅ with 1/4-36 female
threads at one end and a counterbore to fit the alumina cup at the other, a∅ 5 mm
piezoelectric transducer3 with any of several types of wrap-around electrodes, and
an alumina cup that is 7.2 mm ∅, 6 mm bore, 5 mm long, 4 mm deep.

transducer (Fig. 5). Each step requires a 24 h cure at 50 C. All use a
marine-grade very-slow-cure epoxy.2 The first is to epoxy the trans-
ducer element3 to the inside of the alumina cup.4 Very little epoxy is
needed and light pressure (a wood closepin and 6 mm airsoft plas-
tic BBs work fine). Let cure. Then, 36 AWG (American wire gauge)
thermally strippable 3.5-cm-long Cu magnet wire is soldered to the
two transducer electrodes with ordinary electrical solder. Identify
the lead attached to the transducer face in contact with the cup as this
will be the ground electrode. Next, fill the cup to about 3/4 full with
epoxy and slowly dribble in 200 grit alumina until the epoxy surface
is reached. This takes some patience. The alumina controls ther-
mal expansion stresses for cryogenic use. Let cure. Insert the trans-
ducer leads through the tube and solder to the SMA (SubMiniature
version A) female barrel, taking care not to get solder on the threads
and to connect transducer ground to the SMA barrel shell. Screw
the barrel into the tube, leaving the transducer assembly loose. Pour
some epoxy into the tube. Do not fill more than half way as then
air pressure will build when the transducer assembly is inserted. Be
sure to get some epoxy on the female threads of the aluminum tube.
Insert the transducer assembly into the tube. Apply some weight
to the assembly to keep it from pushing the cup out as it cures.
Check that there is no electrical short across the SMA connector.
Let cure. For a rough test, connect the transducer via a 30 cm SMA
cable to the input of an oscilloscope. The cable capacitance loads the
transducer output, so longer cables will yield smaller peaks in this
test. For a good transducer, tapping the alumina wear face with the
handle of a metal tweezers should give single pulses of about 5 V
or more.

FIG. 6. This 3D printed stage requires some final assembly. Use a #20 drill for the
arm and #19 drill for the base; drill and tap arm and base for 1/4-20 NC threads;
drill out transducer holes with a P drill. Use 10–32 set screws to center the arm
pivot on the base. Use a 4 mm ∅ steel dowel pin for the pivot. Use nylon 1/4-20
NC screws to hold transducers in place.
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FIG. 7. Shown is a very weak specimen resonance in the presence of the acoustic background associated with transmission through air and the weak remnants of the
transducer resonances. The specimen resonance at 222.5 kHz is easily distinguished from background. The ratio of largest to smallest specimen resonance that can be
assigned reliably is about 105.

C. 3D-print design for room temperature stage
A simple stage for bench-top measurements is shown in

Fig. 6. This is 3D printed from ABS with a 20% fill. The
design and material result in an acoustically dead stage, reduc-
ing direct acoustic transmission from one transducer to the other
(Fig. 7). The STL files for 3D printing can be obtained free from
Ref. 4.

IV. ELECTRONICS
A. Overview of strategy for acquisition

The resonances of the solid objects usefully measured using
RUS are approximately Lorentzian in shape. The approximation
is better for higher-Q materials.5 For a Q greater than about
100, the approximation is good enough that a Lorentzian fit is
within the noise. The electronics described here acquires resonances
with the maximum possible speed, independent of cable length for
cables less than about 2 m, and delivers the information via an Eth-
ernet port to a computer running MicrosoftTM Windows 10. The

maximum possible speed is determined by the width in frequency
of the resonance. For example, an f = 1 MHz resonance w = 100 Hz
wide (Q is 10 000) takes about 1/w = 10 ms (Q/f ) for the reso-
nance to respond. Thus, the total time spent sweeping frequency
through the resonance must be much longer than 1/w. The time
to sweep through the resonance is determined in the data acqui-
sition software by the spacing between frequency steps (frequency
is scanned in discrete steps by the system described here) and the
duration of each step. The dynamic range from noise floor to max-
imum signal for the electronics described here with no transducers
connected is of order 106. There are three components of the elec-
tronics. A preamplifier (1) buffers the signal from one transducer
to input 1 of the Red Pitaya microcomputer 14-bit A/D converter
(2). Output 1 of the microcomputer drives a boost amplifier (3)
to produce up to 24 V P-P transducer drive. The microcomputer
has a Field Programmable Gate Array (FPGA) programmed specif-
ically for this application by Los Alamos; its image is freely dis-
tributed.6 The microcomputer firmware uses sophisticated signal
processing to reduce noise in ways not possible with any purely
analog design.
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B. Charge amplifier
One challenge in using PZT transducers is that they have

an output impedance that is nearly purely capacitive (the ones
described here of order 30 pF, Fig. 4). At 500 kHz, the impedance
is about 10 kΩ. For a 1 mV resonance, this produces about 100 nA.
Thus, it is not the voltage noise of the first bit of electronics that
the receive transducer signal encounters but the current noise. This
forces the use of CMOS op-amps in the first stage. Another chal-
lenge is to maintain gain over a very broad frequency range. Los
Alamos makes the schematic and printed circuit board (PCB) layout
for the solution to these problems available.6 The PC design soft-
ware used is freely available7 from Sunstone CircuitsTM. The pream-
plifier is powered via a micro-USB (universal serial bus) standard
cable with current draw low enough that any USB port will power
it.

The design is most easily understood if we distill the circuit dia-
gram into the most basic of its functions, as in Fig. 8. Noting that
op-amps have extremely high differential gain, the negative feedback
from C keeps the - terminal at the same voltage as the + terminal
which is fixed at a level defined by the setting of Rtrim. Op-amps also
have very high input impedance, so no current flows into the + or
− terminal. Thus, (ignoring noise) any current into - generated by
the transducer Ct is extracted by the current into C. The result is
that the output voltage is −C/Ct times the transducer open-circuit
voltage. That is, the gain is independent of frequency and the out-
put of the transducer is held at a fixed voltage. Thus, the transducer
short-circuit current is what is amplified. In addition to frequency-
independent gain, because the transducer output is held at fixed
voltage by the op-amp, the voltage between the center conductor
and the shield of the coax is unchanging. Therefore, no current flows
into the cable capacitance, and so, the system has gain independent
of both frequency and cable length. However, op-amps produce tiny
amounts of current and voltage even when there is no differential
input voltage. The result is that C is quickly charged to the power
supply voltage and the preamplifier quits working. The fix is to add

FIG. 8. Distilled schematic of the transducer preamplifier. It is powered by a single
supply. The transducer has capacitance Ct = 30 pF, R is 2 MΩ, and C is described
in the text as are the DC trim Rtrim and op-amp (triangle). The output capacitor
is any large value such as 2 μF to block DC. The transducer is connected to the
preamplifier with coaxial cable (coax) with a grounded shield.

R to prevent saturation. However, now the output before the final
capacitor is some random DC voltage. Adjusting Rtrim makes the DC
go to half (1.65 V) the supply voltage (3.3 V from the onboard reg-
ulator, not shown) for maximum possible peak-to-peak output. As
long as frequencies are well above 1/RC (about 17 kHz), the circuit
works as described. Below this, the gain is frequency dependent, but
worse, the Johnson noise of R (about 200 nV/

√
Hz) or about 200 μV

at 1 MHz bandwidth is no longer shunted out by C. In the actual Los
Alamos implementation,6 there are several features including an on-
board voltage regulator to block noise from the USB power source,
a second gain stage, and other details. The op-amp is chosen for low
current noise at the expense of voltage noise because it is current
noise into C that dominates. Useful gain ranges from about 30 kHz
to 4 MHz for the design freely available.

C. Boost amplifier
The boost amplifier6 is a very simple op-amp-based invert-

ing amplifier with gain adjustable using the onboard potentiome-
ter. It is powered via a micro-USB standard cable with current
draw low enough that any USB port will power it. To obtain the
24 V peak-to-peak output, an on-board DC-DC converter pro-
vides ±15 V to the bipolar op-amp. The op-amp is chosen to pro-
vide sufficient drive to 2 m coaxial cables. It can produce full out-
put more or less from a few kilohertz to 4 MHz. However, above
about 6 MHz, the current required to drive 2M of coax is such
that the op-amp gets quite warm. Heating is lower with shorter
cables. Thus, a stick-on heat sink on the op-amp is used. The setup
of the circuit board is done by setting the microcomputer to scan
between 100 kHz and 110 kHz using the RUS data acquisition
software set to 1 V amplitude, and adjusting the gain until maxi-
mum output without clipping is observed. This will be about 24 V
peak-to-peak.

V. HOW TO MAKE A MEASUREMENT USING LANL
OPEN-SOURCE DATA ACQ SOFTWARE

The advent of digital signal processing (DSP) technologies, and
Field Programmable Gate Arrays (FPGAs), in particular, opened
many avenues for improvement in megahertz signal generation
and detection, such as flexible configuration, high precision, com-
pact implementation, low cost, and noise reduction and filtering
strategies impossible with purely analog systems. Because resonant
ultrasound spectroscopy can be applied to very small specimens
(millimeter-sized specimens of diamond have useful modes above 8
MHz), Digital-to-Analog (DAC) and Analog-to-Digital (ADC) con-
verters with sampling rates above 100 MSPS are required to provide
the bandwidth necessary for direct digitization of RUS signals. The
RUS data acquisition process for the system described here is imple-
mented in a multiplatform approach (Fig. 9). A low-noise FPGA-
based Red Pitaya-based detector system8 is programmed both to
generate high frequency excitation and to record the response using
direct high-speed digitization. The detector system architecture is
derived from Red Pitaya Notes open source code made available by
Pavel Demin.9 The Resonance Spectrometer PC-client user inter-
face, available for free download from Los Alamos National Lab-
oratory (LANL),6 is implemented as a stand-alone Windows 10TM

executable designed using National Instruments LabVIEWTM on the
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FIG. 9. Block diagram of the Red-Pitaya FPGA-based resonance detector. A com-
puter readies the FPGA to output a sequence of user-defined frequencies which
are synthesized using the Red Pitaya DAC. The voltage response is simultane-
ously detected by the Red-Pitaya FPGA code via ADC and transmitted to the
computer.

personal computer (PC). The user interface application communi-
cates with the detector over an Ethernet connection.

The Red Pitaya DAC is programmed to sweep a 125 MSPS
sinusoidal excitation. Sweep parameters, including start frequency,
end frequency, step duration, and frequency step, can be set by the
user in the “spectrum recorder” module of the data acquisition code.
Simultaneously, the Red Pitaya ADC records the voltage of the trans-
ducer preamp output synchronously with the sine wave excitation
generated by the Red Pitaya DAC. A secondary bandwidth and noise
reduction occurs here because the preamp is bandwidth limited to
about 10 MHz. The recorded waveform, is a set of numbers the result
of 125 MSPS digitization. Each number is multiplied by the com-
plex exponential function eiωt in the software-implemented mixer (a
mixer multiplies instantaneously two AC signals). The result of the
multiplication is then averaged for a time set by the step duration
and decimated to obtain in-phase and quadrature signal compo-
nents referenced to the original excitation waveform. The value for
t is taken to be the mean time over which each digitization occurs.
This is the primary bandwidth-limiting noise reduction process. It is
purely digital and has no analog. It is far superior to the time con-
stant of a lock-in amplifier while being faster settling, more stable,

and with fewer artifacts. It is these results that are delivered to the
PC. Frequency is then advanced to the next step, and the process is
repeated. This front-end stage of the RUS DSP is implemented in
the Red Pitaya FPGA fabric, which makes it possible to synthesize,
detect, and process complex waveforms in real time at the native data
converter rate of 125 MSPS (Fig. 10) while delivering only what is
needed to the PC, greatly reducing bandwidth requirement of the
Ethernet interface.

The in-phase and quadrature (decimated) data points together
with the mean excitation frequency at each reported data point
are streamed to the PC client, which delivers it to the frequency
spectrum file. On completion of each frequency sweep, the spec-
trum file is analyzed by the “resonance detector” module of the
PC client software. The resonance detector can be configured
to find the approximate position of the resonance peaks (“peak
detector” function) or, alternatively, look for peaks at last known
locations (“follow peaks” function). The resonance detector then
attempts to fit individual and overlapping resonances to a com-
plex Lorentzian. The results of the fit for each resonance, such
as its center frequency, width, amplitude, and relative phase, are
recorded in the spectrum file as well as a measurement log file.
Additional and optional complementary measurements, e.g., tem-
perature and magnetic field, can be recorded with the resonance
data.

To reduce measurement time and improve throughput, the fre-
quency sweep can be configured to focus on the narrow frequency
bands of interest around known resonances. This is accomplished
by coarse frequency steps through regions known to contain no
resonances and fine steps through regions with resonances. The
software can adjust the positions of the focus bands after each fre-
quency sweep to follow the detected center frequency of each reso-
nance. This feature is particularly useful in determining temperature
dependence or the presence of phase transitions. There are many
other features of the PC client that are documented on the LANL6

GITHUB site.

FIG. 10. Block diagram of the detector programmable logic generated in the Vivado10 Design Suite. The excitation waveform is synthesized by a direct digital synthesizer and
streamed out via the DAC. The ADC records the response signal, which is then mixed with the excitation waveform, decimated, and filtered to detect in-phase and quadrature
signal components. The controller module configures the logic and transmits the results.
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A. Acquisition of resonances and finding missing
modes

A manual for use of the Los Alamos data acquisition code, as
well as the code itself, is regularly updated.6 In the manual are rea-
sonably detailed instructions for use of many features. We present
here overall strategic guidance on what is important for acquiring
the data needed by the analysis codes, described in Sec. VI B. Begin
by ensuring that the RUS system is connected. Using the Windows
10 command prompt and pinging the IP address (192.168.1.100) of
the spectrometer will test the Ethernet connection. Open the Reso-
nance Spectrometer executable and click start. A scan should begin
that, with no sample in place, will be random responses as sound
is conducted through air and direct transducer-transducer contact
(functional test would measure the resonance spectrum of a standard
material such as a hardened and ground steel cylinder). Position
the specimen of material to be measured between the transducers
taking no care in its placement at this point. Steel has a quality fac-
tor Q of about 2 × 104 for its lowest 30 modes and will produce
resonance peaks that can be clearly identified and fit to determine
how the system is operating. For either a test object or an actual
specimen, it is useful to generate a customized configuration file
with start and end frequencies, coarse and fine frequency steps, and
drive amplitude. The best way to get the start and stop frequencies
is to run a single pass of the analysis codes with specimen dimen-
sions, mass, and a guess at elastic moduli so that approximate values
are found. Using the main window, “write” the resulting configu-
ration to save it. Note that as the data acquisition code is updated,
older configuration files may be invalid. It is extremely important
to ensure that the frequency range covered contains the lowest fre-
quency as this is often a pure shear mode which both anchors the
data set and is the required input for the autoguess feature, if used,
of the analysis codes. Take a scan and then adjust drive amplitude so
that no peaks are above 0.9 V to prevent distortion. Reduce drive as
needed.

With the system set up for the specimen to be measured, note
that the resonance amplitude is dependent on specimen placement
on the transducers. Near the transducer center, drive is perpen-
dicular, and near the edge, it is parallel to the transducer surface.
Each mode has a different combination of parallel and perpendicular
motion. Removing and replacing the specimen differently will make
modes increase or decrease in amplitude, sometimes by very large
amounts, and is the primary method for finding (missing) modes.
Start by positioning the specimen with the minimum of material
touching the transducers, for example, at the corners of a cube or
the edges of a cylinder. This provides a close approximation to a
free resonator, required by the analysis codes. Rotate the specimen
to produce the most well-identified resonances as can be readily
achieved. The specimen can also be positioned with a flat face or side
of a cylinder on the transducer face with a negligible effect on accu-
racy while often exposing missing modes while suppressing others.
Note that peaks can overlap, for example, from symmetry-required
doublets or they may be hidden under a larger peak. The transduc-
ers will talk to each other through air and the mounts, so the user
should be aware that some broad small peaks may not be relevant
to the specimen measurement. However, the user should note that
it is not necessary to determine all the modes to achieve a good
result.

On completion of the scan, the “Resonance Detector” window
displays peaks found and fit. The peak detector is a full Lorentzian-fit
complex peak finder with the equation shown at lower left in Fig. 1.
The relative threshold determines the sensitivity of the peak detec-
tor. If this is set too low, multiple hits will occur on the same peak
and noise will be detected as peaks. Set so that no spurious peaks
are found (Fig. 11) and later manually locate missing peaks (Fig. 12)
using the magnifier and cursor tools or a built-in local fitting process
described in the manual. The signal-to-noise ratio for the 500 μV
peak is so high that it is easy to see that 10 μV peaks are detectable.
Note that the “Smooth” window must be set less than the width of
the peaks. The peak widths are given in the second column from
right, lower left table in Fig. 1.

Once only actual resonances are identified, open the “Format
Resonances” window from the main window and click on the folder
icon on the input file top bar and navigate to C:/Data/month/date
to find the stored scans that were just made. Reprocess the date-
stamped spXXXX.tdms file to generate a rusin.dat file for use with
the analysis codes in the directory C:/Data/month/date. Open the
rusin.dat file (in Notepad) and now manually enter any peaks not
found by the peak finder (Fig. 12).

Choose either the RPR or cylinder codes from the analysis
directory. Files for cylinders are identified with cyl, and those for
rectangle parallelepipeds are identified with rpr. Copy and paste the
frequency list from the rusin.dat file into the appropriate ∗∗∗in.dat
file where ∗∗∗ is either cyl or rpr. Enter the number of moduli to
fit (2,3,5,6,9 for isotropic, cubic, hexagonal, tetragonal, orthorhom-
bic), order of polynomials to approximate the mode shapes (12 for
cyl and 14 for RPR are usually adequate, although shapes with aspect
rations far from unity will require higher order polynomials), num-
ber of modes to compute, mass of sample, convergence parameter
(set it to 1; we do not document this feature), number of itera-
tions, number of modes to include in fit, guess for Poisson’s ratio
if autoguess is to be used, moduli guesses, and sample dimensions.
Detailed instructions for the analysis codes are included in the code
download. Save and close the ∗∗∗in.dat file. Double click on the
appropriate ∗∗∗∗.exe file and enter the desired number of iterations
to start the fit, the result of which will be output in the ∗∗∗out.dat
file. The number of iterations should be entered as 2 if a nonzero
value for Poisson’s ratio was entered in the ∗∗∗in.dat file, activat-
ing the autoguess feature, but if no guess (0.0) was entered, then 1
iteration will simply compute mode frequencies based on the ini-
tial values. This first fit pass will generate a list of calculated res-
onances that are compared by the user line by line to the list of
measured resonances. A percentage error between measured and
calculated resonances is generated for each resonance line entry.
This is a measure of the mismatch between the calculated and mea-
sured frequencies. Large values will indicate where missing modes
have occurred.

The user should reposition the sample and rescan over the fre-
quency range where the modes were missed if desired. Very often
these are a component of a doublet, where one component may
be weak and hidden in the tail of the stronger component. Miss-
ing modes can be found using the procedure of Sec. V B. Run the
codes again with a greater number of iterations to allow convergence
to a minimum. The ∗∗∗out.dat file will give the calculated values
for the specimen’s bulk modulus, shear modulus, Young’s modulus,
and Poisson’s ratio as well as compressional and shear wave speeds.
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FIG. 11. A 1 V resonance fit for the same scan as the 500 μV resonance of Fig. 12. The peak detector threshold captured this one.

FIG. 12. A 500 μV resonance fit for the same scan as the 1 V resonance of Fig. 11. The peak detector threshold was set too high to capture this one. Using a code option,
the approximate location was entered, forcing the Lorentzian peak fit routine to fit this one.
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The quality of the fit and thus the confidence in the elastic moduli
values are not assessed by the size of the rms error. The actual error
determination is discussed below. The rms error is more a measure
of accurate geometry, symmetry, and homogeneity.

B. Using the open source cylinder and rectangular
parallelepiped analysis codes to find missing modes
and obtain moduli

There are two codes for analysis of RUS measurements. One
is for cylinders and the other is for RPRs. Both4 are freely available
upon request in the executable form to run on Windows 10TM. There
are several points to keep in mind when using these codes.

The most important is to be sure that the set of input frequen-
cies is complete. It is very common for the acquisition code to miss
resonances. This is because the combination of transducer surface
motion and the specimen node pattern can combine to produce
weak or absent response at the transducer or because two reso-
nances are degenerate or so close to each other that they cannot be
separated. Note that multiple detect transducers connected to the
same input only make things worse. This is because there are many
more places where one transducer can cancel the other than there
are nodes. The electronics has a very large dynamic range so that
it is possible in a single scan to record resonances whose ampli-
tude ranges from so large that the microcomputer A/D saturates
(about 1 V) to submillivolt signals. The phase sensitive electronics
provides the best possible information to the data acquisition fitting

algorithms to minimize near-overlap misses, but modes still can be
missed. If a mode is missed and not accounted for in the input file,
then a nonphysical set is fed to the analysis codes. That is, the set of
resonances does not correspond to any possible set of elastic mod-
uli. To fix this, the code input files have provision to enter a “zero”
as a missing mode placeholder. In the section of the input file in the
introduction, which is part of the input file to the cylinder code for
a well-prepared Gd specimen, after a bit of guided trial and error, of
the 40 modes used to obtain moduli to about 0.1% accuracy, modes
3 and 6 (and some others) were missing and had to be entered by
the user. Part of the problem here is that this was a very round, very
homogeneous specimen. Therefore, modes 2 and 3, and 5 and 6 were
doublets (degenerate) and so were expected to be missed. That is,
there are two peaks almost perfectly overlapping at these frequen-
cies. Another important point is that the codes will always converge
and that there are multiple minima, but the values will not be cor-
rect if a nonoptimal local minimum is found. A useful data set with
accurate results with a reasonably well prepared specimen that is rea-
sonably homogeneous will produce an rms error [the square root of
the average of the square of the differences between computed and
measured resonances, modified by the number of degrees of free-
dom (the number of elastic moduli)] better than 1%. An exceptional
specimen such as an oriented single crystal of Si will produce rms
errors of order 0.03% or better.

To explain the code workings, we examine the Gd output file
(Fig. 13). Then, we discuss the input file and how to actually run
the code. Note that the RPR and cylinder codes use the same format

FIG. 13. The final fit to the Gd cylinder of Fig. 1 showing the material properties computed by the code.
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FIG. 14. Code output snippet of data from Fig. 1 with two missed modes after a single pass of the fitting code.

for input and output files, so we only discuss the cylinder code. The
primary task at this point is to find missing modes. Figure 13 is the
output of a good fit.

Let us go through the missing mode problem in some detail as
this is the primary cause of failure for RUS. Finding missing modes
involves running the acquisition code and the analysis code itera-
tively, so keep both easily accessible. Figure 13 is our goal. As we
proceed, we show snippets of the input and output files without and
with missed modes identified.

In Fig. 14 is a section of output with two missed modes after a
single iteration with good initial guesses. In Fig. 15 is the (snippet)
of the cylin.dat file that produced it.

Note the error of 24.11% for the third mode. However, it is easy
to see that from Fig. 14 if the actual third mode was missed, the mea-
sured frequency of 0.300 276 9 MHz would be moved down in the list
and sit nicely next to the computed frequency of 0.300 337 6 MHz.
Now, we insert a missing mode into the input file, so it becomes
Fig. 16 (again, just a snippet) where we entered 0 0 0 (note that no
delimiter or decimal point is needed).

However, there is another problem now revealed at mode 6
(Fig. 17). Moving mode 6 down looks like it will match up with the
computed mode there, so we add a second missed mode (Fig. 18).

Now, we have very small errors between measured and com-
puted modes (Fig. 19). As we attempt to indicate, it is useful to keep
running single iterations of the analysis codes and adding missed
modes one at a time until no more obvious missed modes are appar-
ent. At this point, run the code with several iterations while watching
the on-screen rms error behavior. For these data, the code converges
to an rms error of 0.1451% and suggests missed modes very near
0.227 891 3 MHz and 0.309 059 9 MHz.

If the fit is good, one can quit, but it is often revealing to find the
missed modes. To attempt to find them, reposition the sample and
rescan over the frequency range where the mode was missed. Very

FIG. 15. Code input snippet of data from Fig. 1 with two missed modes.

often missed modes are one of a doublet, where one mode may be
weak and hidden in the tail of the stronger resonance. Rotating and
repositioning can change the relative amplitudes of the components
of a doublet. Missing modes can be entered manually into ∗∗∗in.dat
via Notepad after using the “Spectrum recorder” window and cursor
to read the missed frequencies or using the “follow peaks” feature
and manually entering an approximate guess (Fig. 12). Again, delim-
iters are not needed, but the third number (the weight used in the
fit) should now be 1. If the initial guesses are far from the actual
moduli, this process will be more difficult, with a bit more trial and
error involved, including changing the moduli to get the first mode
computed close to the first mode measured. The autoguess feature
does this automatically if the first mode is pure shear, as it often is,
and is in this case as seen by the 1.0000 at the top of the far right
column in Fig. 13. The numbers in the rightmost columns are the
computed sensitivity of the mode to a modulus. For example, the
fractional dependence of the 3rd mode on c11 is 0.229 76 and, on
c44, 0.770 24. Now, run the code again with a sufficient number of
iterations so that it converges and exits. The ∗∗∗out.dat file will con-
tain the best-fit values for the bulk modulus, shear modulus, Young’s
modulus, and Poisson’s ratio as well as compressional and shear
wave speeds, with some quantities only defined and therefore com-
puted for isotropic materials. The quality of the specimen and thus
the confidence in the elastic moduli values are assessed by the size
of the rms error. However, the actual error determination is more
complex.

The best fit is the bottom of an n-dimensional bowl where n
is the number of elastic moduli fitted. The principle axes of the
bowl are not along the elastic moduli axes. To determine the errors,
we have measured many specimens of identical isotropic composi-
tion and for many types of materials where we had determined the
dimensions to of order 0.01%. Using the measured scatter in c11,

FIG. 16. Code input snippet of data from Fig. 1 with the first missed mode replaced
with 0 0 0.
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FIG. 17. Code output snippet of data from Fig. 1 with first missed mode replaced with 0 0 0.

we determined, using the curvature of each principal axis, how far
up the bowl we had to move the best-fit c11 to get the measured
spread. Because the preponderance of the lowest modes (even the 40
modes we measured here for the Gd sample) is more strongly depen-
dent on c44 than c11, the precision (or the curvature of the c44 bowl
axis) approaches the accuracy with which we can determine geome-
try. Therefore, we based the error estimate instead on c11 and then
used the same criteria on the other moduli. That is, we found that if
we moved up the bowl along the c11 axis by some certain amount
to get a change in rms error by 2%, we got about the independently
determined scatter in c11. We then used that same 2% change in rms
error for the other moduli to determine how much they changed.
The result is shown in Fig. 20.

We see that the error we estimate for c11 is 0.19%, quite a bit
larger than the error of 0.05% for c44. Neither error is the same as
the rms error. Thus, it is very important to use the fit-curvature-
determined errors in reporting results.

VI. COMPUTATION OF MODULI FROM RESONANCES
AND THE PHYSICS OF THE AUTOGUESS FUNCTION
A. The math needed to understand how to compute
resonances from moduli (the “forward computation”)

The following is a description of how to compute the resonance
frequencies of a free-surface rigid solid body with no dissipation (in
practice, this means Q > several hundred) from its elastic tensor,
geometry, and density, based on the process detailed by Visscher.11,12

FIG. 18. Code input snippet of data from Fig. 1 with both missed modes replaced
with 0 0 0.

This is known as the “forward computation,” which was originally
introduced by Demarest.13,14

The linear elastic Lagrangian as a function of the displacement
field u(r, t) = ∑3

i ui(r, t)êi, where we are looking at the motion of a
tiny element in the solid, is

L = T − V = 1
2 ∫V

⎛
⎝∑i

ρu̇2
i (r, t) −∑

ijkl
Cijkl

∂ui(r, t)
∂xj

∂uk(r, t)
∂xl

⎞
⎠

dV ,

(1)
which, provided the harmonic displacement field

um(r, t) = um(r)e−iωt (2)

may be expressed as

L = 1
2 ∫V

⎛
⎝∑i

ρω2u2
i −∑

ijkl
Cijkl

∂ui

∂xj

∂uk

∂xl

⎞
⎠

(3)

with ui ≡ ui(r). ui(r) is then expanded in the Visscher basis,

ui(r) =
N

∑
λ
αiλϕλ(r), (4)

where aiλ are scalar constants and ϕλ(r) is

ϕλ(r) ≜ xlymzn ≡ ϕlmn. (5)

Expressed in the Visscher basis, the kinetic and potential energy
terms in Eq. (3) become

∑
i
ρω2u2

i = ∑
ii′λλ′

δii′ρω2aiλai′λ′ϕλϕλ′ (6)

and

∑
ijkl

Cijkl
∂ui

∂xj

∂uk

∂xl

k→i′=
l→j′
∑
iji′ j′

λλ′

Ciji′j′aiλai′λ′
∂ϕλ
∂xj

∂ϕλ′
∂xj′

, (7)

respectively, and Eq. (3) becomes

L = 1
2
ω2 ∑

ii′λλ′
aiλ(δii′ ∫

V
ϕλρϕλ′dV)ai′λ′

−1
2 ∑ii′λλ′

aiλ
⎛
⎝∑jj′

Ciji′j′ ∫
V

∂ϕλ
∂xj

∂ϕλ′
∂xj′

dV
⎞
⎠

ai′λ′ . (8)

It is typical at this point to make the following definitions:

Eλiλ′i′ ≜ δii′ ∫
V
ϕλρϕλ′dV , (9)
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FIG. 19. Code output snippet with both missed modes replaced with 0 0 0 to produce the final fit of Fig. 13.

Γλiλ′i′ ≜ ∑
jj′

Ciji′j′ ∫
V

∂ϕλ
∂xj

∂ϕλ′
∂xj′

dV , (10)

to get

L = 1
2
ω2 ∑

ii′λλ′
aiλEλiλ′i′ai′λ′ −

1
2 ∑ii′λλ′

aiλΓλiλ′i′ai′λ′ . (11)

Equation (11) is stationary when

∂L
∂αiλ

= 0 (12)

as demonstrated by Visscher.5 It can be shown that application of
this condition on Eq. (11) produces the following:

∂L
∂ai′′λ′′

= ∑
i′λ′

ai′λ′(
1
2
ω2Eλ′′i′′λ′i′) +∑

iλ
αiλ(

1
2
ω2Eλiλ′′i′′)

−∑
i′λ′

ai′λ′(
1
2
Γλ′′i′′λ′i′) −∑

iλ
αiλ(

1
2
Γλiλ′′i′′), (13)

which can be simplified into

ω2∑
iλ
αiλEλiλ′′i′′ = ∑

iλ
αiλΓλiλ′′i′′ (14)

by exploiting the symmetries Eλiλ′i′ = Eλ′i′λi and Γλiλ′i′ = Γλ′i′λi.
Equation (14) is the root relationship between elastic moduli

and resonance frequencies upon which RUS is founded, enabling
one to compute resonances from elastic properties by solving this
eigenvalue problem.

Typically, Eq. (14) is solved in a lower-dimensional framework,
with all rank-4 and rank-2 quantities expressed as rank-2 (matrix)
and rank-1 (vector) quantities, respectively. This is accomplished by
mapping positions of elements in the higher-dimensional quantities
to new positions in the lower dimensional ones.

A general map for Eq. (14) that achieves the desired results
(noting that the symmetry Λλ′′i′′λi = Λλiλ′′i′′ has been assumed
because the system is a physical, time-reversal invariant positive-
definite one)

(aβ(i,λ) ∈ a) = (aiλ ∈ a), (15)

FIG. 20. Code output snippet showing error listing for the final fit of Fig. 13.

(Λα(λ′′ ,i′′)β(λ,i) ∈ Λ) = (Λλ′′i′′λi ∈ ¯̄Λ), (16)

can be defined by the functions

α = (i′′ − 1)N + λ′′∀i′′ ∈ (1, 2, 3), λ′′ ∈ (1, 2, 3, . . . , N), (17)

β = (i − 1)N + λ∀i ∈ (1, 2, 3), λ ∈ (1, 2, 3, . . . , N), (18)

to write Eq. (14) as

ω2
3N

∑
β=1

Eαβaβ =
3N

∑
β=1

Γαβaβ, (19)

where N is the number of terms out to which the displacement field
ui(r) is expanded in the Visscher basis (4). Equation (19) can be
expressed as

ω2Ea = Γa, (20)
which is the familiar RUS eigenvalue problem that enables com-
puting resonances from an elastic modulus tensor, the forward
computation.

B. Process to compute moduli from resonances
(the “inverse computation”)

Within the context of RUS, the process by which a solid’s elastic
properties are computed from its measured mechanical resonances
always involves an inversion of the forward computation and is as
such generally referred to as the “inverse computation.”

Because the forward computation has no analytic inverse, it
must be inverted numerically. An iterative approach is taken, which
consists of repeated applications of the forward computation on a
varying elastic tensor until a set of resonances are computed that
are a best fit to the corresponding measured set to within some
predefined threshold. The elastic tensor that achieves this result is
taken as that of the solid from which the resonance frequencies were
measured.

This process is known as fitting the elastic tensor. It requires an
objective function—some meaningful measure of similarity between
two sets of numbers (specifically, the computed and measured res-
onance frequencies) and some means of varying the elastic ten-
sor to minimize the objective function (so that the computed
resonances tend toward the measured ones as the computation
proceeds).

The objective function and means of varying the elastic tensor
are arbitrary. We use as the objective function a computed sum of
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weighted residuals, and a common approach to varying the elastic
tensor is by the Levenberg-Marquardt method of steepest descent,15

but genetic algorithms16 have also been used to the same effect with
the added benefit of determining missing mode placeholders but at
the expense of massive computational time. We do not discuss this
approach.

C. Autoguess strategy
The “autoguess strategy” refers to a routine that does a one-time

modification of the initial input estimated elastic properties, based
on the assumption that the first measured resonance frequency is a
pure shear mode, to provide the inverse computation with a starting
point from which it is more likely to converge.

The physical basis for the autoguess assumption that the first
resonance is pure shear (i.e., dependent entirely on C44) is derived
from the tendency of C44 to be the softest of any of a material’s stiff-
nesses, generally so because shear manipulation involves no volume
change (does not change all bond lengths). Each of a material’s res-
onance frequencies is dependent on a mix of all its elastic moduli, so
because frequency increases with stiffness, it is plausible that the low-
est resonance is more dependent on the softest stiffness (modulus)
than any other.

By assuming a functional relationship between only the first
measured resonance and the shear modulus C44, the autoguess rou-
tine is capable of updating a whole set of input estimated elastic
moduli through orthorhombic materials for the inverse computa-
tion to act on. This function is implemented, and the method for
using it is described in the analysis code4 distribution.

D. More on missing modes
A consequence of inverting the forward computation numer-

ically is the loss of physical context. There exists no mechanism
within the inverse computation that checks its inputs or outputs for
correspondence with a real, physical system; it simply acts blindly on
nominally valid data.

This is a problem because it is not unusual for the set of reso-
nances found to be physically invalid, meaning no real material with
quality and dimensions as required by RUS could have produced it.
The inverse computation applied to such a spectrum will produce
correspondingly meaningless elastic moduli.

If there are no issues with specimen quality or dimensions, the
way in which a measured spectrum can be nonphysical is by being
incomplete; that is, not all modes that should be present within
the frequency range over which the spectrum was acquired were
captured. For example, suppose a measured spectrum captures the
mode f i, followed by f i+1, but the spectrum that physically corre-
sponds to the specimen from which these modes were extracted
contains some unknown mode f q, missed during measurement, that
exists between f i and f i+1.

Such an incomplete spectrum must be prepared appropriately
for fitting by the inverse computation. This requires locating the
positions (identified by and referred to as zeros) of the missing

modes in the sequence of measured frequencies—knowing their val-
ues are not necessary. Generally, the user performs this task manu-
ally, a process that takes experience and time and is prone to error.
Recently though, an algorithm for automatically locating missing
modes in incomplete spectra was tested in a code for performing the
inverse computation and showed promise for eliminating this job
from the user’s responsibilities.

This automated solution to the missing mode problem takes
a brute-force approach to locating missed resonances in measured
spectra. Based on the rms error between every arrangement of n
or fewer zeros in the measured spectrum and the spectrum com-
puted for that iteration of the inverse computation, the positions of
the missing modes are taken from that configuration which yields
the smallest error. These positions are, of course, subject to change
with each iteration of the inverse computation. This feature will be
included in future updates to the analysis codes and made freely
available.4
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